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 16 

We report an unambiguous phonon resonance effect originating from germanium 17 

nanoparticles embedded in silicon matrix. Our approach features the combination of 18 

phonon wave-packet method with atomistic dynamics and finite element method 19 

rooted in continuum theory. We find that multimodal phonon resonance, caused by 20 

destructive interference of coherent lattice waves propagating through and around the 21 

nanoparticle, gives rise to sharp and significant transmittance dips, blocking the 22 

low-end frequency range of phonon transport that is hardly diminished by other 23 

nanostructures. The resonance is sensitive to the phonon coherent length, where the 24 

finiteness of the wave packet width weakens the transmittance dip even when 25 

coherent length is longer than the particle diameter. Further strengthening of 26 

transmittance dips are possible by arraying multiple nanoparticles that gives rise to the 27 
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collective vibrational mode. Finally, it is demonstrated that these resonance effects 28 

can significantly reduce thermal conductance in the low-end frequency range. 29 

 30 

PACS number(s): 62.25.-g, 62.25.Fg, 63.22.-m, 63.20.kp 31 

 32 

Controllability of thermal transport in materials is highly important in order to meet 33 

the technological needs to dissipate, store, or convert thermal energy. For instance, the 34 

suppression of thermal transport leading to low thermal conductivity is beneficial for 35 

thermoelectric materials [1]. The thermal transport in common crystalline materials is 36 

a highly multiscale phenomenon where thermal phonons with a broad range from sub- 37 

to tens of terahertz (THz) contribute [2,3]. Therefore hierarchically-structured 38 

materials such as those combining the grain boundaries and impurities capable of 39 

annihilating broad range of phonons are comparatively effective [4,5]. For further 40 

reduction of thermal conductivity, the key is to inhibit transport of phonons with the 41 

lower-end frequencies (from sub THz to a few THz) because they tunnel through the 42 

interface (grain boundary) since the transmittance asymptotically approaches unity as 43 

frequency decreases [6]. The exact critical frequency below which the tunability 44 

becomes impacting depends on the material, but for instance a recent study on 45 

crystal-amorphous silicon (Si) nanocomposite has shown that phonons with frequency 46 

below a few THz still propagate and contribute to a large fraction of the remaining 47 

thermal transport [7]. Such significance of phonons with the lower-end frequencies 48 

should be applicable in general for nanostructured crystalline materials with low 49 

thermal conductivity [8,9].  50 

A widely explored approach to impede low frequency phonons is to construct a 51 

phononic crystal, which inhibits propagation of phonons within certain frequency 52 

range as a consequence of interference of phonon waves reflected at the periodic 53 

structures [10]. A challenge from practical viewpoint lies in the necessity to pattern 54 

the periodic structures at the nanoscale such as the epitaxial superlattices. Although 55 

top-down nanofabrication (such as holes) with length scale of ~100 nm is possible 56 
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[11-14], the target phonon frequency would be limited to the order of gigahertz, which 57 

has negligible contribution to thermal transport at room temperature due to the small 58 

density of states. 59 

 One way to introduce phonon interference without having to construct spatially 60 

periodic structures is to exploit local resonance. This has been theoretically 61 

demonstrated in various systems with the “added-structures” such as nanowires and 62 

thin films with pillars erected on the surface [15-19], and a solid interface with 63 

embedded defect-atom arrays [20,21]. The effect of local resonance on reflection 64 

enhancement can be related with destructive interference of different phonon paths in 65 

real space (through and around the local resonator), and results in flattening of phonon 66 

bands or in total reflection of phonons at certain frequencies [6,15,20,21]. However, 67 

to impact phonons with the lower-end frequencies, the above “added-structures” need 68 

to be built at the nanoscale, and thus would still be extremely challenging. 69 

In this Rapid Communication, we explore the possibility to introduce the local 70 

resonance in a practical system, where the coherently embedded germanium 71 

nanoparticles (GeNPs) in Si matrix are considered as nano-oscillators interacting with 72 

lattice waves [15] and similar structures have been fabricated in Refs. [22,23]. We 73 

conduct polarization-wise phonon wave-packet (PWP) simulations [24-26] based on 74 

molecular dynamics (MD) of both longitudinal and transverse acoustic (LA and TA) 75 

waves to retrieve the resonance frequencies, transmittance, and associated vibrational 76 

mode of the GeNP and highlight the impact of coherence length on resonance effect. 77 

A representative configuration of the PWP simulation is depicted in Fig. 1 and its 78 

details are in Supplementary Materials [27]. We ensure the same area fraction 79 

(πd2/4w2) of the spherical GeNPs when varying their diameters d and side lengths of 80 

the square cross section w. The relation of the local resonance in GeNP with the 81 

classical problem of dynamic deformation of an elastic particle embedded in a matrix 82 

is highlighted through the analysis of vibrational eigenstates with finite element 83 

method (FEM) based on continuum theory. Possibilities to enhance resonance 84 

reflection is discussed by varying coherence length of PWP and forming an array of 85 
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GeNPs for collective modes. Finally impact of the resonance effect on thermal 86 

transport is quantified by atomistic Green’s function (AGF) method [28,29] 87 

calculating frequency ω dependent spectral thermal conductance G(ω). 88 

The transmittance α(ω) of LA and TA PWPs for a single spherical GeNP are shown 89 

in Figs. 2(a) and (b), respectively. It shows that α(ω) has several local transmittance 90 

minima, while the base-line gradually decreases as frequency increases. Among the 91 

local minima, large transmittance dips are clearly observed in a few THz range for 92 

both LA and TA phonons. To identify their origins, we retrieve time-evolution of the 93 

center of mass (COM) of GeNP (d=1.1 nm) at the frequency of minimum 94 

transmittance. As the LA PWP passes through the GeNP, the vibrational amplitude of 95 

COM transiently increases and then decreases. The COM remains vibrating even after 96 

PWP has passed away, with temporal period corresponding to the resonant frequency 97 

ωR=1.89 THz, which indicates the resonance with the incident phonon. Following the 98 

polarization of the LA PWP, the GeNP vibrates only along the z-axis, i.e., the 99 

resonating GeNP eigenmode is a translational mode with “rattling” motion, as 100 

sketched in the inset of Fig. 2(a). This resonant mode was found to be the same for 101 

GeNPs with other diameters [27]. 102 

For TA PWP, both the x- and y-coordinates of the COM exhibit sinusoidal 103 

vibrations with ωR=2.05 THz for d=1.1 nm. In this case, vibrations of GeNP take 104 

place in both x- and y-axes following the eigenvectors of the TA phonon. This results 105 

in rotational motion in the x-y plane as sketched in the inset of Fig. 2(b), which here is 106 

termed as “libration”.  107 

FEM analysis computing the vibrational eigenfrequencies of embedded GeNPs was 108 

conducted by COMSOL Multiphysics® v5.2a software. Here, Young’s modulus (100 109 

GPa) and Poisson ratio (0.335) of materials are calculated from lattice dynamics [30] 110 

using the same potential in PWP simulation for consistency. By adopting the same 111 

configuration as that of the PWP simulation, we identify the eigenfrequencies of the 112 

GeNP whose eigenmodes match with the motions observed in the PWP simulation. In 113 
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Figs. 2(c) and (d), the diameter dependences of the eigenfrequencies for LA and TA 114 

modes are compared with that of resonant frequencies obtained from PWP simulation. 115 

The eigenfrequencies agree well with the resonant frequencies, although the small 116 

discrepancy slightly grows as d decreases since the shape of GeNP deviates from an 117 

ideal sphere. The frequency linearly scales with inverse diameter, i.e. ωRd is invariant 118 

for the same mode under the same area fraction, which is a reminiscent of the 119 

frequency-spectra scaling law of the quasimacroscopic-acoustics origin, see also [31]. 120 

In this linear dispersion regime, this can be also written in terms of the central 121 

wavelength of PWP λ as λ≈4d and λ≈2.6d for LA and TA PWPs, respectively. 122 

Note that the transverse periodicity of GeNPs imposed naturally in our PWP 123 

simulation (with one GeNP per transverse supercell) is not necessary for the current 124 

resonance effect to take place as the resonant frequency and transmittance dip are 125 

found to be similar even by randomly displacing the GeNPs, i.e. breaking the 126 

periodicity [27]. This confirms the advantages of such local resonance over those 127 

requires rigorous global periodicity. Also, the transverse periodicity leads to different 128 

number densities of GeNPs for LA and TA modes manifesting in slightly different 129 

resonant frequencies, which are otherwise the same for an isolated GeNP. 130 

We highlight the effect of the coherent length Cl on resonance as Cl can be easily 131 

tuned in our PWP simulation. In reality, it takes a finite value determined by phonon 132 

scattering due to anharmoniciy, impurity, and/or defects, and thus, depends on the 133 

actual system and temperature. Figure 2(e) summarizes the change in transmittance 134 

dip for LA PWP (d=1.1 nm) by varying Cl as 85, 177, 354, 601 and 1273 nm. It is 135 

seen that, by increasing Cl, the depth and width of the dip increases and decreases, 136 

respectively, and eventually would lead to a complete reflection at the resonance 137 

frequency for infinite Cl originated from the destructive interference. In case of finite 138 

Cl, as size of PWP becomes shorter and range of frequency components becomes 139 

broader, the transmittance dip, that is given by the convolution of PWP and the 140 

resonant mode, is no longer zero at the resonance frequency [21,27]. An important 141 

observation here is that the weakening of resonance manifests for coherent length that 142 
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is much larger than the particle size. For instance, the magnitude of the transmission 143 

dip was reduced by 40% even though Cl is more than 100 times larger than d. There 144 

have been many works reported recently aiming to establish phononic materials with 145 

global or local phonon interference, and the usual challenge has been to reduce the 146 

structure sizes below the coherence length. However, the present finding indicates that 147 

the structure needs to be orders-of-magnitude smaller than the phonon coherent length 148 

for the interference to give the impact anticipated from the plane-wave-based analysis. 149 

Therefore, we expect that the resonance effect would be largely constrained in reality 150 

unless very small structures such as the current nanoparticles are used.  151 

In addition, the large Cl calculation finds the presence of a secondary dip (Fig. 2 152 

(e)), at a frequency higher than the fundamental one, which originates from resonant 153 

squeeze mode of GeNP [27]. For the rest of the transmittance calculations, we adopt a 154 

fixed value of Cl=354 nm for all the frequencies except for those around the largest 155 

dips, with which dip width starts to saturate, and the computation is affordable. It 156 

should be noted here that Cl=354 nm is on the order of the phonon MFP of pure 157 

crystal Si at room temperature. As for the frequencies around the largest dip, Cl was 158 

set to 550d in case of d=1.1, 2.2 nm to the assure saturation, while in case of d=4.3 159 

nm, Cl was limited to 140d due to limitation in computational resources. 160 

Besides the largest transmittance dips, the presence of other smaller dips is also 161 

important for thermal transport. For instance a resonant dip at ω2R=4.12 THz is 162 

observed with d=1.1 nm in the inset of Fig. 2 (a), which is approximately two times 163 

larger than ωR=1.89 THz. The GeNP at ω2R is found to resemble “rattling” motion at 164 

ωR but with nearly one-order smaller amplitude, therefore we conclude that it is the 165 

second harmonics. The same relation is observed for other cases (d=2.2 nm: ωR=0.95 166 

THz, ω2R=1.90 THz; d=4.3 nm: ωR=0.45 THz, ω2R=1.05 THz). At even higher 167 

frequencies, λ becomes comparable or shorter than d, which is no longer in 168 

continuum regime but at atomistic scale, and the transmittance dips turn into 169 

fluctuations. From these, we identify three frequency regimes: (i) lowest frequency 170 

regime of the strongest resonance (the largest transmittance dip) with the fundamental 171 
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modes, (ii) intermediate frequency regime of resonance with high-order harmonics, 172 

and (iii) highest frequency regime of atomistic-scale scattering. 173 

The transmittance dip can be further enhanced by manipulating the inter-particle 174 

distance among multiple GeNPs to excite collective motions of them. For the 175 

demonstration, four spherical GeNPs (d=1.1 nm) are aligned along the z-axis with 176 

equal inter-particle distance D to form an array with D=d, 2d, 4d, 5d and 8d, of which 177 

two adjacent GeNPs are sketched in the inset of Fig. 3(a). Fig. 3(a) shows that except 178 

for D=d, depths of LA-transmittance dips are enhanced due to magnification of 179 

resonance by multiple GeNPs (similar for TA modes in [27]). For D=2d, the width 180 

becomes much larger than the single GeNP case. It is found that at the resonant 181 

frequency (the same frequency as single GeNP), four GeNPs exhibit out-of-phase 182 

vibration (adjacent GeNPs rattling oppositely along the z-axis) as sketched in Fig. 183 

3(d)-(1). Recalling that λ≈4d holds for the rattling mode, the out-of-phase collective 184 

vibration is understandable since each GeNP is located on the node of the phonon 185 

wave. Its robustness is further evidenced by the similarities among transmittance dips 186 

for D=2d, 4d and 8d, which are integral multiples of 2d. Furthermore, we have 187 

performed the FEM analysis for four GeNPs array with D=2d and extracted four 188 

relevant eigenstates whose frequencies are close to the resonant frequencies as 189 

indicated in Fig. 3(a). The obtained vibrational modes are sketched in Fig. 3(d) in the 190 

order of ascending frequencies. Among the four modes, the out-of-phase vibration in 191 

Fig. 3(d)-(1) was observed in the PWP simulation because of the high receptivity, i.e. 192 

the agreement of eigenmodes between the PWP and collective resonance. 193 

In the case of D=5d, the dip width is narrower due to the absence of collective 194 

resonance, although the depth is larger due to the enhanced reflection by multiple 195 

GeNPs compared with the single GeNP case. It is interesting, however, that the 196 

additional dips on the sides (e.g. the dip in between 1.4 and 1.6 THz), whose origin is 197 

possibly related with the Fabry–Pérot-like interference in the finite-size Si matrix with 198 

multiple GeNPs, are the largest for this case. With D=d, the resonant frequency shifts 199 

and the dip depth are considerably reduced. In this case, the GeNPs are almost in 200 
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contact and they can be considered as a single body consisting of four GeNPs. As an 201 

extreme case, we consider prolate-ellipsoidal GeNP (c/a=3:1, a=b=1.1 nm, wx=wy=2.2 202 

nm) as shown in the inset of Fig. 3(b), and observe that the transmittance dip of LA 203 

PWP is significantly shallower than that of single spherical GeNP [Fig. 3(b)]. On the 204 

other hand, the transmittance dip of TA PWP becomes deeper and wider and displays 205 

noticeable spikes [Fig. 3(c)]. We also show the transmittance profiles for ellipsoidal 206 

GeNPs with oblate form (a/c=3:1, a=b=3.3 nm, wx=wy=4.3 nm) with the plane of 207 

longer side perpendicular to z-axis as shown in the inset of Fig. 3(c). The newly 208 

emerged dips at much lower frequencies around 1 THz for both LA and TA PWPs and 209 

changes of the overall profiles can be attributed to drastic variations in the effective 210 

area fraction or inter-particle distance. 211 

Figures 4(a) and (b) show G(ω) at T=300 K with d=1.1 nm for Γ-point mode 212 

(subset modes with zero wavenumber in the x and y directions) and for all the modes 213 

(full Brillouin zone (BZ)), respectively. In the full BZ calculation, 10×10 uniform 214 

k-mesh was adopted to ensure convergence of G(ω). Significant reduction of G(ω) by 215 

single GeNP is observed in the lower-end frequency regime. The resonance dips can 216 

be seen more clearly in the Γ-point calculation because of smaller number of modes 217 

being superimposed. For instance conductance dips of single GeNP corresponding to 218 

the primary resonant frequency of LA and TA PWPs can be recognized, together with 219 

other harmonic-resonance dips. In the case of four GeNPs array (D=2d), the 220 

conductance dips are much deeper and wider as expected from the analysis above. 221 

The resonance effect is the most impacting at Γ-point mode in the frequency range of 222 

1.5-2.2 THz with d=1.1 nm. Single GeNP gives 17.6% reduction of G(ω) purely due 223 

to resonance effects and the number increases to 41.5% in case of the array. 224 

The resonant features become obscure in the full BZ calculation with dips of 225 

many modes with different wavevectors being superimposed, however, some of the 226 

features persist: the critical frequency above which the reduction becomes significant 227 

is about 1 THz, and four GeNPs array is evidently more effective than the single 228 

GeNP, whose effect is characterized by significant reduction in the transmittance 229 
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spectrum T(ω) with respect to pure Si [inset in Fig. 4(b)]. Reduction of G(ω) for the 230 

full BZ calculation accounting for resonant contributions from other modes and 231 

non-resonance effects now becomes 15.8% for single GeNP and 33.7% for the array. 232 

In summary, we report an unambiguous phonon-interference resonance effect 233 

originating from Ge nanoparticles embedded in Si crystal matrix. A spherical GeNP 234 

with a few nanometers in diameter resonates with acoustic phonon with lower-end 235 

frequencies. Finiteness of the coherence length leads to the broadening and 236 

shallowing of the transmittance dips, i.e. to the deterioration of the 237 

phonon-interference resonance effect unless the coherence length is 238 

two-orders-of-magnitude larger than the particle size. It thus highlights the necessity 239 

for structures at true-nano-scale as the present nano-particles when aiming to 240 

maximize the wave-interference effect in phononic structures in practice. The impact 241 

of resonance can be magnified by installing multiple layers of GeNPs due to the 242 

superposition of the resonant reflection and collective motion. Atomistic Green’s 243 

function calculations accounting for all phonon modes in the Brillouin zone indicate 244 

that the resonance effects significantly reduce the thermal conductance in the 245 

lower-end frequencies. Narrow and tunable transmittance dips produced by embedded 246 

nanoparticles can be used for ultrasensitive measurements with phonon transmission 247 

spectra similar to ultrasensitive optical measurements in photonic crystals with 248 

embedded femtogram scale nanomechanical resonators [32]. 249 
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Figures 337 

 338 

   339 

Fig. 1 Configuration of phonon wave-packet (PWP) simulation. L denotes the 340 

length of simulation domain, w is the side length of the square cross section, and d is 341 

the diameter of GeNP centered in the box. 342 

  343 



13 
 

 344 

Fig. 2 (a) and (b) Frequency-dependent transmittance α(ω) calculated by PWP 345 

simulations for longitudinal acoustic (LA) and transverse acoustic (TA) phonons with 346 

d=1.1, 2.2, and 4.3 nm. Inset schematics show the motions of GeNP (rattling or 347 

libration). (c) and (d) Diameter-dependent resonant frequencies for LA and TA 348 

phonons (open red squares). Blue filled circles are eigenfrequencies calculated from 349 

continuum theory. The dotted lines denote the inverse d-dependence, 1/d. (e) Variation 350 

of the LA-transmittance dip with different coherence lengths Cl=85, 177, 354, 601 351 

and 1273 nm with d=1.1 nm. 352 
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 353 

Fig. 3 (a) Transmittance α(ω) calculated from LA PWP simulation with four 354 

GeNPs array (d=1.1 nm) with different equal inter-particle distances D=d, 2d, 4d, 5d 355 

and 8d. Inset: schematic for two GeNPs array along z-axis with D=d. Four vertical 356 

dot lines in shaded region denote four relevant eigenfrequencies for four GeNPs array 357 

(D=2d) calculated from continuum theory. (b) α(ω) from LA PWP simulation with 358 

oblate and prolate types of ellipsoidal GeNPs. Inset: schematics for the prolate GeNP 359 

(a=b=1.1 nm, c=3.3 nm). (c) The same as (b), but for TA PWP. Inset: schematics for 360 

the oblate GeNP (a=b=3.3 nm, c=1.1 nm). (d) Sketches of eigenmotions 361 

corresponding to four eigenfrequencies in (a) in the order of ascending frequencies. 362 

The arrows indicate vibrational directions of each GeNP. 363 
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 364 

Fig. 4 Spectral thermal conductance G(ω) at T = 300 K by AGF (a) at Γ-point and 365 

(b) in full Brillouin zone. Pure Si without GeNP (black), single GeNP with d=1.1 nm 366 

(blue), and four GeNPs array with D=2d (red). α(ω) by AGF at Γ-point (orange dotted 367 

line) for single GeNP with d=1.1 nm is also superimposed in (a). Inset in (b): 368 

Transmittance spectrum T(ω) of four GeNPs array with respect to pure Si. 369 


