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The high-temperature normal state of the unconventional cuprate superconductors has resistivity
linear in temperature T , which persists to values well beyond the Mott-Ioffe-Regel upper bound.
At low-temperature, within the pseudogap phase, the resistivity is instead quadratic in T , as would
be expected from Fermi liquid theory. Developing an understanding of these normal phases of the
cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation
for this behavior, in terms of umklapp scattering of electrons. This fits within the general picture
emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang
ansatz: umklapp scattering is at the heart of the behavior in the normal phase.

Introduction.— The anomalous temperature and fre-
quency dependence of the electrical d.c. conductivity in
the pseudogap (PS) phase of underdoped cuprates has
attracted special attention.1–3 While there is agreement
that the PS phase is a precursor to the Mott insulator
(MI), a coherent description of its unexpected features is
still a challenge. Many of these are in momentum space,
e.g. the breakup of the Fermi surface by energy gaps near
the antinodes with superconductivity only near the nodal
Fermi pockets.4 At high temperatures the energy gap in
the PS phase disappears and the resistivity increases lin-
early with temperature T to anomalously large values.3
This radical departure from a standard metal has led to
the label of ‘strange metal’ for this phase. In this letter,
we argue that the explanation lies in dominant umklapp
(U) scattering, i.e. elastic scattering processes that di-
rectly transfer momentum between the conduction elec-
tron sea and the underlying lattice.

The parent undoped cuprates are MIs5 – a state where
strong electron-electron interactions cause conduction
electrons to condense onto ions, forming an insulating
lattice of neutral atoms. In one dimension, however, a
Mott state appears already at weak interactions, driven
by U-scattering across the Fermi surface.6 This causes
momentum transfer between the conduction electron sea
and the ionic lattice in units of reciprocal lattice vec-
tors and leads to the insulating ground state. A case
of particular interest to us is the 1/2-filled two-leg Hub-
bard ladder (2LHL), and its so-called d-MI state, a state
that contains seeds of d-wave superconductivity.7,8 At
high temperatures, a one-dimensional (1D) bosonization
analysis finds that the resistivity due to umklapp scatter-
ing (see the processes in Fig. 1) rises linearly with T , the
anomalous form also observed in the ‘strange metal’.9,10

The approach that we follow here is to start from the
bosonization solution of the 2LHL, and treat the gen-
eralization to 2D in the spirit of a k-space factorization
within a finite patch approximation. This was introduced
by Ossadnik,11 who argued that short range order yields
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FIG. 1. Umklapp scattering processes (RR → LL) for right-
moving electrons at the Fermi points (grey circles) in the one-
dimensional 1/2-filled two-leg Hubbard ladder.

k-space correlations with a finite width, which justifies
a wave packet analysis where one breaks k-space into fi-
nite width patches. When combined with the Yang-Rice-
Zhang (YRZ) distortion of the Fermi surface,12 this yields
a reasonable description of the physics observed within
ARPES in high-Tc cuprates,13 as well as the behavior
of the high-field Hall effect within the PS phase.14 Com-
bined with the rather different approach of,15 these works
provide a formal link between the physics of fermionic
ladders and 2D doped MIs. The antinodal regions are
mapped onto mutually perpendicular 1/2-filled ladders,
which interact only weakly with the nodal regions (to
first approximation, the two regions can be treated as
decoupled). In the present letter, we show that this pic-
ture captures the behavior of transport within the PS
phase of the high-Tc cuprates, with the correct form of
the longitudinal transport %(T ) being found, as well as
explaining the Hall angle as a function of temperature.
Umklapp scattering in doped cuprates.— The impor-

tance of U-scattering in the high-Tc cuprate superconduc-
tors away from 1/2-filling has been emphasized for some
time now, see e.g..Honerkamp et al. 16 The 2D Hubbard
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FIG. 2. The non-interacting Fermi surface (dotted) intersects
the umklapp surface (dashed lines, connecting the antinodes)
at eight isolated points within the Brillouin zone, known as
hotspots (gray circles). In the presence of strong interactions
the Fermi surface may deform in order to increasing the nest-
ing (depicted in red), leading to the formation of the well-
known ‘pockets’ close to the nodes. One umklapp scattering
process, L1, L2 → R1, R2, is illustrated.

model was studied within the functional renormalization
group (FRG) framework; at small dopings away from 1/2-
filling U-scattering flows to strong coupling. Thus any
electrons on the “umklapp surface” (the square surface
joining the antinodal points, see Fig. 2) experience strong
U-scattering. On the Fermi surface, eight such isolated
points exist, known as hotspots. The FRG analysis also
showed clear hallmarks of d-wave superconductivity and
antiferromagnetism,16,17 in agreement with exact diago-
nalization studies.18

The presence of the U-surface, on which scattering is
particular strong, motivated Yang, Rice and Zhang to
propose their phenomenological ansatz for the Green’s
function in the PS phase.12 This puts the U-surface at
the center of the physics, with the pairing gap open-
ing on this surface, rather than the Fermi surface.
Strong U-scattering then increases the energy gap. The
ansatz has successfully described a variety of experi-
ments, from angle-resolved photoemission spectroscopy13
to the change in the Hall effect upon entering the PS
phase,19 and resonant inelastic x-ray scattering.20

The important role of U-scattering in the cuprates was
again emphasized recently by Liu et al.14 and Wu et al.21
They argued that U-scattering causes the emergence of
the PS state, turning the superconducting gap at over-
doping into an insulating PS at lower doping due to gaps
in both single particle and pair spectra22. The presence
of strong U-interactions can deform the Fermi surface
to stabilize commensurate nesting, which in turn maxi-
mizes the interactions, leading to enhanced gaps (similar
to Cr alloys23) on the YRZ Fermi surface, see Fig. 2 and
Refs. [14,15,21]. This deformation of the Fermi surface
to run along the U-surface allows a straightforward gen-
eralization of the 1D 2LHL analysis, leading to T -linear
resistivity, to 2D.
The normal phases of the cuprates.— The normal

phases of the cuprate superconductors are enigmatic and

enduring mysteries in contemporary condensed matter
physics.4,12,24 A theory of these phases is crucial to un-
derstand the mechanism of high-Tc superconductivity,
as these are the states from which superconductivity
emerges. The ‘strange metal’ exhibits linear resistiv-
ity %(T ) ∝ T , in striking contrast to the conventional
%(T ) ∝ T 2 behavior of Fermi liquid theory.1–3 Whilst
the resistivity may saturate at sufficiently high temper-
ature,2,25 it is clear that it can largely violate the Mott-
Ioffe-Regel limit26 On the other hand, the PS phase
shows the conventional %(T ) ∝ T 2 behavior at low-
temperature, with a gradual crossover to linear at the
transition to the ‘strange metal’, T ∗.3

The transition temperature T ∗ between the ‘strange
metal’ and PS phases is still the subject of much study.
The order parameter characterizing the transition, if it
exists, is hotly debated. Recent optical studies found
a change in symmetry on passing through T ∗.27 Angle-
resolved photo emission spectroscopy,28 tunneling spec-
troscopy,29 and Raman30 studies lend support to the sug-
gestion T ∗ can be related to the PS ∆PG analogously to
the superconducting gap ∆BCS and Tc in a BCS super-
conductor, 2∆PG ' 4.3kBT

∗.
The two fluid model.— The results of Refs. [14,15]

present a picture of the PS phase where antinodal and
nodal states are well separated. This sets the stage for
the two fluid model of the conductivity σ(T ) in the nor-
mal phases31

σ(T ) ≈ σnodes(T ) + σantinodes(T ), (1)

where each contribution comes from nodal or antin-
odal states. We will see that U-scattering of electrons
in the antinodal regions at high temperatures leads to
σantinodes(T ) ∼ 1/T (i.e., %(T ) ∝ T ), while conventional
scattering around the nodal regions leads to the Fermi
liquid form σnodes(T ) ∼ 1/T 2 (i.e., %(T ) ∝ T 2).
Linear resistivity for T > T ∗.— At the center of our

argument for linear resistivity %(T ) ∝ T at high tempera-
ture is the mapping of electrons along the U-surface (i.e.,
in the antinodal region and the vicinity of the hotspots)
to effective ladder models, see Refs. [14,15]. U-scattering
of such electrons dominates the resistivity,32 both due
to the propensity of U-scattering to dissipate momentum
and the strength of such terms (which flow to strong cou-
pling under the FRG16). Linear resistivity then follows
in a straightforward way; at an elementary level, this
can be seen from the naïve Boltzmann argument pre-
sented earlier. At a more quantitative level, we can con-
sider the resistivity generated by presence of a U-term
HU =

∫
dxHU in the low-energy effective theory7,32,33

(for details we refer the reader to15),

HU = u
[

cos(
√

8πΦ1,c) + cos(
√

8πΦ2,c)
]
, (2)

where u is the U-interaction strength and Φ1,c, Φ2,c are
charge fields in the low-energy description of the ladder.
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Their two-point correlation function is

〈Φa,c(x, t)Φa,c(0, 0)〉 (3)

=
Kc

4π
ln

 πT

sinh
(
πT (t− x− i0)

) πT

sinh
(
πT (t+ x− i0)

)
 ,

where Kc is the Luttinger parameter for the charge de-
grees of freedom.33

The charge field in the the presence of a constant cur-
rent J , denoted Φ̃i,c, can be related to the zero current
field through Φi,c(x, t) = Φ̃i,c(x, t)− πJt. The resistivity
can then be computed following the approach of Ref. [34].
The voltage drop V across the system is related to the
time-derivative of the dual charge fields Θa,c(x, t)

eV =
∑
a=1,2

〈
d

dt

[
Θa,c

(
L

2
, t

)
−Θa,c

(
−L

2
, t

)]〉
, (4)

We then compute the time derivative of the dual field

Θ̇a,c(x, t) = i[H,Θa,c(x, t)]

= −iπu
∫ x

−L
2

dy sin
(√

8πΦa,c(y, t)
)
.

(5)

Combining Eqs. (4) and (5), we derive the expression for
the voltage drop across the system:

V = Lu2
∑
i=1,2

∫
dx

∫ ∞
−∞

dt sin(πJt)〈HU (x, t)HU (0, 0)〉.

(6)
To zeroth order in the coupling u, the finite temperature
T correlation function follows from Eq. (3)〈

cos
(√

8πΦi,c(x, t)
)

cos
(√

8πΦi,c(0, 0)
)〉

=

 πT

sinh
(
πT (t− x− i0)

) πT

sinh
(
πT (t+ x− i0)

)
2Kc

.

Inserting this expression into (6) we find the resistivity

%(T ) ∼ u2T−3+4Kc . (7)

In this simple manner we reproduce the well-known result
of Ref. [9]. Linear resistivity is recovered in the limit
Kc → 1. Expanding Eq. (6) further in the coupling u,
we arrive at the scaling law

%(T ) = Tf

(
T

T ∗

)
, (8)

where T ∗ ∼ u1/2(1−Kc), and the scaling function satisfies
f(x) ∼ x−4(1−Kc) for x � 1 and f(x) ∼ exp(α/x) for
x � 1, where α is a constant of order one. The low-
temperature limit is determined by the presence of a gap.
From Eq. (8) we conclude that the contribution to the
conductivity has a maximum around T ∗.

Quadratic resistivity for T � T ∗.— Let us now con-
sider the low-T PS phase. At sufficiently low T , the PS
has opened around the antinodes, leading to the well-
known nodal pockets. In this limit, there are no single
electron states in the vicinity of the U-surface, and resis-
tivity is dominated by conventional scattering occurring
at the pockets. This produces %(T ) ∝ T 2 via the usual ar-
gument for a Landau-Fermi liquid. Namely, the number
of scattering channels varies as T 2 when energy and mo-
mentum conservation is imposed, leading to %(T ) ∝ T 2.
The transition region, T . T ∗.— In the low-T PS

phase, antinodal excitations are gapped and the nodal
pockets give %(T ) ∝ T 2. On the other hand, within the
‘strange metal’ T > T ∗ the resistivity is dominated by
U-scattering, leading to %(T ) ∝ T . Our explanation nat-
urally leads to a crossover between these, as follows.

There exist eight hotspots where the Fermi surface and
the U-surface coincide. However, much of the Fermi sur-
face is close to the U-surface and so, at finite tempera-
ture, a significant density of electrons resides on it. These
electrons experience extremely strong U-scattering, as
explained above, and dominate the resistivity, leading to
%(T ) ∝ T at high T . As the temperature is lowered, the
number of electrons that undergo U-scattering is reduced.
At the cross over to the PS phase at T = T ∗, a gap opens
about the antinodes that increases with decreasing tem-
perature. Eventually this gap encompasses the U-surface
in the antinodal regions, and no electronic states exist in
which U-scattering can occur. At this point, the resistiv-
ity is dominated by the pockets, leading to %(T ) ∝ T 2.
Between these two limits, a crossover occurs.

More formally this can be extracted from
Eqs. (1) and (8). At a crude level, we can use
an extrapolation formula that combines the antin-
odal contribution to the conductivity at low T ,
σantinodes(T ) ∝ T−1 exp(−αT ∗/T ), with the nodal
contribution, σnodes(T ) ∝ 1/T 2,

%(T ) = A1T

[
exp

(
−αT

∗

T

)
+
BT ∗

T

]−1
. (9)

Here A1, B and α are constants. It is worth emphasizing
that this behavior is very unusual. Upon cooling, quasi-
particle excitations within much of the Brillouin zone be-
come gapped. It would then be natural to expect that the
resistivity increases, yet, on the contrary, the resistivity
drops from %(T ) ∝ T to %(T ) ∝ T 2.

Lastly we compare our model to the detailed experi-
ments of Barišić et al.,3 who analyzed the temperature
dependence of the resistivity of the normal state in a
series of under- and overdoped cuprates. In Fig. 3 we
compare the resistivity in HgBa2CuO4+δ with a fit to
the crude scaling form (9). We see that there is excellent
agreement.

Barišić et al. 3 found that the results for different
cuprates could be coalesced into a single curve when they
normalized their hole densities to holes per Cu4O4 pla-
quette. In the PS phase, p < 0.18, they fit their results
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FIG. 3. The crude scaling form (9) fit to experimental data,
extracted from Fig. 2 of Ref. [3], for the resistivity as a func-
tion of temperature in HgBa2CuO4+δ at p = 11% doping.
Here A1/%(400K) ≈ 8 × 10−4 K−1, B ≈ 0.25, α ≈ 2.8, and
we take T ∗ = 280 K. (Inset) The fit to Eq. (9) plotted to
higher temperatures, showing linear in T behavior over many
decades (dashed line ∝ T is a guide to the eye).

FIG. 4. The doping, p, dependence of coefficients A1, A2 of
the resistivity %(T ) = A1(p)T [%(T ) = A2(p)T

2] at high [low]
temperatures in a number of cuprate superconductors. Figure
adapted from Ref. [3], where further details can be found.

to a resistivity of the form %(T ) = A1(p)T at high tem-
peratures and %(T ) = A2(p)T 2 at low-temperatures; the
doping-dependent coefficients A1(p), A2(p) are displayed
in Fig. 4. Both coefficients increase dramatically as p
decreases within the PS phase. This behavior is consis-
tent with Eq. (7), as the PS state is approaching the MI
– a state with a substantial single particle energy gap.
The screening at low energies is reduced, leading to an
increase in the U-interaction, u in Eq. (2). The length of
the antinodal gapped region is also enhanced. A1(p) is
finite but small in the overdoped region p > 0.20, consis-
tent with the one-loop FRG calculations of Ref. [35].
The Hall angle.— Our scenario can also explain an

old mystery, that of the two scattering rates observed
in the longitudinal and Hall conductivities.36 The mag-
netic field in transport coefficients scales with T 2, which
we suggest is related to the scattering rate of the nodal
quasiparticles, while the longitudinal conductivity sug-
gests scattering rate linear in T . Such a separation of
scattering rates naturally follows from our theory, where

nodal and antinodal fermions interact weakly with each
other. The nodal pockets are conventional Fermi liquids,
giving rise to the T 2 transport coefficient in a magnetic
field. Instead, the antinodal regions can be mapped onto
an effective ladder model with with zero interchain tun-
neling .15 The absence of interchain tunneling is implied
by the exact degeneracy of the two bands and explains
why these regions—which give T -linear contributions to
the longitudinal resistivity—are unaffected by the mag-
netic field. In order for the magnetic field to influence the
transport of antinodal quasiparticles, the quasiparticles
must be able to move around a closed path that encloses
magnetic flux. When interchain tunneling is absent, no
such paths can be formed and hence the antinodal re-
gions do not contribute to the Hall conductance. In [32]
we use Ong’s geometric analysis of the Hall effect in 2D
metals37 to explain the anomalous behavior of the Hall
constant in the PS phase.

Conclusions.— In this work we have proposed a simple
mechanism for the origin of the linear resistivity in the
normal phase of high temperature cuprate superconduc-
tors. As with a multitude of other works on the normal
phase, including the enigmatic PS, this mechanism places
U-scattering at its heart. Elastic U-scattering within the
‘strange metal’ phase of the cuprates leads to %(T ) ∝ T .
As U-scattering flows to strong coupling under the FRG
within microscopic models of the cuprates in the nor-
mal phase,16 it is reasonable to expect that this is the
dominant contribution to the resistivity. Decreasing the
temperature, the PS opens and restricts the available U-
scattering channels, leading to a crossover between the
linear resistivity of the ‘strange metal’ and the traditional
T 2 form of the scattering from the Fermi pockets.

The analogy between the physics of ladders and un-
der doped cuprate superconductors explains phenomena
beyond the transport discussed here.38 The excitation
spectrum of the fermionic ladders contains gapped col-
lective modes that match those observed in the cuprates.
The most obvious one is the spin S = 1 magnon,39 while
another is the cooperon – a gapped bound state of two
electrons (holes).8,40 Ongoing work suggests that the in-
teraction of the cooperon with nodal quasiparticle pairs
leads to a kink appearing within the spectrum of nodal
quasiparticles.41

The path towards detailed microscopic calculations is
clear. The wave packet approach to interacting fermions,
introduced by Ossadnik,11 allows one to map the full 2D
problem to that of 1D (effective) two-leg ladders. This
then opens the door to calculations that use the non-
perturbative tools available for ladder systems, such as
bosonization and refermionization7,8,15,42 and integrabil-
ity,8,43 to further study the contribution of U-scattering
to the resistivity.
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