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It has recently been found that bosonic excitations of ordered media, such as phonons or spinons,
can exhibit topologically nontrivial band structures. Of particular interest are magnon and triplon
excitations in quantum magnets, as they can easily be manipulated by an applied field. Here we
study triplon excitations in an S=1/2 quantum spin ladder and show that they exhibit nontriv-
ial topology, even in the quantum-disordered paramagnetic phase. Our analysis reveals that the
paramagnetic phase actually consists of two separate regions with topologically distinct triplon ex-
citations. We demonstrate that the topological transition between these two regions can be tuned
by an external magnetic field. The winding number that characterizes the topology of the triplons
is derived and evaluated. By the bulk-boundary correspondence, we find that non-zero winding
number imply the presence of localized triplon end states. Experimental signatures and possible
physical realizations of the topological paramagnetic phase are discussed.

The last decade has witnessed tremendous progress
in understanding and classifying topological band struc-
tures of fermions [? 7 7 7 ]. Soon after the discovery of
fermionic topological insulators [? 7 ], it was recognized
that bosonic excitations of ordered media can as well ex-
hibit topologically nontrivial bands [? ? ? ? ? ]. Such
bosonic topological bands have been observed not long
ago for photons in dielectric superlattices [? ]. Theoreti-
cal proposals of topological states in polaritonic systems
have been made [? ? ? ], some of which have been
observed experimentally [? |. Besides these examples,
bosonic band structures are also realized by elementary
excitations of quantum spin systems, e.g., by magnons in
(anti)ferromagnets or by triplons in dimerized quantum
magnets.

The study of these collective spin excitations is en-
joying growing interest, due to potential applications for
magnonic devices and spintronics [? ]. Because mag-
netic excitations are charge neutral, they are weakly in-
teracting, and therefore exhibit good coherence and sup-
port nearly dissipationless spin transport. Moreover, the
properties of spin excitations are easily tunable by mag-
netic fields of moderate strength, as the magnetic inter-
action scale is in most cases relatively small. Of particu-
lar interest are magnetic excitations with nontrivial band
structure topology, since they exhibit protected magnon
or triplon edges states. This was recently studied for
triplons in the ordered phase of the Shastry-Sutherland
model [? ? ? ] and for magnons in an ordered py-
rochlore antiferromagnet [? | as well as in an ordered
honeycomb ferromagnet [? |. However, the development
of a comprehensive topological band theory for magnetic
excitations is still in its infancy. Specifically, it has re-
mained unclear whether topological spin excitations can
exist also in quantum disordered paramagnets.

In this Letter, we address this question by consider-
ing, as a prototypical example, the paramagnetic phase
of an S=1/2 quantum spin ladder with strong spin-orbit
coupling. The considered spin ladder model describes

a large class of well studied compounds, called coupled-
dimer magnets [? ], which have two antiferromagnetically
coupled spins per crystallographic unit cell (see Fig. [II).
Due to the strong antiferromagnetic exchange coupling
within each unit cell, the magnetic ground state of these
compounds is a dimer quantum paramagnet, where the
two spins in each unit cell form a spin singlet. Exam-
ples of S=1/2 spin ladder materials include NaV,0j5 [?
], Bi(Cu;_,Zn,)2POg [? ], and the cuprates SrCuzOg
[? ], CaCu203 [? ], BiCUQPOG [? ], and LaCuOgb
[? ]. Particularly interesting among these is BiCuaPOg,
since it exhibits strong spin-orbit couplings, which lead to
spin-anisotropic even-parity exchange couplings as well
as odd-parity Dzyaloshinskii-Moriya (DM) interactions.
As we will show, the latter gives rise to topologically
nontrivial triplon exctiations.

The elementary low-energy excitations of coupled-
dimer magnets correspond to breaking a singlet dimer
into a spin-1 triplet state. These excitations are called
triplons and can be viewed as bosonic quasiparticles with
S=1. In the absence of spin-orbit coupling the three
triplet states are degenerate, due to SU(2) spin-rotation
symmetry. For spin-ladder compounds with heavy ele-
ments, however, strong spin-orbit interactions lead to an-
tisymmetric DM couplings, which split the triplon band
into multiple dispersive bands. We find that these triplon
bands can have nontrivial topological character, which
can be tuned by an applied field. In the topologically

FIG. 1. Schematic representation of the exchange interac-
tions in the quantum spin ladder described by Eq. (). The
spins are shown as black circles, blue lines represent intra-
dimer exchange (J), and red lines inter-dimer interactions
(K). The DM interaction (D), indicated in green, points
in the y-direction into the plane of the ladder. In addition,
the model exhibits an even-parity spin-anisotropic interaction
(T"), which arises along with the odd-parity DM interaction
due to spin-orbit coupling.



FIG. 2. Triplon bands (¢, and t.) obtained from Hy, Eq. (@), are plotted for different h,. We see that the gap between the
two modes vanishes to form a Dirac point at h, = +D. Everywhere else in the dimer-quantum-paramagnetic phase, the two
modes do not touch each other. For |hy,| < D the phase is topologically non-trivial, else it is trivial. The parameters used are

D/J=T/J=0. and K/J = 0.01.

nontrival phase, which we call topological quantum para-
magnet, the spin-ladder exhibits triplon end-states with
fractional particle number (see Figs. Bl and d]). We show
that these end-states are protected by a nonzero winding
number and determine their experimental signatures in
heat-transport and neutron-scattering measurements.

Spin model and triplon description.— We consider a
spin-1/2 frustrated quantum spin ladder, whose lattice
geometry and interactions are illustrated in Fig. [l The
corresponding Hamiltonian is given by

H=J Z Shi - Soi + K Z [Shi - Sris1 + Sai - Sais]
+D Y [STi8Ties = SESTis + 5555041 — 585514
+T Z [S%,5T; 1 + STiSTip + 855501 + 5595 41)
thy Y [S% + 5], (1)

where, ¢ denotes the dimer site, 1,2 label the two legs of
the ladder, J is the antiferromagnetic intra-dimer cou-
pling, and K is the inter-dimer Heisenberg interaction.
Spin-orbit coupling gives rise to the odd-parity DM inter-
action D and the even-parity spin-anisotropic inter-dimer
coupling I". We assume that the two legs of the ladder
are equivalent by symmetry. Likewise, all the rungs are
taken to be equivalent. Therefore, the only symmetry al-
lowed DM term is the inter-dimer DM interaction in the
y-direction between the spins along the legs of the lad-
der [? ]. The even-parity spin-anisotropic interaction I is
of similar form as the DM term, but its direction is not
fixed by lattice symmetries. For simplicity, we assume
that the I' term points in the same direction as the DM
interaction; in the Supplemental Material we consider the
case where the I' term points along the z direction. In
Eq. (@) we have also included a small magnetic field h,
perpendicular to the ladder plane, which provides a han-
dle to induce a topological transition.

For dominant J > 0, the spins within each unit cell
of the spin ladder form a singlet and a dimer-quantum-
paramagnet is realized. Throughout this paper we shall
be interested in this phase only. This phase has three
gapped excitations corresponding to the three possible
spin-1 triplet excited states on each dimer. To de-
scribe these elementary triplon excitations, we employ
the bond-operator formalism [? |, which allows us to rep-
resent the spin operators in Eq. () in terms of triplon cre-
ation and annihilation operators t! and t., (v = z,y, 2) [?
]. For a given dimer these triplon operators are defined as

FIG. 3. Band structure of the quantum spin ladder, Eq. (@),
with open ends. Protected end states (green line) appear in
the topological paramagnetic phase, |hy| < D. Parameters
used are the same as in Fig.

thlto) = Ity) (v = 2,y, 2), where [to) = [| 1) — | I1)]/v2
is the singlet state, while |t,) = —[| 1) — | 11)]/V2,
[ty) = o] 1)+ [ LD]/V2, and [t2) = [| 1)) + [ I1)]/V2
are the spin-1 triplet states. Rewriting Eq. () in terms
of t, and tL yields an interacting bosonic Hamiltonian
describing the dynamics of the triplons [? |. For simplic-
ity, we consider here only the bilinear part of this triplon
Hamiltonian. This is known as the harmonic approrima-
tion [? ]. As it turns out, at the harmonic level the t,
triplon mode is decoupled from the other two triplons.
We therefore focus only on the ¢, and t, excitations,
whose dynamics in momentum space is given by [? ]

1
Hy = 3 ; ‘I/LMk‘I/k, (2a)

with the spinor ¥y, = (¢, tiz, tikx, ttkz)T and the 4 x 4
matrix

Hy(k)  Ha(k) ]
My = { | 2
“= aiw) T (- 2
The diagonal and off-diagonal parts of M, read
Hy(k) = (J + K cos(k))1 +d - &, (3a)
Hy(k) = —Ke "1 - -4, (3b)

with the vectors

d={dy,dy,ds} = {T cos(k), —Dsin(k) — h,,0} , (3c)
Z={x1,x9,23} = {T cos(k), —Dsin(k),0} , (3d)

where 1 is the 2 x 2 identity matrix, ¢ = v/—1 and & =
{01,02,03} are the three Pauli matrices.

Triplon bands and protected end states.— The triplon
bands of Hamiltonian (2]) are obtained by use of a bosonic
Bogoliubov transformation [? ? ? ], which amounts
to diagonalizing the non-Hermitian matrix XMy, where
Y = diag(L, —1). In Fig. Bl we show the typical triplon
dispersions for different values of the tuning parame-
ter hy. Both triplon modes are gapped in the entire
dimer-quantum-paramagnetic phase. Moreover, the two
triplons do not touch each other, except at h, = £D,



FIG. 4. Triplon end-state density profile p — po plotted in
the topological paramagnetic phase, |hy| < D, near one of the
ladder ends. In the topologically trivial phase, |hy| > D, the
end states are absent (black trace). Parameters used are the
same as in Fig.

where they touch linearly. This observation suggest that
at hy, = =D there occurs a topological phase transition,
which separates a trivial phase from a topological one.

To confirm this conjecture, we study the edge states
of Hamiltonian Hj, whose presence indicates the topo-
logical character of the triplon bands. For that purpose
we determine the eigenenergies and eigenmodes of Hj
in real space with open boundary conditions. Figure [
displays the so-obtained spectrum as a function of h,,.
We also compute the energy-integrated local density of
states (LDOS) of Hy, by adding the contributions from
the lower triplon band and from the end states with en-
ergies in between the two triplon bands. To reveal the
existence of end states we subtract the LDOS of H;, with
periodic boundary conditions pg from the LDOS with
open boundary conditions p. The resulting triplon end-
state density profile p— pg is plotted in Fig. [l for different
values of h,. From Fig. Blwe clearly see that for |h,| < D
the spectrum contains, besides the bulk triplon bands
(red and blue), an additional state (green) with energy
in between the two triplons. Figure @ shows that this
in-gap state is exponentially localized at the two ends of
the spin ladder. Hence, we conclude that the paramag-
netic phase of S=1/2 quantum spin ladders is subdivided
into a trivial phase (|h,| > D) and a topological phase
(lhyl < D) [? ]. We call the latter a topological quantum
paramagnet [? ], which is characterized by a non-zero
winding number, as we will show below.

But before doing so, let us examine the area under the
peaks in the triplon end-state density profile of Fig. @
We find that it is zero in the trivial phase, while in the
topological phase it takes on the fractional value 1/2.
This fractional value is reminiscent of the charge e/2 end
states in the Su-Schrieffer-Heeger model [? ] and is in-
timately connected to the nontrivial topology of the sys-
tem [? ]. Physically, the fractional value hints towards a
fractionalized nature of the triplon end states. However,
unlike the SSH model, here we are dealing with bosons
and it is not straightforward to establish this connection.
This will be addressed in future work.

Winding number.— We now show that the topological
quantum paramagnetic phase is characterized by a non-
zero winding number. Although the problem at hand
is seemingly similar to a one-dimensional fermionic topo-
logical insulator, we find that the calculation of the wind-
ing number proceeds along quite different lines than in
the fermionic case. Recall that in order to compute the
winding number of fermionic systems, one first needs to

identify the chiral symmetry operator and transform the
Hamiltonian to a basis wherein the chiral symmetry op-
erator is diagonal. This results in a block off-diagonal
Hamiltonian, which is then used to calculate the wind-
ing number [? ? ]. For our bosonic model, we find that
Eq. @) can be deformed into a chiral symmetric Hamilto-
nian, i.e., for K = 0 wehave {1 ® o3, M, — J1® 1} =0,
since o3 anticommutes with Ay — (J + K cos(k))1 and
with Hs + Ke™**1. However, this observation is not very
helpful for two reasons: (i) the symmetry operator is al-
ready diagonal and (ii) the eigenmodes of our model are
not given by My, but rather by M.

Hence, we need to find another way to bring X M, into
block off-diagonal from. To that end, let us consider the
transformation with the unitary matrix

(4)

o O = O
— o o o
S OO
o= OO

Under the action of U, the relevant matrix M} trans-
forms as

~ A, D
_ 7t _ | Ax Dk
Mp=U (EMk) U |:D2k A, :| , (5&)
where
_|J+ K cos(k) —Ketk
A = [ Ke* -J - Kcos(k:)} ’ (5b)

and the off-diagonal blocks are given by

—T1 — LT

P = {Il P —x1 — (@2 + hy)} (59

xr1 + Lo

—I1 + Lo

Dy — {xl — t(xy — hy) et hy)} . (5d)

Tr1 — LTy

Although M, is not block off-diagonal, note that the
diagonal block Ay only leads to an overall energy shift
(same for both modes) and small variations in the shape
of the modes, but does not alter the topological proper-
ties. This is most easily seen by noting that the differ-
ence in the triplon energy spectrum with or without the
anomalous terms Hs(k) is negligible. So let us focus on
D1k and Dsyg. In a way similar to the fermionic case, we
can define the winding number as

11

_ 1 -19.D — (P19, D
5T BdeTr[D oD — (D")'o,DY], (6)

where D = (Dyy, + D;k)/Q. We note that the factor 1/2
in Eq. (@) is due to the prefactor 1/2 in Eq. (Za). The
winding number W is quantized to integer values and
evaluates to YW = —1 in the topological quantum param-
agnetic phase |h,| < D, see Fig.[ll By the bulk-boundary
correspondence, the non-zero winding number leads to
the protection of the triplon end-states of Fig.



FIG. 5. Winding number W, Eq. (@), as a function of applied
field hy. In the topological paramagnetic phase, |hy,| < D,
W evaluates to —1, which, by the bulk-boundary correspon-
dence, leads to the appearance of triplon end states, cf. Figs.
and [@ Parameters used are the same as in Fig.

Conclusions and implications for experiments.— We
have studied topological properties of S=1/2 quantum
spin ladders with strong spin-orbit coupling and have
shown that the quantum-disordered paramagnetic state
of these spin ladders subdivides into a trivial and a topo-
logical phase. The latter is, what we call, a topological
quantum paramagnet, since it exhibits topologically non-
trivial triplon excitations. It should be noted that there
is no qualitative difference between the ground states in
the two phases. The topological aspects feature only in
the triplon excitation modes. The phase transition be-
tween the topological and the trivial quantum paramag-
net can be tuned by an applied field and occurs when two
triplon modes touch, forming a Dirac point. The topo-
logical quantum paramagnet has a non-trivial winding
number, which leads to protected triplon end states with
fractional particle number 1/2.

We expect that the topological quantum paramagnetic
phase exists in many spin ladder compounds, even for rel-
atively weak spin-orbit interactions [? ]. The quantum
dimer model of Eq. () is just one example of a large
class of Hamiltonians that all exhibit the same topolog-
ical phase. It is always possible to add small perturba-
tions to Hamiltonian () without changing its topological
properties. Based on these considerations we expect that
topological triplon bands are quite ubiquitous. A partic-
ularly promising candidate material for observing topo-
logical triplons is the strongly spin-orbit coupled spin lad-
der BiCusPOg, for which field induced phase transitions
have recently been investigated [? ? ]. To experimentally
study the topological phase transition and the evolution

of the triplon band structure as a function of applied field
one may use neutron scattering experiments. It may even
be possible to directly observe the triplon end states us-
ing small-angle neutron scattering (SANS). In fact, our
calculations show that the local dynamic spin structure
factor exhibits a sharp peak at the triplon end-state en-
ergy (see [? ]), which should be observable in SANS.
Another possibility is to use specific heat measurements
to look for the residual In2 entropy contributed by the
triplon end states.

The triplon interaction terms, arising beyond the har-
monic approximation, can in principle result in the in-
trinsic zero-temperature damping of the triplon modes
[? ]. This could in particular also apply to the local-
ized end states in the topological phase [? ]. How-
ever, as long as the gap is greater than 0.5.J, because
of energy-momentum constraints, the end states will not
decay spontaneously. This is in contrast to the topolog-
ical edge excitations of ordered magnets [? ? |, which
can decay by coupling to the Goldstone modes.

Our findings represent the first step towards the de-
velopment of a comprehensive topological band theory
for triplons. Indeed, we expect the topological quantum
paramagnet to be a rather commonly occurring phase,
which may exist even in two- and three-dimensional
quantum magnets. One possible generalization of our
work are two-dimensional magnets composed of coupled
spin-ladders, which may exhibit dispersing triplon edge
modes carrying dissipationless spin current. Besides this,
other interesting questions for further study are: (i) the
fate of the topological quantum paramagnet at finite tem-
perature and (ii) the study of phase transitions between
topological quantum paramagnets and quantum spin lig-
uids.
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