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We report combined analytical and density matrix renormalized group (DMRG) study of the
antiferromagnetic XXZ spin-1/2 Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya (DM)
interaction and a transverse magnetic field. The numerically determined phase diagram of this
model, which features two ordered Ising phases and a critical Luttinger liquid one with fully broken
spin-rotational symmetry, agrees well with the predictions of Garate and Affleck [Phys. Rev. B
81, 144419 (2010)]. We also confirm the prevalence of the “Nz” Néel Ising order in the regime of
comparable DM and magnetic field magnitudes.

PACS numbers:

I. INTRODUCTION

Physics of quantum spins is at the center of mod-
ern condensed matter research. The ever present spin-
orbit interactions, long considered to be an unfortunate
annoying feature of real-world materials, are now rec-
ognized as the key ingredient of numerous spintronics
applications1,2 and the crucial tool for constructing topo-
logical phases3,4.

In magnetic insulators atomic spin-orbit coupling
leads, via superexchange mechanism, to an asymmetric
spin exchange Dij · Si × Sj , known as Dzyaloshinskii-
Moriya (DM) interaction5,6, between localized spins S
at sites i and j. Classically, such an interaction in-
duces incommensurate spiral correlations in the plane
perpendicular to the DM vector Dij . Incommensura-
bility of the spin spiral is determined by D/J , where
J is the magnitude of the isotropic exchange interac-
tion between nearest spins. This ratio is typically quite
small, resulting in spiral correlations with very long wave-
lengths. It was realized long ago that the external
magnetic field, applied perpendicular to the DM axis,
causes strong modification of the spiral state and pro-
duces chiral soliton lattice - a periodic array of commen-
surate with the lattice domains separated by 2π-domain
walls (solitons)7. This incommensurate structure under-
goes continuous incommensurate-commensurate transi-
tion into a uniform ordered state at a rather small crit-
ical magnetic field of the order of D.7–9 Such potential
tunability makes this interesting class of magnetically-
ordered materials particularly attractive for multiferroics
and spintronics applications10,11.

It is not well understood how strong quantum fluctua-
tions modify this classical picture. To this end, and also
having in mind several spin-1/2 quasi-one-dimensional
quantum magnets12–14 for which this consideration is
highly relevant, we investigate here the joint effect of
a uniform DM interaction Dẑ · Si × Si+1 and a trans-

verse magnetic field hSxi on the low-energy properties of
the antiferromagnetic spin-1/2 Heisenberg chain with a
weak XXZ anisotropy ∆. Our goal is to quantitatively
check, with the help of the state of the art density-matrix
renormalization group (DMRG) calculation, predictions
of the recent field-theoretic studies of this interesting
problem15–17. Garate and Affleck, Ref. 16, found that
quantum fluctuations destroy the chiral soliton lattice
and replace it with a critical Luttinger-liquid (LL) phase.
Additionally, the model is found to support two distinct
ordered phases with staggered Ising order along direc-
tions perpendicular to the external field h. Regions of
stability of these Ising phases are found to differ signifi-
cantly from the classical expectations15,16. In particular,
when the magnitudes of DM interaction D and magnetic
field h are comparable to each other, the Ising-like longi-
tudinal spin-density wave order (of “Nz” kind, see below)
is found to extend deep into classically forbidden ∆ ≤ 1
region.

The outline of the paper is as follows. Sec. II reviews
the field-theory arguments and Sec. III summarizes the
quantum phase diagram. Main DMRG results are pre-
sented in Sec IV, while Sec. V focuses on understanding
of the strong finite-size effects observed in our study. Nu-
merous Appendices provide technical details of our ana-
lytical (A through E) and numerical (F) calculations.

II. HAMILTONIAN OF THE MODEL

We consider antiferromagnetic Heisenberg spin-1/2
chains subject to a uniform Dzyaloshinskii-Moriya (DM)
interaction and a transverse external magnetic field. The
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system is described by the following Hamiltonian,

H = J
∑
i

[
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1

]
−
∑
i

Dẑ · (Si × Si+1)− h
∑
i

Sxi ,
(1)

where Si is the spin-1/2 operator at site i. J denotes anti-
ferromagnetic exchange coupling between nearest neigh-
bors (NN). ∆ ≈ 1 parameterizes small Ising anisotropy.
Dzyaloshinskii-Moriya (DM) interaction is parameterized
by the DM vector D = Dẑ, which is uniform along the
chain. We consider D/J � 1, which is the most natu-
ral limit relevant for real materials12–14,18. In addition
to ‘twisting’ spins around the D axis, the uniform DM
interaction slightly renormalizes Ising anisotropy16 by an
amount ∝ D2/J2. h denotes the strength of the applied
transverse magnetic field.

A. Hamiltonian in the low-energy limit

In the low-energy continuum limit, the bosonized
Hamiltonian of the problem reads15,16,19,

Hchain = H̃0 + H̃bs, (2)

where H̃0 has quadratic form in terms of abelian bosonic
fields (ϕ, ϑ) [see Appendix A for details], and the Zeeman
and DM interaction terms (second line in Eq. (1)) are ab-

sorbed in H̃0 by a chiral rotation and subsequent linear
shift of field ϕ as described in Appendix B. The harmonic
Hamiltonian H̃0 is perturbed by the chain backscatter-
ing H̃bs describing residual backscattering interaction be-
tween right- and left-moving spin modes of the chain. It
consists of several contributions15,16,20

H̃bs = HA +HB +HC +Hσ,

HA = πvyA

∫
dx(Mz

RM
+
L e

itϕx −M+
RM

z
Le
−itϕx + h.c.),

HB = πvyB

∫
dx(M+

RM
−
L e
−i2tϕx + h.c.),

HC = πvyC

∫
dx(M+

RM
+
L + h.c.),

Hσ = −2πvyσ

∫
dxMz

RM
z
L.

(3)

Here ML(x) and MR(x) are the uniform left- and right-
moving spin current operators defined in Appendix B,
and we use the following notations

yC ≡
1

2
(yx − yy), yB ≡

1

2
(yx + yy), yσ ≡ −yz,

tϕ ≡
√
D2 + h2

v
.

(4)

FIG. 1: (Color online) Solution of Kosterlitz-Thouless (KT)
equations (11). Different symbols and colors depict Ising
phases “Nz” (green region) and “Ny” (yellow region) and the
critical Luttinger liquid phase (LL, purple region) according
to the RG flow criteria summarized in Table I.

Initial values of the coupling constants are given by16,20

yx(0) = − gbs

2πv
[(1 +

λ

2
) cos θ− +

λ

2
],

yy(0) = − gbs

2πv
,

yz(0) = − gbs

2πv
[(1 +

λ

2
) cos θ− − λ

2
],

yA(0) =
gbs

2πv
(1 +

λ

2
) sin θ−,

(5)

where the magnitude of backscattering gbs ≈ 0.23 ×
(2πv), see Ref. 16 for details, and

θ− = 2θ0, θ0 = − arctan(D/h), (6)

v ' Jπa/2 is the spin velocity, a is lattice constant.
XXZ anisotropy is parameterized by λ16,

λ = c(1−∆ +
D2

2J2
). (7)

The constant c = (4v/gbs)
2 is about 7.66 from the Bethe-

ansatz solution; see (B2) in Ref. 16. The oscillating
factor eitϕx in (3) is introduced by the effective transverse

field heff =
√
h2 +D2 which accounts for the combined

effect of magnetic field and DM interaction; see (B4).
Our task is to identify the most relevant coupling in

perturbation (3), which is accomplished by the renormal-
ization group (RG) analysis.

B. Two-stage RG

RG equations for coupling constants of backscattering
interaction (3) are obtained with the help of operator
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Region 1 2 3 4 5

yC(0) +/− + + − −
yσ(0) − −/+ + + −/+

C + − + + −
yC(`∗) 0 +∞ +∞ −∞ −∞
yσ(`∗) finite +∞ +∞ +∞ +∞
yB(`∗) finite finite finite finite finite

State LL “Nz” “Nz” “Ny” “Ny”

TABLE I: Signs and values of yC , yσ, C corresponding the
KT-flow in Fig. 1. `∗ is the critical RG scale at which one
(or several) coupling constants reach the strong coupling limit
(become of order one).

product expansion (OPE21,22) technique and read

dyx
dl

= yyyz,
dyy
dl

= yxyz + y2
A,

dyz
dl

= yxyy,
dyA
dl

= yyyA.

(8)

The presence of oscillating eitϕx factors implies the ap-
pearance of spatial scale, ∝ 1/tϕ, and, correspondingly,
of the RG scale `ϕ

`ϕ = log(
1

a0tϕ
) = ln[

1

20.4

π

2

1√
D2 + h2

]. (9)

where, a0 = 20.4a is the ultraviolet RG cutoff length
scale16 (see Ref. 16 for details of how the choice of the
initial value for gbs determines a0 also).

For ` < `ϕ oscillations due to eitϕx can be neglected
and the full set of RG equations (8) has to be solved nu-
merically. Once RG “time” ` > `ϕ, strong oscillations in
HA and HB result in disappearance of these terms from
the Hamiltonian. Correspondingly, we can set yA(`) = 0
and yB(`) = 0 in the RG equations. Therefore, at this
second stage, the RG equations simplify to (see Eq. (4))

dyC
d`

= yCyσ,
dyσ
d`

= y2
C . (10)

These are the well-known Kosterlitz-Thouless (KT) equa-
tions, the analytic solution of which is summarized in Ap-
pendix C. The initial values of backscattering couplings
at the second stage are,

yC(`ϕ) = (yx(`ϕ)− yy(`ϕ))/2

→ − gbs

4πv
[(1 +

λ

2
) cos θ− − 1 +

λ

2
],

yσ(`ϕ) = −yz(`ϕ)→ gbs

2πv
[(1 +

λ

2
) cos θ− − λ

2
],

C = yσ(`ϕ)2 − yC(`ϕ)2,

(11)

where cos θ− = (h2−D2)/(h2+D2) and C is the constant
of motion, dC/d` = 0. Expressions following right-arrow
sign, →, in the above equations pertain to the situation

when the first stage of RG flow, ` < `ϕ, can be skipped.
This is the case of strongly oscillating eitϕx factors in
Eq. (3), when all the oscillating terms in the backscat-
tering Hamiltonian can be omitted from the outset and,
correspondingly, ya(`ϕ) ≈ ya(0). Formally, this limit cor-
responds to a negative `ϕ as defined in Eq. (9).

C. Ising orders

We have identified five distinct regions with different
signs of yC,σ and integration constant C, which result
in different RG flows. The boundaries of these regions
depend on the initial values of y’s and C. When the first-
stage flow can be skipped, which happens for sufficiently
large heff such that formally `ϕ < 0, as discussed at the
end of Sec. II B, then the dependence on initial values can
be directly translated into that on h/D (cos θ−) and λ
(∆ and D/J). These results are summarized in Table I
and Fig. 1, which shows what orders are promoted in
different regions.

Small tϕ results in `ϕ > 0 and a two-step RG analysis
is required, as explained above. Once the RG equations
(8) are integrated to ` = `ϕ, all the oscillating terms must
be dropped and only two momentum-conserving terms,
Hc and Hσ, remain present in the Hamiltonian.

In terms of abelian fields (ϕ, ϑ), interaction HC is

nonlinear, HC ∝ yC cos[2
√

2πϑ] = yC cos[2βϑ], while
Hσ ∝ (∂xϕ)2 − (∂xϑ)2 and describes renormalization of
β, see Appendix E 1. (We neglect marginal renormal-

ization of the spinon’s velocity v → v
√

1− y2
σ/2.) The

ground state of the chain is determined by the ordering
of ϑ field.

It is important to understand how the chiral rotation,
which led to (3), affects staggered magnetization and
dimerization. Arguments in Appendix B show that stag-
gered magnetization N and dimerization ε in the labora-
tory frame are related to those in the rotated frame, N
and ξ, as follows:

N = (−N z, cos θ0N y + sin θ0ξ,N x),

ε = cos θ0ξ − sin θ0N y. (12)

Further, shift of ϕ field by tϕx, Eq. (B9), introduces tϕx
dependence in arguments of fields N z and ξ, Eq. (B11),
but does not affect N x,y pair.

Flow of the KT equations (10) to strong-coupling im-
plies development of the expectation value for ϑ field.
When yC → +∞ for ` → ∞, the energy is mini-
mized by

√
2πϑ = (2k1 + 1)π/2, with k1 an integer, and

N x ∝ − sin
√

2πϑ 6= 0. This means that in the origi-
nal frame there is an Ising order Nz 6= 0, and following
Ref. 16 we name this state “Nz”. The long-range or-
der (staggered magnetization) in the laboratory frame is
commensurate,

〈N(x)〉 ∝ 〈sin(
√

2πϑ)〉z ∝ (−1)k1+1z. (13)
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FIG. 2: (Color online) Phase diagram for the case of relatively
strong DM interaction D/J = 0.1. Larger D promotes “Nz”
state. The two phase boundaries are given by Eq. (15) (orange
dot-dashed line), and Eq. (16) (red dashed line). The phase
boundary between LL and “Ny” is located at h/D =

√
2 and

is independent of ∆.

In the case of yC → −∞ the energy is minimized by√
2πϑ = k2π, with k2 an integer, and N y ∝ cos

√
2πϑ 6=

0. Therefore the Ising order is now along the y axis,
Ny 6= 0, and we name it “Ny”. In addition, according to
Eq. (12) finite expectation value ofN y implies finite stag-
gered magnetization ε.16 Therefore “Ny” phase is char-
acterized by the coexistence of commensurate Ising Néel
and dimerization orders

〈N(x)〉 ∝ cos θ0〈cos(
√

2πϑ)〉y ∝ cos θ0(−1)k2y,

ε ∝ − sin θ0〈cos(
√

2πϑ)〉 ∝ sin θ0(−1)k2+1.
(14)

Finally, a gapless regime of yC → 0 for ` → ∞ is also
possible16. Here the Hamiltonian is purely quadratic and
describes a critical Luttinger liquid (LL) phase with al-
gebraic correlations even though the spin rotational sym-
metry is fully broken16,23; see Appendix E 3 for detailed
arguments. As described in the Introduction, LL state is
the quantum version of the classical chiral soliton lattice
phase. This is a critical state with incommensurate (and
anisotropic) spin correlations which decay algebraically
with distance.

III. PHASE DIAGRAM OF THE QUANTUM
MODEL

The ∆−(h/D) phase diagrams are obtained by solving
the RG equations and are presented in Figs. 2 and 3.
Fig. 2 is obtained under the condition that the first-stage
RG flow can be skipped, due to the fact that `ϕ < 0 in
Eq. (9) which happens for sufficiently large D and/or
h. Here we choose D/J = 0.1. In this situation we can
determine the ground state simply by studying the initial

FIG. 3: (Color online) Phase diagram for the case of small DM
interaction D/J = 0.01 obtained via a two-stage RG process.
At the first stage RG equations (8) are integrated numerically.
Second stage equations (10) are then solved analytically. The
phase boundaries given by Eq. (15) (orange dot-dashed line)
and Eq. (16) (red dashed line) are seen to deviate significantly
from the actual ones. This shows the importance of the first-
stage flow in the case of small and intermediate D/J .

conditions of the KT equations according to the chart in
Table I and Fig. 1.

When `ϕ > 0 oscillations develop over some finite
lengthscale and one needs to integrate the first-stage RG
equations (8) numerically for the interval 0 ≤ ` ≤ `ϕ. At
the end of the first stage we obtain yC(`ϕ), yσ(`ϕ), and
C = y2

σ(`ϕ) − y2
C(`ϕ) which serve as initial values of the

couplings for the second-stage, KT part, of the RG flow.
This is the case of D/J = 0.01 phase diagram for which
is presented in Fig. 3.

By comparing the phase diagrams in Figs. 2 and 3 we
observe that large D promotes the “Nz” state, which is
consistent with the numerical DMRG result in Fig. 4.

Next we study phase boundaries between different
phases. Figure 1 shows that the phase transition between
“Ny” and “Nz” states is related to the initial values of
yC and yσ. The coupling yC(0) has opposite signs in the
regions 3 and 4. Therefore in the ∆−h/D phase diagram
this boundary corresponds a critical value ∆c1 at which
yC(0) = 0 and C = y2

σ(0) > 0. These conditions indicate

the boundary is described by D/h =
√
λ/2, which leads

to the explicit expression for it:

∆c1 = 1 +
1

2
(
D

J
)2 − 2

c
(
D

h
)2. (15)

For a fixed D, a larger field h leads to a greater ∆c1,
which is illustrated as orange dot-dashed line in Figs. 2
and 3. Figure 2 shows an excellent agreement of the ob-
tained phase transition line with the numerical solution
of RG equations, thanks to the fact that in this case the
first stage of RG flow is not required. Interestingly, the
limit of D → 0, corresponding to h/D →∞ in the above
figures, is described by our theory as well, as we explain in
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Appendix D. In that case one deals with the XXZ model
in the transverse magnetic field for which the critical line
separating the two Ising phases, “Ny” and “Nz”, is re-
duced to the horizontal asymptote ∆c1 = 1, in agreement
with the previous study in Ref. 24.

The boundary between gapless LL and Ising “Nz”,
according to Table I, happens at C = 0, yC(0) > 0,
and yσ(0) < 0. Therefore we have the relation that
yσ(0) = −yC(0). This gives the critical ∆c2

∆c2 = 1 +
1

2
(
D

J
)2 − 2

c

1

1 + 2(D/h)2
. (16)

Therefore, in contract to Eq. (15), a larger field h results
in a smaller ∆c2. This result is also confirmed in Figs. 2
and 3.

Finally, the transition between LL and Ising “Ny” is
described by C = 0, yC(0) < 0, and yσ(0) < 0. This gives
yC(0) = yσ(0) which is satisfied by cos θ− = 1/3 and λ ≥
1. This condition implies that transition between LL and
“Ny” is a vertical line located at (h/D)c3 =

√
2, which is

again confirmed by numerical solution of RG equations
in Figs. 2 and 3. Different from the other two boundaries,
the one between LL and “Ny” is independent of ∆, and
this is consistent with the classical analysis in Ref. 16.
The constraint λ ≥ 1 implies that this boundary exists
only for ∆ ≤ ∆t ≡ 1+(D/J)2/2−1/c. The crossing point
of the critical lines ∆c1 and ∆c2 also gives the condition
(h/D)c3 =

√
2. The “triple” point where three phases

intersect is at h/D =
√

2 and ∆t. For D/J = 0.1 in
Fig. 2 it is evaluated to be at ∆t ' 0.874.

The main message of this Section is that strong DM
interaction, acting jointly with transverse magnetic field,
causes significant modification of the classical phase di-
agram and works to stabilize Ising “Nz” order well be-
yond its classical domain of stability (given by ∆ > 1),
in agreement with the field-theoretical predictions of
Refs. 15 and 16.

IV. NUMERICAL STUDIES

In this section, we will determine the ground state
properties of the model system in Eq. (1) by an exten-
sive and accurate density-matrix renormalization group
(DMRG)25–27 simulations. Here, we consider a system
with total number of sites L up to L = 1600, and per-
form 10 sweeps by keeping up to m = 400 DMRG states
with typical truncation error of the order 10−9. In ad-
dition, we have also carried out an independent infi-
nite time-evolving block decimation (iTEBD)28–30 sim-
ulations with the same bond dimension and the same
lengths for the correlation function calculations. Our
iTEBD results agree fully with our DMRG results (see
Fig.4 below).

Our principal results are summarized in the phase di-
agram in Fig.4 at D/J = 0.05 and D/J = 0.1. Chang-
ing the parameters ∆ and h/D, we find three distinct

phases, including a gapless Luttinger liquid (LL) phase
and two ordered phases – the Néel Ising ordered “Nz”
(Ising order along z-axis) and “Ny” (Ising order along
y-axis) phases. Our numerical results show that the DM
interaction stabilizes the “Nz” Ising order which extends
into the ∆ < 1 region, while the “Ny” Ising order gets
suppressed by the DM interaction and gives way to the
LL phase for relatively small transverse magnetic field
h . D. These results agree well with the field-theory
predictions described in Secs. II and III, although with
slightly different phase boundaries due to significant fi-
nite size effects which are described in more details in
Sec. V.

To characterize distinct phases of the phase diagram,
we measure magnetic correlations in the ground state by
evaluating the equal time spin structure factor Mα

s (k) =
1
L

∑L
ij e

ık(ri−rj)〈Sαi Sαj 〉, where α = x, y, z denotes differ-
ent spin components. The structure factor is peaked at
k = π in both “Nz” and “Ny” phases, corresponding to
the commensurate Néel Ising order along z-axis and y-
axis, respectively. To quantitatively analyze this order,
we perform an extrapolation of the spin order param-
eter Nα(k) =

√
Mα
s (k)/L to the thermodynamic limit

(L =∞) according to the generally accepted form

Nα(k, L) = Nα(k,∞) +
a√
L1/2

+
b

L1/2
(17)

where a and b are fitting parameters, see Appendix F for
details. The structure factor for finite system of length
L is calculated by using only the central L1/2 = L/2
part of finite systems. In addition to the spin order,
we also calculate the dimer structure factor Md(k) =
1
L

∑L
ij e

ık(ri−rj)〈BiBj〉, where Bi = Si ·Si+1 denotes the

bond operator. See Fig. 5 for example of Md(k) data.
Staggered dimerization ε(x), introduced in (B7), repre-
sent low-energy limit of the staggered part of the bond
operator, Bi → B(x) + (−1)xε(x), while its uniform part
B represents an average bond energy.

To charaterize distinct phases in the phase diagram,
we first show examples of both spin and dimer structure
factors of the systems with length L = 1600 in Fig. 5.

A. “Nz” phase

The “Nz” phase is well understood for the case ∆ > 1
without DM interaction. A finite DM interaction pushes
the phase boundary to lower ∆ value due the renormal-
ization of the effective anisotropy, which can be seen in
the phase diagram. Fig. 5(a) plots the structure fac-
tors at ∆ = 1.1, D/J = 0.1, and h/J = 0.2, where
the structure factor Mz

s (k) shows a clear peak at com-
mensurate momentum k = π, indicating the presence of
the Nèel Ising order. On the contrary, the structure fac-
tor My

s (k) has two smaller peaks, one at commensurate
momentum k = π and another at incommensurate mo-
mentum k = k? < π. However, since both peaks in the
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0.5 1 1.5 2
0.8

0.85

0.9

0.95

1

1.05

h/D

∆

LL N
y

N
z

FIG. 4: (Color online) The ground state phase diagram of the
system in Eq.(1) atD/J = 0.1 as determined by DMRG (open
circles) and iTEBD (open squares) calculations for system
with L=1200 sites. For comparison, the phase diagram at
D/J = 0.05 is also provided obtained by DMRG simulation
for system with L = 800 sites (open triangles). The lines are
guides to eye.

My
s (k) structure factor are substantially smaller than the

peak in Mz
s (k) at commensurate k = π, we conclude that

at this point the spin chain is the “Nz” phase, with no
“Ny”-kind Ising order.

B. “Ny” phase

When ∆ is small while h is sufficient large, the system
enters into the “Ny” phase. This phase is characterized
by a dominant peak of the structure factor My

s (k) at
commensurate momentum k = π, while peaks in Mz

s (k =
π) and My

s (k = k?) are much smaller, see Fig. 5(b). Note
that the “Ny” Néel Ising order, which is also present
in the system without DM interaction, is suppressed by
the finite DM interaction, especially for h ≤ D. See
Appendix D for the analytical explanation of this.

C. LL phase

The system is in the LL phase when both ∆ and h are
smal enough, and is characterized by the dominant peak
in the structure factor My

s (k) at the incommensurate mo-
mentum k = k? < π as shown in Fig. 5(c). For example,
the peak is at k∗ ≈ 0.965π for ∆ = 0.7, D/J = 0.1,
and h/J = 0.075. For the same set of parameters, the
field theory predicts the peak to be at k = π ± tϕ, with

tϕ =
√
h2 +D2/(πJ/2), see (B11) and (E22). This pre-

diction translates into k∗ = 0.975π, which is consistent
with the numerical result. Notice that our numerical

0.9 0.92 0.94 0.96 0.98 1

1

2

3

4

5

k/π

 

 

M
y

M
z

M
d

(a)

N
z

0.9 0.92 0.94 0.96 0.98 1
0.5

1

1.5

2

2.5

k/π

 

 

M
y

M
z

M
d

N
y

(b)

0.9 0.92 0.94 0.96 0.98 1
0.5

1

1.5

2

k/π

 

 

M
y

M
z

LL

(c)

FIG. 5: (Color online) Structure factors My
s (blue solid line),

Mz
s (green dashed line) with L = 1600 and Md (red dash-

dot line) with L = 1200 (a) in the Nz phase at ∆ = 1.1,
D/J = 0.1, h/J = 0.2, (b) in the Ny phase at ∆ = 0.7,
D/J = 0.1, h/J = 0.2, and (c) in the LL phase at ∆ = 0.7,
D/J = 0.1, h/J = 0.075.

calculations give a slightly smaller k∗, which is caused
by the difference of spinon velocity v from the zero field
value πJ/2 and finite-size effects. Similar with My

s (k),
the dimer structure factor also exhibits a two-peak fea-
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ture at both commensurate k = π and incommensurate
momentum k = k? < π. This is direct consequence of
the chiral rotation (B1) which ‘mixes up’ staggered mag-
netization and dimerization operators as equations (B7)
and (B5) (equivalently, (12)) show.

Having characterized the distinct phases, now we can
try to determine the phase boundary between them.

D. “Ny”-“Nz” boundary

The phase boundary between the two Ising phases is
determined by the order parameters Ny(π) and Nz(π),
which should saturate to a finite nonzero value in the
thermodynamic limit in the “Ny” and “Nz” phase, cor-
respondingly, and vanish elsewhere. Unfortunately, due
to large finite size effects (see Section V for details), the
order parameters tend to behave continuously across the
anticipated phase boundary, even though their values in
the “wrong” phase become very small. We therefore try
to identify the phase boundary by looking for the cross-
ing point where the two order parameters take the same
value since the “Nz” Ising order dominates at larger ∆
while the “Ny” order wins at smaller ∆. Example of
determining the phase boundary in this way is shown in
Fig. S1(a) in the Appendix F.

E. LL-Ising boundary

In the LL phase all order parameters vanish in the ther-
modynamic limit. Unfortunately, again due to strong
finite-size effects, an unambiguous identification of this
phase is difficult since both Ising order parameters remain
nonzero, although really small, inside it. We observe
that in both “Ny” and LL phases, the spin structure fac-
tor My

s (k) develops peaks at commensurate momentum
k = π and at incommensurate momentum k = k? < π,
see Fig. 5. This is direct consequence of Eq.(12) and
(B5) which show that Ny ∼ cos θ0N y + sin θ0ξ. While
N y is peaked at zero momentum (which means that its
contribution to spin density Sy ∼ (−1)xNy is peaked
at momentum π), the rotated dimerization operator ξ is
peaked at ±tϕ, see Eq.(B9) and (B11). Therefore My

s (k)
is expected to have peaks at both k = π and k∗ = π− tϕ.
Similar two-peak structure, with maxima at momenta π
(coming from N y) and k∗ (coming from ξ), shows up in
the dimer structure factor Md(k), in full agreement with
second line of (12). Fig. 5 (a),(b) shows corresponding
numerical data.

Inside the “Ny” phase the dominant peak of My
s

is at k = π, suggesting well developed Néel order of
“Ny” kind. On the contrary, deep inside the LL phase
My
s (k∗), which comes from power-law correlations of the

rotated dimerization operator ξ, dominates over the peak
at π. This numerical finding is fully consistent with
our low-energy bosonization calculation in Appendix E 3,
Eq. (E22), which shows that spin correlations caused

0.05 0.06 0.07 0.08 0.09 0.1
0.955

0.96

0.965

0.97

0.975

0.98

h/J

k
* /π

 

 
M

y

s

M
d

1−(h
2
+D

2
)
0.5

/(πv)

FIG. 6: (Color online) The dependence of the incommensu-
rate peak momentum k? in the spin structure factor My

s (k)
(blue dots) and dimer structure factor Md(k) (green squares)
as a function of the transverse magnetic field h at D/J = 0.1.
Red line denotes the theoretical prediction, we used v = πJ/2.

by rotated operators ξ and N z are the slowest-decaying
ones. Therefore the phase boundary between the LL
and “Ny” phases can be identified from the condition
My
s (k = k?) = My

s (k = π). The resulting phase bound-
ary agree well with theoretical prediction. Similarly, the
boundary between the LL and “Nz” phases is determined
by My

s (k = k?) = Mz
s (k = π), see Fig. S1b. Since My

s

shows a dominant peak at k = k? in the LL phase while
the N z phase has a dominant order at k = π, the phase
boundary between these two phases can be determined
by the crossing point of the above quantities.

Further quantitative agreement can be established by
comparing numerical data for k?, extracted from My

s (k)
and Md(k) data, with the analytical prediction k∗ =

π − tϕ = π −
√
D2 + h2/v, as shown in Fig. 6. Small

difference between the measured and the predicted k∗

values is probably due to our omission of the velocity
renormalization by marginal operators.

Finally, we have also calculated the phase diagram of
the system with smaller DM interaction D/J = 0.05.
The phase diagram for L = 800 chain is shown in Fig. 4
by a green dashed line. Compared with larger DM in-
teraction D/J = 0.1 case, the phase boundaries for both
Nz-LL and Nz-Ny phase transitions move to higher ∆
values, in qualitative agreement with theoretical expec-
tations – see phase diagrams in Figs. 2 and 3 for a similar
comparison.
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FIG. 7: (Color online) Plot of the critical RG `∗ for which
|yc(`∗)| = 1 (obtained by solving KT equations, see Ap-
pendix C) as a function of the XXZ anisotropy ∆. Here
D/J = 0.1 and h/J = 0.2. The system is in the ‘‘Ny”
phase (red line) for ∆ < ∆c ' 0.94 (the phase boundary
∆c is determined from Eq. (15)), while at ∆ > ∆c the sys-
tem enters “Nz” phase (blue line). Near the transition point,
`∗ � `s = 7.37.

V. ANALYTICAL UNDERSTANDING OF
FINITE SIZE EFFECTS IN DMRG STUDY

Our formulation provides convenient way to under-
stand some of the finite size effects unavoidable in nu-
merical study of the problem. Here we focus on the case
of relatively strong DM interaction D/J = 0.1, analytical
and numerical phase diagrams for which are presented in
Fig. 2 and Fig. 4, correspondingly.

By solving the RG equations (10) we obtain the criti-
cal RG scale `∗ at which the order develops fully, namely
|yC(`∗)| = 1. We find that `∗ grows rapidly as ∆ is ap-
proaching the phase boundary between “Ny” and “Nz”
states, as shown in Fig. 7, with ` ≈ 50 near the crit-
ical point. However the finite size of the system used
in the DMRG study, L = 1600 in units of the lattice
spacing a, corresponds to a much smaller RG scale of
`s = ln[1600] = 7.37. Therefore the RG scales greater
than `s are not accessible for DMRG. In other words,
if we associate the correlation length ξ = ae`

∗
with

the order which develops at `∗, and if it happens that
`∗ > `s = 7.37, than the DMRG simulations will not be
sensitive to the development of the long-range order in
this case. This is the basic explanation of the unavoid-
able difficulty one encounters in numerical determination
of the phase boundaries between various phases.

In addition to calculating `∗ associated with the de-
velopment of long-range order, we can also calculate the
order parameters for “Ny” and “Nz” phases developing
in the system as functions of the running RG scale `. Ap-
pendix E describes how it is done. We show there that
the required order parameters are given by

〈Ny〉 = 〈Re[eiβϑ/2]〉, 〈Nz〉 = 〈Im[eiβϑ/2]〉. (18)

Eq. (E18) shows explicit form of the order parameters
in terms of running couplings yC,σ(`). Fig. 8 illustrates
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FIG. 8: (Color online) Order parameters as a function of
∆ for two ordered states “Ny” and “Nz”, at D/J = 0.1,
h/J = 0.2, and RG length scale ` = `s. Here ∆ is near the
phase boundary ∆c ' 0.94 (determined from Eq. (15)). See
main text and Appendix E for details.

our results. It shows the order parameters 〈Ny,z〉 which
are evaluated at the maximum possible for our chain RG
scale ` = `s. Observe that in agreement with the numer-
ical data in Fig. S1a, there is a noticeable asymmetry
between these two order parameters: the order parame-
ter of the “Ny” phase is smaller than that of the “Nz”
phase.

VI. CONCLUSIONS

Extensive DMRG study shows an excellent agreement
with analytical investigation based on the RG analysis of
weakly perturbed Heisenberg chain. We have worked out
full phase diagram of the model in the ∆− (h/D) plane.
Our numerical findings match predictions of Ref. 16 well,
and confirm the prevalence of “Nz” Néel Ising order in
the regime of comparable Dzyaloshinskii-Moriya (DM)
and magnetic field magnitudes15. In addition, we find
that significant finite-size corrections observed numeri-
cally are well explained by the ‘logarithmic slowness’ of
the KT RG flow. As a result of that very large RG scales
`∗, far exceeding those set by the finite length L of the
chain used in DMRG, are required for reaching the Ising-
ordered phases.

Our numerical data also confirms the existence of the
critical Luttinger liquid phase with fully broken spin-
rotational invariance. This phase with dominant incom-
mensurate spin and dimerization power-law correlations
is a quantum analogue of the classical chiral soliton lat-
tice.

Our findings open up a possibility of the experimental
check of theoretical predictions in quasi-one-dimensional
antiferromagnets with a uniform DM interaction13,14.
The idea is to probe the spin correlations at a finite
temperature above the critical ordering temperature of
the material when inter-chain spin correlations, which
drive the three-dimensional ordering, are not important
while individual chains still possess sufficient for exper-
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imental detection anisotropy of spin correlations caused
by the uniform DM interaction. Under these conditions
one should be able to probe the fascinating competition
between the uniform DM interaction and the transverse
external magnetic field.
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Appendix A: Bosonization

The low-energy description is provided by the
parameterization15 S(x) ≈ J(x) + (−1)nN(x), where
J = JL+JR, and JL(x) and JR(x) are the uniform left-
and right-moving spin currents, and N(x) is the stag-
gered magnetization (our order parameter). Here x = na
in terms of lattice constant a. These fields are expressed
in terms of bosonic fields (φ, θ) (this expansion is not
specific to the SU(2), Heisenberg, point and can be gen-
eralized easily to a more general XXZ Hamiltonian).

J+
R =

1

2πa
e−i
√

2π(φ−θ), J+
L =

1

2πa
ei
√

2π(φ+θ),

JzR =
∂xφ− ∂xθ

2
√

2π
, JzL =

∂xφ+ ∂xθ

2
√

2π
,

(A1)

and

N = A(− sin[
√

2πθ], cos[
√

2πθ], − sin[
√

2πφ]). (A2)

Here, A ≡ γ/(πa0), and γ = 〈cos(
√

2πφρ)〉 ∼ O(1) is
determined by gapped charged modes of the chain. The
Hamiltonian in Eq. (1) is approximated in low energy
limit as15,16,19

H = H0 + V +Hbs, (A3)

where

H0 =
2πv

3

∫
dx(JR · JR + JL · JL),

V = −D
∫

dx(JzR − JzL)− h
∫

dx(JxR + JxL),

Hbs = −gbs

∫
dx[JxRJ

x
L + JyRJ

y
L + (1 + λ)JzRJ

z
L],

(A4)

where λ is the total XXZ anisotropy described by Eq. (7).

Appendix B: Chiral rotation

The system Hamiltonian is described in Eq. (A4). It
is convenient to exploit the extended symmetry of H0

and treat both vector perturbations h and D equally by
performing a chiral rotation of spin currents about the y
axis15,16,19

JR/L = R(θR/L)MR/L, (B1)

with MR/L is the spin current in the rotated frame, and
R is the rotation matrix,

R(θR/L) =

 cos θR/L 0 sin θR/L
0 1 0

− sin θR/L 0 cos θR/L.

 , (B2)

where

θR = θ0 + π/2, θL = −θ0 + π/2, θ0 ≡ arctan

(
−D
h

)
.

(B3)
Via this chiral rotation, vector perturbation V in

Eq. (A4) becomes

V = −
√
D2 + h2

∫
dx(Mz

R +Mz
L)

= −
√
D2 + h2

√
2π

∫
dx∂xϕ.

(B4)

The staggered magnetization transforms as

N = (−N z, cos θ0N y + sin θ0ξ,N x), (B5)

Here N and ξ denote the staggered magnetization and
dimerization in the rotated frame. They, as well as ro-
tated spin currents MR/L, are expressed in terms of of
abelian bosonic fields ϕ and ϑ. Staggered magnetization
N in (A2), staggered dimerization ε = (γ/πa0) cos[

√
2πφ]

and spin currents JR/L are written in terms of (φ, θ) pair
as Eq. (A1) and (A2) show. Therefore, in the rotated
frame

N =
γ

πa0
(− sin

√
2πϑ, cos

√
2πϑ,− sin

√
2πϕ) (B6)

and ξ = (γ/πa0) cos
√

2πϕ.
Relation (B5) is obtained by observing that chi-

ral rotation (B1) of vector currents corresponds to
the following rotation of Dirac spinors16,31 ΨR/L,s =

e−iθR/Lσ
y/2Ψ̃R/L,s in terms of which spin currents are

expressed22 as JaR/L = Ψ+
R/Lσ

aΨR/L/2 and Ma
R/L =

Ψ̃+
R/Lσ

aΨ̃R/L/2. The (original) staggered magnetization,

Na = (Ψ+
Rσ

aΨL + Ψ+
Lσ

aΨR)/2, rotates into (B5). Simi-

larly, staggered dimerization ε(x) ∼ (−1)x/aS(x)·S(x+a)
transforms as

ε = cos θ0ξ − sin θ0N y. (B7)
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Rotation (B1) transforms backscattering Hamiltonian
in (A4) into,

Hbs =2πv

∫
dx
[∑

α

yαM
α
RM

α
L+

+ yA(Mz
RM

x
L −Mx

RM
z
L)
]
,

(B8)

where α = x, y, z and the initial values of coupling con-
stants yα and yA are shown in Eq. (5).

We see from Eq. (B4) that in the rotated frame
the chain experiences an external magnetic field heff ≡√
D2 + h2 applied along z-axis. This term is then ab-

sorbed into the isotropic Hamiltonian H0 by the position-
dependent shift

ϕ→ ϕ+ tϕx, tϕ ≡
√
D2 + h2/v = heff/v. (B9)

As a result of this shift, the spin currents, the staggered
magnetization and the dimerization in the rotated frame
are modified as

M+
R →M+

R e
−itϕx, M+

L →M+
L e

itϕx,

Mz
R →Mz

R +
tϕ
4π
, Mz

L →Mz
L +

tϕ
4π
,

(B10)

and

N z → − γ

πa0
sin(
√

2πϕ+ tϕx),

ξ → γ

πa0
cos[
√

2πϕ+ tϕx].
(B11)

The ϕ field shift (B9) will also transform the expression
for the chain backscattering (B8) to Eq. (3), in which we
neglected additional small terms coming from the shifts
in Mz

R/L.

Appendix C: Analytical solution of
Kosterlitz-Thouless (KT) equations

Analytical solution of the Kosterlitz-Thouless (KT)
equations in Eq. (10) is given by

yσ(l) =


µ
yσ(0) cosh(µl)− µ sinh(µl)

−yσ(0) sinh(µl) + µ cosh(µl)
, C > 0,

µ
yσ(0) cos(µl) + µ sin(µl)

−yσ(0) sin(µl) + µ cos(µl)
, C < 0.

(C1)

with µ =
√
|C|. Also,

yC(l) = sign(yC(0))
√
yσ(l)2 − C. (C2)

The sign of yC(l) depends on the sign of its initial value.
The critical `∗, at which |yC(l = l∗)| = 1, can be deter-
mined by Eq. (C1) and (C2), and is shown is Fig. 7.

Appendix D: XXZ model in transverse field, D = 0

If we set D = 0, two rotation angles θR = θL = π/2,
and θ− = 0. Then yA(0) = 0. In this condition, our
model Hamiltonian (1) reduces to a XXZ model in a uni-
form transverse field. The RG equations for the backscat-
tering are,

dyx
dl

= yyyz,
dyy
dl

= yxyz,
dyz
dl

= yxyy, (D1)

and the initial values are,

yx(0) = − gbs

2πv
[1 + λ], yy(0) = yz(0) = − gbs

2πv
, (D2)

It is easy to find that yy(`) = yz(`) for all ` so that
the RG equations above again acquire a KT form. Now
λ = c(1−∆) so that we obtain

yC(0) = − gbs

4πv
λ, yσ(0) =

gbs

2πv
, C = (

gbs

2πv
)2(1− λ2

4
).

(D3)
Using Eq. (C1), we find

yσ(`) = 2µ
y2
C/(yσ + µ)2

e−2µ` − y2
C/(yσ + µ)2

, (D4)

where yC/σ in the right-hand-side are those at ` =
0 (their initial values). Therefore, since yσ(0) =

gbs/(2πv) > µ =
√
y2
σ − y2

C , there is a divergence, sig-

naling strong-coupling limit, at `div ≈ µ−1 ln
[
4|λ|−1

]
.

Observe that `div is finite for any ∆ 6= 1, meaning that
the two ordered phases are separated by the critical LL
one, which is just an isotropic Heisenberg chain in a mag-
netic field.

For ∆ < 1, we have λ > 0, yC(0) < 0, and then
yC(l)→ −∞, which leads to the “Ny” state. For ∆ > 1,
instead λ < 0 and yC(0) > 0, so that yC(l) → +∞,
hence one obtains the “Nz” state. These two phases
are separated by the critical line at ∆ = 1. Our phase
diagrams in Figs. 3 and 2 display exactly this behavior:
setting D = 0 places the model at h/D →∞, where the
critical line separating the two Ising states approaches
horizontal asymptote at ∆ = 1.

The above argument agrees with Ref.24, which studied
the ground state of the following Hamiltonian,

H =
∑
j

[
J(Sxj S

x
j+1 + Syj S

y
j+1 + ∆Szj S

z
j+1)− hSxj

]
.

(D5)
It was found that for h 6= 0 spectrum is gapped for both
∆ > 1 and ∆ < 124. The Ising order that develops is of
“Nz” (“Ny”) kind for ∆ > 1 (∆ < 1). Our RG equations
evidently capture this physics well.

Appendix E: Calculation of the order parameter

In Ref. 32 Lukyanov and Zamolodchikov have sug-
gested a general expression for the expectation value of
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the vertex operator 〈eiaϑ〉, see Eq.(20) in that reference,
of the sine-Gordon model given by the action

SsG =

∫
d2x
{ 1

16π
(∂νϑ)2 − 2µ cos(β′ϑ)

}
. (E1)

Their conjecture is as follows (for β′2 < 1, and |Re a| <
1/(2β′), which are required for the convergence) ,

〈eiaϑ〉 =
[mΓ( 1

2 + ξ
2 )Γ(1− ξ

2 )

4
√
π

]2a2
exp

{∫ ∞
0

dt

t

[ sinh2(2aβ′t)

2 sinh(β′2t) sinh(t) cosh
(
(1− β′2)t

) − 2a2e−2t
]}
, (E2)

where

m = 2M sin(πξ/2), ξ =
β′2

1− β′2
(E3)

and M is the soliton mass.

1. Perturbation HC and Hσ

Here we work out the action for our KT Hamiltonian
by considering HC and Hσ as perturbations to the har-
monic Hamiltonian H0. Provided that the field is small
enough, so that the scaling dimensions of various oper-
ators are given by their values at the Heisenberg point,
we have

Mz
R =

1

2
√

2π
(∂xϕ− ∂xϑ),

Mz
L =

1

2
√

2π
(∂xϕ+ ∂xϑ).

(E4)

and therefore

Hσ = −vyσ
4

∫
dx[(∂xϕ)2 − (∂xϑ)2],

HC =
vyC
2πa2

∫
dx cos(2

√
2πϑ).

(E5)

Therefore, the action, which determines the partition
function Z =

∫
e−S , is

S =

∫
dxdτ

{
− i∂xϑ∂τϕ+

1

2
[v1(∂xϕ)2 + v2(∂xϑ)2]

+
vyC
2πa2

cos(
√

8πϑ)
}
.

(E6)

where

v1 = v(1− yσ
2

), v2 = v(1 +
yσ
2

). (E7)

We integrate out the ϕ field using duality ∂xϑ∂τϕ =
∂xϕ∂τϑ and then the action factorizes

S =

∫
dxdτ

{v1

2
(∂xϕ−

i

v1
∂τϑ)2 +

1

2v1
(∂τϑ)2 +

v2

2
(∂xϑ)2

+
vyC
2πa2

cos(
√

8πϑ)
}
. (E8)

The first, ϕ-dependent piece in Eq. (E6) is integrated
away. The remaining ϑ part of the action is

Sϑ =

∫
dxdy

{1

2

√
v2

v1
((∂xϑ)2 + (∂τϑ)2)

+
yC

2πa2

v

u
cos(
√

8πϑ)
}
, (E9)

with y = uτ and set u =
√
v1v2. Finally we rescale ϑ,

ϑ =
1√
8π

(v1

v2

) 1
4

ϑ̃, (E10)

and arrive at the desired form of Eq. (E1),

Sϑ =

∫
d2x
{ 1

16π
(∂ν ϑ̃)2 − 2µ cos(β̃ϑ̃)

}
, (E11)

where

µ ≡ |yC |
4πa2

v

u
, β̃ ≡

(v1

v2

) 1
4

. (E12)

Here, for the case of yC > 0, we made an additional shift
ϑ̃ → ϑ̃ + π/β̃ in order to change the sign of the cosine
term. The case of yC < 0 does not require any additional
shifts, ϑ̃ = ϑ̃. The parameters (E12) of the action can
easily be written in terms of yC,σ,

u = v
√

1− y2
σ/4, µ =

1

4πa2

|yC |√
1− y2

σ/4
,

β̃ =
(1− yσ/2

1 + yσ/2

) 1
4

.

(E13)

The expectation value we intend to compute is

〈ei
√

2πϑ〉 = 〈eiβ̃ϑ̃/2〉, and thus a in Eq. (E2) is just

a ≡ β̃/2.
We observe that our order parameters are obtained as

Ny ∼ cos
√

2πϑ ∝ Re〈eiβ̃ϑ̃/2〉, while Nz ∼ sin
√

2πϑ ∝
Im〈eiβ̃ϑ̃/2〉. The shift described just below Eq. (E12),

which is needed for yC > 0, transforms 〈eiβ̃ϑ̃/2〉
into eiπ/2〈eiβ̃ϑ̃/2〉 and thus precisely corresponds to the
change of the order from the “Ny” kind (realized for
yC < 0) to the “Nz” kind (realized for yC > 0).
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2. The order parameter 〈ei
β̃
2
ϑ̃〉

We are interested to evaluate the expectation value

〈ei
β̃
2 ϑ̃〉 = AeI , A ≡

[mΓ( 1
2 + ξ

2 )Γ(1− ξ
2 )

4
√
π

]β̃2/2

. (E14)

Here I is obtained from Eq. (E2) by setting a = β̃/2,

I ≡
∫ ∞

0

dt

t

[ sinh(β̃2t)

2 sinh(t) cosh
(
(1− β̃2)t

) − β̃2

2
e−2t

]
.

(E15)

The convergence of I is easy to check: β̃2 < 1 is required
for t → ∞. Using identity Γ(1 − x)Γ(x) = π/sin(πx),

and with m in Eq. (E3), the expression for A becomes

A =
[√π

2
M

Γ( 1
2 + ξ

2 )

Γ(ξ/2)

]β̃2/2

. (E16)

The relation between constant µ and mass M is (this is
Eq.12 of Ref. 32)

µ =
Γ(β̃2)

πΓ(1− β̃2)

[
M

√
πΓ( 1

2 + ξ
2 )

2Γ( ξ2 )

]2−2β̃2

. (E17)

Using all these we obtain for the order parameter

〈ei
β̃
2 ϑ̃〉 =

[πµ Γ(1− β̃2)

Γ(β̃2)

]β̃2/[4(1−β̃2)]

× exp
{∫ ∞

0

dt

t

[ sinh(β̃2t)

2 sinh(t) cosh
(
(1− β̃2)t

) − β̃2

2
e−2t

]}
. (E18)

Note that Eq. (E18) is a function of β̃, which, in turn,
is function of running yσ(`). It also depends on running
yC(`), via µ dependence, see (E13). Thus (E18) allows
us to evaluate the order parameter as a function of RG
scale `.

3. Luttinger liquid phase

The Luttinger-liquid (LL) phase of our model is char-
acterized by yC = 0, yσ < 0 for `→∞, see Fig. 1. Corre-
spondingly, its action is given by Eq. (E6) with yC = 0.
From here it is easy to derive that the scaling dimen-

sion of the vertex operator ei
√

2πϑ(x) is ∆ϑ = β̃2/2 ≈
(1 − yσ/2)/2, while that of the dual field one ei

√
2πϕ(x)

is given by ∆ϕ = 1/(2β̃2) ≈ (1 + yσ/2)/2. Backscatter-
ing renormalizes scaling dimensions through the RG flow
of yσ. Given that in the LL yσ < 0, we observe that
∆ϕ < ∆ϑ which signals that the correlation functions of
fields N z and ξ, which are written in terms of ϕ bosons,
decay slower than those of fields N x and N y, which are
expressed via ϑ bosons. Moreover, due to Eq. (B11),
correlations of N z and ξ are incommensurate:

〈N z(x)N z(0)〉 ∝ 〈ξ(x)ξ(0)〉 ∝ cos[tϕx]

|x|2∆ϕ
(E19)

while those of N x,y are commensurate

〈N x,y(x)N x,y(0)〉 ∝ 1

|x|2∆ϑ
. (E20)

Taken together with Eq. (12), which describes the rela-
tion between spin operators in the laboratory and rotated
frames, these simple relations allow us to fully describe

the asymptotic spin (and dimerization) correlations in
the LL phase with fully broken spin-rotational symme-
try

〈Sx(x)Sx(0)〉 ∝ cos[(π − tϕ)x]

|x|2∆ϕ
,

〈Sy(x)Sy(0)〉 ∝ sin2 θ0
cos[(π − tϕ)x]

|x|2∆ϕ
+ cos2 θ0

(−1)x

|x|2∆ϑ
,

〈Sz(x)Sz(0)〉 ∝ (−1)x

|x|2∆ϑ
, (E21)

〈ε(x)ε(0)〉 ∝ cos2 θ0
cos[(π − tϕ)x]

|x|2∆ϕ
+ sin2 θ0

(−1)x

|x|2∆ϑ
.

Due to ∆ϕ < ∆ϑ, the LL phase is dominated by the
incommensurate correlations of Sx,y and ε fields. Their
contribution to the equal time structure factor is easy to
estimate by simple scaling analysis. For example, denot-
ing Q = π − tϕ,

Mx
s (k) ∝

∫
dx
ei(k−Q)x

|x|2∆ϕ
∼ |k −Q|2∆ϕ−1, (E22)

where we extended limits of the integration to infinity
due to convergence of the integral for 2∆ϕ > 0. The
divergence at k = Q is controlled by 2∆ϕ−1 = −yσ/2 <
0 and is rounded in the system of finite size L. More
careful calculation of Ma

s (k) and Md(k) is possible33–35,
but is beyond the scope of the present study.

Appendix F: DMRG details

In this appendix, we provide details on determination
of the phase diagram and finite size effects.
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FIG. S1: (Color online) Order parameters Ny(π) (red dots),
Nz(π) (blue squares) and Ny(k∗) (green diamonds) extrap-
olated by a second order polynomial (17) using data from
L = 600, 800, 1000, 1200, and 1600 chains as a function of ∆
at (a) h/J = 0.2 and (b) h/J = 0.05 with D/J = 0.1. The
crossing points of the order parameters determine the phase
boundary.

1. Determination of phase boundaries

Here we describe how we determine phase boundaries
numerically. In Fig. S1(a) we show the extrapolated or-
der parameters at k = π near phase boundary between
“Ny” and an “Nz” phases. Here we can see that these
two distinct orders are dominant in the corresponding
phases, hence the phase boundary between them can be
determined by their crossing point.

Fig. S1(b) shows the order parameters near the bound-
ary between the LL and Nz phases, where both order pa-
rameters Ny(k = k∗) and Nz(k = π) are finite and domi-
nant on the opposite sides of the figure, while Ny(k = π)
is vanishingly small. Notice that due to large finite-size
effect, the order parameter Ny(k = k∗), which should
vanish after extrapolation to the thermodynamic limit
L → ∞, still remains finite in our L = 1600 chain al-
though rather small. As a result, we use it to identify
the LL phase as described in the main text.

0.5 1 1.5 2
0.8

0.85

0.9
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h/D

∆

N
z

LL N
y

FIG. S2: (Color online) Phase diagram of the chain with
D/J = 0.1 after the finite-size extrapolation of the order pa-
rameters to L = ∞ using Eq.(17). The error bar are plotted
at the 95% confidence interval of the order parameters.

2. Finite size effects on the phase boundary

To check the finite-size effect on phase boundaries, we
have compared phase diagrams for the chain of length
L = 1200 calculated by DMRG and iTEBD methods as
shown in Fig. 4. To minimize the boundary effect, the
order parameters are calculated within the central half
of the system, i.e., 600 sites in the middle of the system.
We keep the same bond-link dimension and considering
the same lengths for the calculation of correlation func-
tions using iTEBD and DMRG methods. The agreement
between DMRG and iTEBD results is quite good, sug-
gesting that DMRG results are only subject to the finite
size effect while the effect of open boundaries is negligi-
ble.

Fig. S2 shows phase diagram obtained by extrapolat-
ing order parameters to L =∞ using second-order poly-
nomial functions of 1/

√
L, Eq. (17). Comparing it to

the phase diagram in Fig. 4 for the finite system of size
L = 1200, we observe the shift of Nz-LL and Nz-Ny

boundaries to slightly larger ∆ values. A more detailed
analysis suggests that error bars associated with the
finite-size extrapolation to L = ∞ are within 95% con-
fidence interval, which means that our conclusion about
“Nz” Ising order extending to ∆ < 1 region is well justi-
fied.

It is also possible to determine the phase boundary
by computing the Binder cumulant,36–38 which is widely
used in Monte Carlo studies and has also been recently
applied in the DMRG study37,38. Our preliminary inves-
tigation suggests that the phase boundary determined
with the help of Binder cumulant is fully consistent with
the results obtained in this work.
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