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Double-stripe magnetism [Q = (π/2, π/2)] has been proposed as the magnetic ground state for
both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured
within a J1 − J2 − J3 Heisenberg model in the regime J3 � J2 � J1. Intriguingly, besides breaking
spin-rotational symmetry, the ground state manifold has three additional Ising degrees of freedom
associated with bond-ordering. Via their coupling to the lattice, they give rise to an orthorhombic
distortion and to two non-uniform lattice distortions with wave-vector (π, π). Because the ground
state is four-fold degenerate, modulo rotations in spin space, only two of these Ising bond order
parameters are independent. Here we introduce an effective field theory to treat all Ising order
parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions,
corresponding to the condensations of two Ising bond order parameters and one magnetic order
parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equiva-
lently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions,
and in some cases allows for two separate Ising phase transitions above the magnetic one.

I. INTRODUCTION

Long range order that breaks both discrete and con-
tinuous symmetries can, in the presence of strong fluc-
tuations, be melted in stages, whereby the discrete sym-
metries may remain broken well above the continuous
symmetry breaking1. The most famous example is the
spin-driven nematicity that occurs in the iron-based su-
perconductors. The single-stripe(SS) magnetic ground
state2,3 breaks both continuous spin rotation symmetry
and discrete C4 lattice rotation symmetry, allowing a
nematic phase breaking only the rotation symmetry to
develop above the magnetic transition where the spin-
rotation symmetry is broken4. Essentially, this nematic
order can be understood as an Ising bond-order, where
ferromagnetic or antiferromagnetic correlations develop
along one direction, but not the other. As this bond
order breaks rotational symmetry, it couples to the de-
velopment of an orthorhombic lattice distortion that oc-
curs coincidently with the nematic phase transition5,6.
There is now a clear consensus that the orthorhombic
phase in the iron-pnictides is just such a spin-driven
nematic phase, where the primary order parameter is
this Ising bond order7. This order has been found in
both local5,6,8,9 and itinerant10,11 models, and appears
to be quite generic. Indeed, this phenomena is rele-
vant beyond the iron-pnictides, and has recently been ex-
plored above the charge density wave phase proposed in
the cuprates12,13, and in tetragonal Kondo insulators14.
The nematic degrees of freedom themselves may be im-
portant for driving higher temperature superconducting
transitions15–18.

In a recent paper [19], we discussed the two Ising bond
orders that arise above double-stripe magnetism, which
breaks two distinct discrete symmetries. That paper fo-
cused on the bond order degrees of freedom in a two di-
mensional calculation. Here, we investigate the interplay
of these two bond orders with magnetic order in quasi-
two-dimensional systems. Here, long range magnetism

develops at a finite temperature, leading to the possibil-
ity that thermal fluctuations melt the magnetic order via
up to three distinct phase transitions: one magnetic and
two Ising bond order transitions associated with the two
discrete symmetries19.

The double stripe (DS) magnetic ground state has been
proposed in BaTi2Sb2O20–23 and found in the 11 system
Fe1+ySexTe1−x

24,25, which exhibits magnetic order with
the commensurate ordering vector Q = (π/2, π/2)26–28.
DS order can be understood as the Néel ordering of a
four spin plaquette with three up- and one down-spins,
which results in double width ferromagnetic(FM) stripes
along one diagonal direction and double width antifer-
romagnetic(AFM) stripes along the other, see Fig 1(b).
These stripes are rotated by 45◦ from the SS magnetism,
in addition to being double the width, and they break the
tetragonal symmetry down to monoclinic rather than or-
thorhombic symmetry via coupling to the lattice.

For the purpose of contrasting the DS ordered state
with the SS one, we first briefly review SS magnetism and
the associated nematicity. SS magnetism can be captured
within a J1 − J2 Heisenberg model on the square lattice,
with an additional biquadratic coupling3,4,

H = J1

∑
〈ij〉

Si ·Sj+J2

∑
〈〈ij〉〉

Si ·Sj−K1

∑
〈ij〉

(Si · Sj)2
, (1)

where J1 and J2 > 0 are nearest(NN) and next-nearest
neighbor(NNN) exchange couplings(see Fig. 1(a)), and
K1 > 0 is the NN biquadratic coupling, which can be gen-
erated by order from disorder4, but is more likely to arise
from itinerant magnetism. For J2 � J1, two Néel sub-
lattices are given by the antiferromagnetic J2 coupling.
For K1 = 0, the two Néel order parameters M1(defined
as M1 = 〈

∑
n∈ sublattice 1(−1)nxSn〉) and M2(defined as

M2 = 〈
∑
n∈ sublattice 2(−1)nx+1Sn〉) are fully decoupled

in the classical, zero temperature limit. K1 then couples
them together, favoring collinear spin states and lead-
ing to FM stripes along either the x̂ or ŷ directions[Fig
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FIG. 1. (Color online) Comparison of (a) SS magnetic order
in FeAs, with an orthorhombic lattice distortion and (b) DS
magnetic order in FeTe, with a monoclinic lattice distortion,
rotated 45◦ from the SS distortion. The sublattices are as la-
beled. The nearest neighbor (NN) and next-nearest neighbor
(NNN) ferromagnetic bonds are indicated by blue and yellow
ovals respectively. The shaded area included by blue dashed
line indicates the unit cell. The NN, NNN and NNNN inter-
actions are indicated with red/green/orange dashed lines.

1(a)]. Depending on the orientation of the FM stripes,
the ground state is doubly degenerate with wave-vector
(π, 0) or (0, π). This SS magnetism breaks both continu-
ous spin rotational symmetry and discrete C4 rotational
symmetry. While the continuous spin-rotational symme-
try cannot be broken at any finite temperature in two
dimensions, the C4 rotational symmetry breaking can.
It can be described by an Ising-nematic order parameter:

ϕ =
1

Ns

∑
i

〈Si · Si+x̂ − Si · Si+ŷ〉 (2)

= 〈M1 ·M2〉, (3)

where Ns is the number of sites. Essentially, ϕ is positive
(negative) for NN FM correlations along x̂ (ŷ), making it
a NN bond order. The coupling of ϕ to the lattice gives
rise to a orthorhombic structural distortion. We shall see
that DS magnetism contains both NN and NNN bond
orders(see Fig. 1 for comparison).

In order to model the DS magnetism, we take the
J1−J2−J3 Heisenberg model in the regime J3 � J2 � J1

(see Fig. 1(b)). Really, this model is a low energy effec-
tive model that can describe either local or itinerant mo-
ments. The third neighbor exchange coupling, J3 parti-
tions the spins into four interpenetrating Néel sublattices
Mi(i = 1, 2, 3, 4). Since the exchange fields due to both
J1 and J2 cancel out at each site, the four sublattices
are decoupled in the classical ground state. J1 drives the
classical ground state into a spiral state and away from
DS magnetism29, so we neglect J1 in this paper, which
is valid for sufficiently large four-spin interactions. As in
the SS case, four spin interactions are required to couple
together the four sublattices, which requires not only K1

but also K2, the NNN biquadratic coupling. Indeed, we
can consider the J2−J3−K2 model as two copies of 45◦

rotated J1−J2−K1 SS magnetism; that is, one copy on

(M1,M3), with Ising bond order 〈M1 ·M3〉 and another
on (M2,M4), with Ising bond order 〈M2 ·M4〉. These
two copies are then further coupled together by K2. As
in SS, K2 can be derived from order by disorder4,30–33 or
itinerant terms34. We can define Ising bond-order param-
eters for both pairs of sublattices capturing the direction
of the ferromagnetic bonds, however, only the two partic-
ular linear combinations of these order parameters break
well-defined symmetries. The first, which we call ϕ in
analogy with SS nematicity is defined as:

ϕ ∝ 〈M1 ·M3 −M2 ·M4〉. (4)

Like in the SS case, ϕ breaks the C4 rotational symmetry
of the lattice, and couples to the orthorhombic compo-
nent of the uniform strain εxy, which would lead to a uni-
form orthorhombic distortion with short and long NNN
Fe-Fe bonds35,36. ϕ will be nonzero in the DS ground
state. The second order parameter,

ζ ∝ 〈M1 ·M3 + M2 ·M4〉, (5)

preserves the C4 rotation symmetry, but breaks transla-
tion symmetry. ζ is zero in the DS state, but nonzero
in the related plaquette ordered state, which consists of
antiferromagnetically arranged plaquettes of four ferro-
magnetic spins and breaks translation symmetry. Indeed,
the NNN biquadratic exchange, K2 favors collinear align-
ment of the four sublattices, but will not distinguish be-
tween DS (ϕ) and plaquette (ζ) orders. However, NNN
ring-exchange terms (R2) may be added to the Hamilto-
nian to select ϕ, and thus the DS ground state19,37. In
what follows, we will therefore neglect ζ.

While ϕ fixes the relative orientations of the NNN FM
bonds, at this point, the two pairs of sublattices are still
able to rotate freely with respect to one another. A NN
biquadratic exchange K1 will couple these two pairs to-
gether. Again, (M1,M3) and (M2,M4) may be parallel
or antiparallel along either x̂ or ŷ. We introduce two more
Ising bond order parameters to describe this alignment:

ψx ∝ 〈M1 ·M2 −M3 ·M4〉 (6)

ψy ∝ 〈M1 ·M4 −M2 ·M3〉. (7)

ψx and ψ break both diagonal mirror symmetry and
translation symmetry, and couple to the nonuniform,
(π, π) lattice distortions ux/y, which distort the lattice

with alternating short and long NN Fe-Fe bonds35,36.
Moreover, ψx and ψy will generally break the C4 ro-

tational symmetry, and therefore must couple to ϕ. In-
deed, the signs of the three Ising-bond order parameters
are not independent, as shown in Fig. 2, but must sat-
isfy ϕψxψy < 0, implying that ψxψy acts like a field for
ϕ. Therefore, ϕ will always turns on above or simultane-
ous to ψx and ψy. As ψx/y are both associated with K1,
they will turn on simultaneously, and we must consider
ψ± = ψx ± ψy as the true order parameters associated
with well-defined broken symmetries. Assuming that ϕ
is already non-zero, ψ± will both double the unit cell [as
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FIG. 2. (Color online) Representation of the four-fold degenerate ground states and the corresponding order parameters M,
ϕ,ψx and ψy. The FM bonds are indicated with blue and yellow ovals for NN and NNN, respectively. The black dashed line
indicates the diagonal mirror symmetry broken in each state. This figure has been reproduced from Zhang et al, Phys. Rev. B
95, 174402 (2017)19.

(π, π)] and break the diagonal mirror symmetry shown
in Fig 2.

The full magnetic order will break the C4 and mir-
ror symmetries above, but will also quadruple the unit
cell (or double, compared to the ψ± unit cell), and
break the spin-rotational symmetry. It can be described
in momentum space as a superposition of wave-vectors
Q = (±π2 ,±

π
2 ). When DS magnetism melts via ther-

mal fluctuations, it can therefore do so via three dis-
tinct stages: first, melting the magnetism to a state with
nonzero ϕ and ψ±; second, melting ψ± to regain the
translation and mirror symmetries, but not the rotation
symmetry, in a nematic state; and finally, by melting the
nematic state, ϕ to regain the rotation symmetry. In mo-
mentum space, below Tϕ the fluctuations at one pair of
Q grow stronger, thus breaking the rotation symmetry;
while below Tψ± , the fluctuations at different Q’s become
phase correlated. These stages need not be distinct - for
example, in the three-dimensional limit, all three tran-
sitions will be simultaneous and first order. However,
this is not the case for quasi-two-dimensional systems,
leading to rich phase diagrams. In this paper, we de-
velop an effective field theory description based on the
J1 − J2 − J3 −K1 −K2 Heisenberg model, and use it to
explore possible phase diagrams with varying degrees of
localization, relative ratios of the NN/NNN biquadratic
couplings, and dimensionality.

We organize this paper as follows. In section II, we
briefly review the model without magnetism treated in
[19], and develop the effective field theory by deriving
an effective action via Hubbard-Stratonovich transforma-
tions of the quartic spin terms. Then we discuss the con-
ditions for the emergence of magnetic order and obtain a
set of saddle-point equations by minimizing this effective

action with respect to all order parameters in both cases.
In section III, we solve these equations for the Ising-bond
and magnetic order parameters as we vary the dimension-
ality and other parameters, and we conclude in section
IV by discussing the relevance to real materials.

II. EFFECTIVE FIELD-THEORY MODEL

A. Model

In this section, we develop the appropriate effective
field theory describing the DS magnetic state, and any
related Ising bond-orders. We begin with the J1−J2−J3

Heisenberg model, in the regime J3 � J2 � J1 where the
system can be divided into four interpenetrating Néel
sublattices, with order parameters Mi, i = 1, ..., 4 (see
Fig. 2). In the classical ground state of this model, these
sublattices remain decoupled, but they are coupled to-
gether by higher order four-spin couplings. These cou-
plings may originate from order by disorder, magnetoe-
lastic coupling, or simply from the itinerant nature of the
relevant spins. In the spirit of Landau-Ginsburg theory,
we will expand the action to fourth order in the Néel
order parameters, with the most general form:

S [Mi]=

4∑
i,j=1

∫
q

Mi,qχ
−1
ij (q)Mj,−q+

u

2

(
4∑
i=1

M2
i

)2

−
∑

{i 6=j,k 6=l}

∫
r

λij,kl (Mi ·Mj) (Mk ·Ml) , (8)

where M1 = 〈
∑
n∈ sublattice 1(−1)(nx+ny)/2Sn〉 is the

Néel order parameter on sublattice one, and Mi(i =
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2, 3, 4) are similarly defined.
∫
q

=
∫

ddq
(2π)d

, where we keep

the dimension, d arbitrary for now.
While at first sight, there are many biquadratic terms,

we will neglect those with either i = j, k 6= l or i 6= j, k =
l. We will, however, keep the i = j = k = l terms, as
these govern the overall softness of the spins, with u→∞
describing hard, Heisenberg spins. For our purposes, we
consider the terms that satisfy either (i, j) 6= (k, l) or
(i, j) = (k, l). Indeed, these are the biquadratic terms
generated by the coupling to the lattice degrees of free-
dom; while other terms may be nonzero, they will not
affect the physics we are interested in. This reduces the
effective action to

S [Mi] =

4∑
i,j=1

∫
q

Mi,qχ
−1
ij (q)Mj,−q +

u

2

(
4∑
i=1

M2
i

)2

−λ1

[
(M1 ·M2)

2
+(M1 ·M4)

2
+(M2 ·M3)

2
+(M3 ·M4)

2
]

−λ2

[
(M1 ·M3)

2
+ (M2 ·M4)

2
]

−λ3 [(M1 ·M2) (M3 ·M4) + (M1 ·M4) (M2 ·M3)]
−λ4 (M1 ·M3) (M2 ·M4) . (9)

We define the coefficients for NN biquadratic exchange,
λ1 ≡ λ12,12 = λ14,14 = λ23,23 = λ34,34; NNN biquadratic
exchange, λ2 ≡ λ13,13 = λ24,24; NN ring exchange38

λ3 = λ12,34 = λ14,32; and λ4 = λ13,24 involving a “di-
agonal” ring exchange. Motivated by the Ising bond-
order parameters discussed in the previous section, we
may rewrite these quartic terms as squares,

S [Mi] =

4∑
i,j=1

∫
q

Mi,qχ
−1
ij (q)Mj,−q +

u

2

(
4∑
i=1

M2
i

)2

− g1

2
(M1 ·M3−M2 ·M4)

2− g2

2
(M1 ·M3+M2 ·M4)

2

− g3

2

[
(M1 ·M2−M3 ·M4)

2
+(M1 ·M4−M2 ·M3)

2
]

− g4

2

[
(M1 ·M2+M3 ·M4)

2
+(M1 ·M4+M2 ·M3)

2
]
,

(10)

where we have:

g1 =λ2 −
λ4

2
; g2 = λ2 +

λ4

2
.

g3 =λ1 −
λ3

2
; g4 = λ1 +

λ3

2
. (11)

The quartic exchange terms will lead to collinear align-
ments of the four sublattices, assuming positive g’s. We
can treat the possible ground states by fixing M1 and
examining the relative orientations of the three other
sublattices, which we label with +/−. In total there
are eight possible configurations, which can be split into
those with an odd number of +’s and those with an even
number: {(+−−−), (+−++), (++−+), (+++−)} and
{(+ + ++), (+ + −−), (+ − −+), (+ − +−)}. The first
four correspond to the four degenerate ground states of
double-stripe order (see Fig. 2), and the last four to the

four degenerate ground states of plaquette order. The
energies of these two orders are

F{+−−−} = −2g1 − 4g3 + 8u

F{++++} = −2g2 − 4g4 + 8u (12)

Therefore, if g1 + 2g3 > g2 + 2g4, the DS configuration
will be the ground state. We can therefore ignore the
quartic terms g2 and g4, which correspond to plaquette
order and we finally arrive at:

S [Mi] =

4∑
i,j=1

∫
q

Mi,qχ
−1
ij (q)Mj,−q +

u

2

(
4∑
i=1

M2
i

)2

−g1

2
(M1 ·M3 −M2 ·M4)

2

−g3

2
[(M1 ·M2 −M3 ·M4)2

+(M1 ·M4 −M2 ·M3)2]. (13)

In order to examine the possible Ising bond-orders,
we will decouple all four quartic terms via Hubbard-
Stratonovich transformations, introducing the following
scalar fields:

ϕ =g1 (〈M1 ·M3〉 − 〈M2 ·M4〉)
ψx =g3 (〈M1 ·M2〉 − 〈M3 ·M4〉)
ψy =g3 (〈M1 ·M4〉 − 〈M2 ·M3〉)

η =u

4∑
i=1

〈M2
i 〉. (14)

Since u
2 (
∑4
i=1 M

2
i )

2 has the form of a repulsive interac-
tion, when we do the path integral over η, it is done along
the imaginary rather than the real axis and η acquires a
real expectation value that maximizes the effective ac-
tion, rather than minimizing it as ϕ and ψ do. The re-
sulting effective action then becomes:

Seff [Mi, ψx, ψy, ϕ, η] =

4∑
i,j=1

∫
q

Mi,qχ
−1
ij (q)Mj,−q

−ϕ (M1 ·M3 −M2 ·M4)

−ψx (M1 ·M2 −M3 ·M4)
−ψy (M1 ·M4 −M2 ·M3)

+η

4∑
i=1

M2
i +

ϕ2

2g1
+
ψ2
x

2g3
+
ψ2
y

2g3
− η2

2u
. (15)

We can now interpret these fields: the magnitude of η is
the strength of the uniform magnetic fluctuations; ϕ is
the NNN Ising bond-order that breaks the C4 rotational
symmetry, and couples to the uniform orthorhombic dis-
tortion ∂xuy + ∂yux; ψx/y are the NN Ising bond-orders
along the x- and y- directions that give rise to staggered
FM/AFM bonds, and couple to the non-uniform distor-
tions, ux/yei(π,π)·Rj . Thus, we have three Ising bond-
order parameters: ϕ,ψx and ψy. Because the ground
state is four-fold degenerate, they cannot be indepen-
dent. Indeed, by inspection of the possible ground states
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and the values of corresponding order parameters (shown
in Fig. 2), one can see that if ϕ > 0, then ψxψy < 0,
whereas if ϕ < 0, ψxψy > 0. That is, the three bond-
order parameters must satisfy ϕψxψy < 0.

In order to proceed, we will need the correct quadratic
terms for DS magnetism. While we will ultimately
work with the real space definition of the four sublat-
tices used above, the quadratic term is best derived us-
ing the momentum space definition of the four sublat-
tices, ∆α

35, where ∆α is the magnetic order parameter
at the four Qα’s: Q1 = (π/2, π/2), Q2 = (π/2,−π/2),
Q3 = (−π/2, π/2) and Q4 = −(π/2, π/2). The inverse
susceptibility, χ−1

α (q) = r0 + fα(q), which is diagonal
in α, consists of a q-independent mean-field component,
r0 = b(T − T0) (b > 0), and a q−dependent part coming
from spatial fluctuations of the four sublattice order pa-
rameters, fα(q) = Jα(q). We shall expand Jα(q) in δq,
for q = Qα+δq. For conciseness, in the next expression,
we write Qα = (η1π/2, η2π/2) (η1,2 = ±1), and we find

Jα(q) = 2J1(cos qxa+ cos qya) + 4J2 cos qxa cos qya
+2J3(cos 2qxa+ cos 2qya)

= −2J1(η1δqx + η2δqy) + 4η1η2J2δqxδqy
+4J3(δq2

x + δq2
y)− 4J3 +O(δq3) (16)

where a is the lattice constant, which we set to unity in
what follows.

We can see that fluctuations about the Qα cost energy
via J2 and J3, as expected, while J1 drives the system
away from these states (towards a spiral state, as it turns
out)29. In the following, we set J1 = 0. So now we have
the quadratic susceptibility term as ∆∗αχ

−1
α (q)∆α. We

can convert this term to Mi’s using the matrix:M1

M2

M3

M4

=O−1

∆1

∆2

∆3

∆4

, O−1 =

 1 1 1 1
i i −i −i
−1 1 1 −1
i −i i −i

.(17)

The constraint that the Mi’s must be real imposes that
∆1 = ∆∗4 and ∆2 = ∆∗3.

Using the transformation χ−1
ij (q) = O†iαχ−1

α (q)Oαj ,
the susceptibility becomes,

χ−1
ij (q)=

 J3δq
2+r0 0 −J2δqxδqy 0
0 J3δq

2+r0 0 J2δqxδqy
−J2δqxδqy 0 J3δq

2+r0 0
0 J2δqxδqy 0 J3δq

2+r0

.
(18)

For simplicity, we have rescaled r0/2→ r0, absorbed the
−J3 into r0, and defined δq2 = δq2

x + δq2
y.

It is illuminating to examine our bond-order param-
eters in terms of the momentum space sublattice order
parameters, where all the bond-order parameters defined
in eq. (14) become

ϕ ∝ ∆2∆3 −∆1∆4

ψx ∝ i(∆2
1 + ∆2

2 −∆2
3 −∆2

4)

ψy ∝ i(∆2
1 −∆2

2 + ∆2
3 −∆2

4)

η ∝ ∆2∆3 + ∆1∆4. (19)

An analysis of the Qα associated with each ∆α reveals
that ϕ and η carry zero total momentum, while ψx and
ψy carry a (π, π) momentum transfer, in agreement with
Paul et al. 35 , and consistent with the translation sym-
metries identified above.

As a final note in this section, even though we ignore
the g2 and g4 terms in the effective action Seff [Mi], in
order to focus on only the DS order, this model could
equally well treat the complementary order parameters,
with ϕ, ψx and ψy replaced with the plaquette bond-
order parameter, 〈ζ〉 = g2 (〈M1 ·M3〉+ 〈M2 ·M4〉). As
the plaquette order breaks only translation symmetry, ζ
is the only relevant Ising bond-order parameter.

We shall now proceed to minimize the effective action
to obtain the behavior of ϕ,ψx, ψy and M as functions
of temperature and g1, g3 and u. We must consider two
separate cases: first, when magnetic order is absent we
can integrate out the Mi’s and obtain saddle point equa-
tions by minimizing the action with respect to ϕ,ψx, ψy
and η; second, when magnetic order is present, we will
need to carefully integrate out the magnetic fluctuations
only, again yielding a set of saddle point equations. We
treat these two cases separately in the following sections.

B. Saddle-point equations in the absence of
magnetic order

We first examine how the Ising bond-orders develop
above magnetic order, where 〈Mi〉 = 0; this section was
treated in reference19. This regime will be valid at all
temperatures for two dimensions, where the magnetic or-
der is suppressed due to the Mermin-Wagner theorem,
and possibly for a finite range of temperatures in higher
dimensions. In the next section, we will reincorporate M
into the effective action to find the magnetic transition.

We consider the large-N limit39 where the number of
components of Mi is extended from N = 3 to N = ∞.
In this limit, the saddle point approximation becomes
exact, and we will use it to find self-consistent equations
for these parameters and solve them. After integrating
out the Mi’s, we obtain the effective action

Seff [ψx, ψy, ϕ, η] =
T

2

∑
q

log
[
detG−1

]
+
ϕ2

2g1
+
ψ2
x

2g3
+
ψ2
y

2g3
− η2

2u
, (20)

with G−1
ij (q), the inverse Green’s function for the Mi’s,

given by:[
(r + J3δq

2)I− ψx

2 σ1 − iψy

2 σ2−(J2δqxδqy+ ϕ
2 )σ3

iψy

2 σ2−(J2δqxδqy+ ϕ
2 )σ3 (r + J3δq

2)I + ψx

2 σ1

]
,

(21)

where r ≡ r0 + η. For compactness, we have used
Pauli matrices to write this 4×4 matrix as a 2×2
matrix. As before, the matrix acts on the space of
(M1,M2,M3,M4).
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The determinant of the inverse Green’s function is:

detG−1 =
1

16

(
2J̃2 + 2J̃3 + 2r + ϕ− ψx − ψy

)
×
(

2J̃2 − 2J̃3 − 2r + ϕ+ ψx − ψy
)

×
(

2J̃2 − 2J̃3 − 2r + ϕ− ψx + ψy

)
×
(

2J̃2 + 2J̃3 + 2r + ϕ+ ψx + ψy

)
=
(
J̃2 − J̃3 − r

)2 (
J̃2 + J̃3 + r

)2

+2J̃2

(
J̃2 − J̃3 − r

)(
J̃2 + J̃3 + r

)
ϕ

+
1

2

(
3J̃2

2 − (J̃3 + r)2
)
ϕ2 +

J̃2

2
ϕ3 +

ϕ4

16

−1

2

(
J̃2

2 + (J̃3 + r)2
) (
ψ2
x + ψ2

y

)
+2J̃2(J̃3 + r)ψxψy +

1

16

(
ψ2
x − ψ2

y

)2
+(J̃3 + r)ϕψxψy +

J̃2

2
ϕ
(
ψ2
x + ψ2

y

)
−1

8
ϕ2
(
ψ2
x + ψ2

y

)
, (22)

where we have introduced J̃3 = J3δq
2 and J̃2 = J2δqxδqy,

for conciseness. If we do a Landau expansion, we expand
log detG−1 by assuming that everything involving ϕ, ψx
and ψy is small in comparison to the first term. By doing
so, we get a new Landau theory in terms of ϕ and ψx/y.

The
∑

q J̃
2n+1
2 type terms will vanish once the integral

over q is done. So the linear and cubic ϕ terms vanish, as
do the ϕ(ψ2

x + ψ2
y) and ψxψy term. However, the ϕψxψy

term is really there, as expected. As ψxψy acts like an
external field for φ, either ϕ turns on first, or ψx, ψy and
ϕ must all turn on at the same time.

It is convenient to rewrite the action as:

Seff [ψx, ψy, ϕ, η] =
ϕ2

2g1
+
ψ2
x

2g3
+
ψ2
y

2g3
− η2

2u

+
T

2

∑
q

log
(
J3q

2 + J2qxqy + r + ϕ− ψx − ψy
)

+
T

2

∑
q

log
(
J3q

2 − J2qxqy + r − ϕ− ψx + ψy
)

+
T

2

∑
q

log
(
J3q

2 − J2qxqy + r − ϕ+ ψx − ψy
)

+
T

2

∑
q

log
(
J3q

2 + J2qxqy + r + ϕ+ ψx + ψy
)
, (23)

where we have renormalized (ϕ,ψx, ψy) → 2 (ϕ,ψx, ψy)
and gi → 4gi for convenience.

The next step is to minimize the effective action by
taking the derivative of Seff [ψx, ψy, ϕ, η] with respect to
ψx, ψy, ϕ and η, setting these to zero. The saddle point

equations ∂Seff [xi]
∂xi

= 0(xi = η, ϕ, ψx and ψy) become:

η =
Tu

2

∑
q

[I1 (q) + I2 (q) + I3 (q) + I4 (q)]

ϕ =
Tg1

2

∑
q

[−I1 (q) + I2 (q) + I3 (q)− I4 (q)]

ψx =
Tg3

2

∑
q

[I1 (q) + I2 (q)− I3 (q)− I4 (q)]

ψy =
Tg3

2

∑
q

[I1 (q)− I2 (q) + I3 (q)− I4 (q)] , (24)

where we introduce four convenient integrands Il(q)(l =
1, 2, 3, 4). We rotate the coordinate system in the q
space by 45◦ to define the effective coupling constant

J ≡
√
J2

3 −
J2
2

4 , which allows us to rewrite Il(q) in the

convenient form:

I1 (q) =
1

Jq2 + r + ϕ− ψx − ψy

I2 (q) =
1

Jq2 + r − ϕ− ψx + ψy

I3 (q) =
1

Jq2 + r − ϕ+ ψx − ψy

I4 (q) =
1

Jq2 + r + ϕ+ ψx + ψy
. (25)

To proceed further, we will need to fix the dimension.
While the real materials are quasi-two-dimensional, with
an interlayer coupling, Jz, for ease of calculation, we will
mimic this varying Jz by working in an effective fractional
dimension 2 6 d 6 3. The integrals of Il(q) diverge
for 2 < d 6 3, which we may treat by subtracting and
adding the counter-term 1

Jq2 from each Il(q). This term

absorbs all the ultra-violet divergences and is infra-red
convergent for d > 2. The two dimensional case will be
treated separately. The integrands will then be replaced
by,

1

J
Ĩl (q) ≡ Il (q)− 1

Jq2
, (26)

where we have introduced the dimensionless integrands

Ĩl(q) = − al/J
q2(q2+al/J) , with the divergent term kept track

of separately. al(l = 1, 2, 3, 4) are the q-independent
parts of the denominators:

a1 = r + ϕ− ψx − ψy; a2 = r − ϕ− ψx + ψy;

a3 = r − ϕ+ ψx − ψy; a4 = r + ϕ+ ψx + ψy. (27)

The divergent term will cancel out of the last three
equations in (24), allowing us to simply replace Il(q) →
1
J Ĩl (q). However, the first equation becomes

η =
Tu

2J

∑
q,l

Ĩl (q) +
2Tu

J

∑
q

1

q2
. (28)



7

We can absorb the second, UV divergent term into the
effective mass,

r = r0 + η = r̄0 +
Tu

2J

∑
q,l

Ĩl (q) , (29)

where r̄0 = r0 + 2Tu
J

∑
q

1
q2 . r̄0 absorbs the ultra-violet

divergence. In real materials, this divergence will be cut-
off by some higher energy scale, however the microscopic
details are irrelevant here, and we will work with r̄0 as
the rescaled temperature.

In the spirit of Landau theory, we now approximate T
with T0 everywhere, except in r0 ∝ T−T0. We may make
all quantities dimensionless by rescaling T0

2J2 (u, g1, g3)→
(u, g1, g3) and 1

J (r, r̄0, ϕ, ψx, ψy, η)→ (r, r̄0, ϕ, ψx, ψy, η).

With this rescaling, Ĩl(q) becomes

Ĩl(q) = − al
q2(q2 + al)

. (30)

Note, throughout this calculation we will try to keep
the equations simple by rescaling variables as above; the
reader should remember that none of these quantities
should be compared directly to experimental values; the
physics is contained in the nature and order of transi-
tions.

Finally, we obtain the saddle-point equations:

r = r̄0 + u
∑
q

[
Ĩ1 (q) + Ĩ2 (q) + Ĩ3 (q) + Ĩ4 (q)

]
ϕ = g1

∑
q

[
−Ĩ1 (q) + Ĩ2 (q) + Ĩ3 (q)− Ĩ4 (q)

]
ψx = g3

∑
q

[
Ĩ1 (q) + Ĩ2 (q)− Ĩ3 (q)− Ĩ4 (q)

]
ψy = g3

∑
q

[
Ĩ1 (q)− Ĩ2 (q) + Ĩ3 (q)− Ĩ4 (q)

]
. (31)

It is now straightforward to evaluate the momentum
integrals for fractional dimensions,∑

q

Ĩl (q) = −
∫

ddq

(2π)
d

al
q2 (q2 + al)

= −

[
Sd

(2π)
d

∫ ∞
0

dx
xd−3

x2 + 1

]
a

d−2
2

l , (32)

where al represents the q independent part of the denom-

inator, and Sd =
∫
dΩq = 2πd/2

Γ(d/2) is the surface area of a

d−dimensional sphere with unit radius.
Since the prefactor converges for 2 < d < 4, we absorb

it too, into the g’s and u, in order to obtain a set of

simple algebraic equations:

r̄0 − r
u

= (r + ϕ− ψx − ψy)
d−2
2 + (r − ϕ− ψx + ψy)

d−2
2

+ (r − ϕ+ ψx − ψy)
d−2
2 + (r + ϕ+ ψx + ψy)

d−2
2

ϕ

g1
= (r + ϕ− ψx − ψy)

d−2
2 − (r − ϕ− ψx + ψy)

d−2
2

− (r − ϕ+ ψx − ψy)
d−2
2 + (r + ϕ+ ψx + ψy)

d−2
2

ψx
g3

= − (r + ϕ− ψx − ψy)
d−2
2 − (r − ϕ− ψx + ψy)

d−2
2

+ (r − ϕ+ ψx − ψy)
d−2
2 + (r + ϕ+ ψx + ψy)

d−2
2

ψy
g3

= − (r + ϕ− ψx − ψy)
d−2
2 + (r − ϕ− ψx + ψy)

d−2
2

− (r − ϕ+ ψx − ψy)
d−2
2 + (r + ϕ+ ψx + ψy)

d−2
2 .

(33)

These equations define how the parameters η (now hid-
den within r), ϕ, ψx, and ψy depend on the control pa-
rameter r0 ∝ T − T0. We can then solve these as a
function of r0 to find the transition temperatures for the
various bond-orders. The magnetic transition takes place
when the mass of the renormalized magnetic action van-
ishes, i.e. when:

r = −ϕ± (ψx + ψy) or r = ϕ± (ψx − ψy) . (34)

We can use this criterion to resolve the location of the
magnetic transition, but resolving the order of the tran-
sition will require the more involved calculations of the
next section.

As discussed previously, ψx and ψy enter in the same
fashion, governed by the same g3, and we expect them
to develop the same magnitude |ψx| = |ψy| at the same
temperature. In fact, the correct pair of order parameters
ψ± = ψx ± ψy are the only legitimate order parameters
breaking well-defined symmetries. |ψx| = |ψy| implies
that only one of ψ± can be nonzero. In terms of ψ+ and
ψ−, the constraint ϕψxψy < 0 becomes ϕ(ψ2

+−ψ2
−) < 0.

So the nonzero order parameter is selected by the sign
of ϕ. That is, for ϕ < 0, ψ+ can be nonzero with the
converse true for ϕ > 0.

Replacing ψx and ψy with ψ±, we decouple the last
two saddle-point equations,

r̄0 − r
u

= (r + ϕ− ψ+)
d−2
2 + (r − ϕ− ψ−)

d−2
2

+ (r − ϕ+ ψ−)
d−2
2 + (r + ϕ+ ψ+)

d−2
2

ϕ

g1
= (r + ϕ− ψ+)

d−2
2 − (r − ϕ− ψ−)

d−2
2

− (r − ϕ+ ψ−)
d−2
2 + (r + ϕ+ ψ++)

d−2
2

ψ+

2g3
= − (r + ϕ− ψ+)

d−2
2 + (r + ϕ+ ψ+)

d−2
2

ψ−
2g3

= − (r − ϕ− ψ−)
d−2
2 + (r − ϕ+ ψ−)

d−2
2 . (35)
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Up to the sign of ϕ, the two cases ψ+ 6= 0, ψ− = 0
(DS order in y = x direction) or ψ+ = 0, ψ− 6= 0 (DS
order in y = −x direction) give equivalent sets of saddle-
point equations. We will adopt the former(ψ+ 6= 0) and
further define ψ+ ≡ ψ in order to simplify the notation.
The remaining three saddle-point equations become

r̄0 − r
u

= (r + ϕ− ψ)
d−2
2 + (r + ϕ+ ψ)

d−2
2 + 2 (r − ϕ)

d−2
2

ϕ

g1
= (r + ϕ− ψ)

d−2
2 + (r + ϕ+ ψ)

d−2
2 − 2 (r − ϕ)

d−2
2

ψ

2g3
= − (r + ϕ− ψ)

d−2
2 + (r + ϕ+ ψ)

d−2
2 . (36)

In this case, ϕ < 0 while ψ can be either sign. However,
eqs. (36) are invariant under ψ → −ψ, and so all the
physics will be independent of the sign of ψ. From Fig.
2, it can be seen that the DS order for ψ > 0 is just the
mirror of that with ψ < 0 along the y = x direction.
Or equivalently, one can shift the DS ground state with
ψ > 0 by one lattice constant along either the x or y
direction to obtain the DS ground state with ψ < 0. So
it is sufficient to take ψ > 0, which corresponds to the
ground state (+ +−+) once M condenses.

C. Saddle-point equations in the presence of
magnetic order

In dimensions greater than two, magnetic order will
always develop at sufficiently low temperatures, and in
this case, we must use the saddle-point equations with
the magnetic order included to determine the order of the
magnetic transition. We begin with the effective action in
eq.(15), and replace Mi,q with Mi,q = 〈Mi〉δ(q)+δMi,q.
Here, the magnetic order parameters, 〈Mi〉 are collinear,
and all have the same magnitude, M . We keep 〈Mi〉,
but integrate out the fluctuations about magnetic order,
δMi. The resulting effective action is:

Seff [〈Mi〉, ψx, ψy, ϕ, η] = Seff [ψx, ψy, ϕ, η]

+ (r − |ϕ| − |ψx| − |ψy|)M2 (37)

where we have rescaled (ϕ,ψx, ψy) → 2(ϕ,ψx, ψy), gi →
4gi and M →M/(2

√
2).

The differentiation of the effective action over η, φ, ψx,
ψy and M gives the five coupled equations.

η=
Tu

2

∑
q

[I1 (q)+I2 (q)+I3 (q)+I4 (q)]+uM2

ϕ=
Tg1

2

∑
q

[−I1 (q)+I2 (q)+I3 (q)−I4 (q)]−g1M
2

ψx=
Tg3

2

∑
q

[I1 (q)+I2 (q)−I3 (q)−I4 (q)]+g3M
2

ψy=
Tg3

2

∑
q

[I1 (q)−I2 (q)+I3 (q)−I4 (q)]+g3M
2

(r − |ϕ| − |ψx| − |ψy|)M = 0. (38)

For d > 2, we again subtract 1
Jq2 from each Il(q). For

the choice of ϕ 6 0, ψ > 0 (corresponding to the ground
state (+ +−+)), these equations become:

r̄0 − r
u

= (r + ϕ− ψ)
d−2
2 + (r + ϕ+ ψ)

d−2
2

+ 2 (r − ϕ)
d−2
2 −M2

ϕ

g1
= (r + ϕ− ψ)

d−2
2 + (r + ϕ+ ψ)

d−2
2

− 2 (r − ϕ)
d−2
2 −M2

ψ

2g3
= − (r + ϕ− ψ)

d−2
2 + (r + ϕ+ ψ)

d−2
2 +M2

(r − |ϕ| − |ψx| − |ψy|)M = 0. (39)

where we have further rescaled T0

2J2 (u, g1, g3) →
(u, g1, g3), 1

J (r, r̄0, ϕ, ψ, η) → (r, r̄0, ϕ, ψ, η) as before,

and also M →
√

T0

2JM . This rescaled M is dimensionless.

The last equation in (38) is particularly simple: with
M nonzero, the only solution is r = |ϕ|+ |ψ| = −ϕ+ ψ,
which is the condition for the onset of magnetic order
obtained in the previous section.

Without Ising-bond order, the “bare” magnetic transi-
tion occurs at r = 0. If ϕ turns on first (without ψ), the
magnetic transition will occur at a larger r = |ϕ| > 0. If
both ϕ and ψ turn on above magnetic order, the transi-
tion will be still higher, r = |ϕ|+|ψ| > 0. Remember that
r increases linearly with the temperature. Thus, both
Ising-bond orders increase the temperature at which the
magnetic order appears. The coexistence of Ising-bond
and magnetic order enhances the magnetic ordering tem-
perature; this stabilization of the magnetic order via Ising
bond-order has been seen, for example, in Fe1+yTe40, and
will be enhanced if the bond order is further stabilized
via coupling to the lattice35,41.

III. RESULTS

In this section, we solve the saddle point equations
and present the resulting phase diagrams. In general,
as temperature is lowered, NNN bond order (ϕ) appears
first, breaking the C4 rotational symmetry, followed by
NN bond-order (ψ), breaking the translation and mir-
ror symmetries of the lattice, followed by magnetic order
that breaks spin-rotational symmetry. The ordering of
these transitions is fixed by their respective symmetries,
however, the nature and spacing of these transitions can
vary widely, from three distinct second order transitions
to one simultaneous first order transition. Our action, eq.
(13) contains three tuning parameters: u, which governs
the overall scale of the magnetic fluctuations; g1, which
favors ϕ; and g3, which favors ψ. We combine these three
dimension-full parameters into two dimensionless param-
eters, α ≡ u/g1 and β ≡ g3/g1, where roughly speaking
decreasing α favors ϕ bond-order and increasing β favors
ψ bond-order. Note that for our model to make sense,
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u > g1 and so α > 1. As ϕ turns on automatically once
ψ turns on, we generally restrict our analysis to the more
interesting region of g3 < g1, or β < 1.

We can tune the inter-layer coupling strength by
changing the fractional dimensionality, d. If β = 0, our
model becomes two copies of single-stripe magnetism,
and we recover all the results of Fernandes et al. 39 ; we
reproduce some of these results here in order to illus-
trate our solution techniques. For nonzero β, the result-
ing phase diagrams become much richer. We will first
present our results for the two limiting cases: 2D and
3D, and then examine the intermediate dimensionalities
2 < d < 3. For each case, we examine the transitions into
each phase as a function of r0, which acts as temperature,
and show how the behavior evolves in the (α, β) plane.

A. Two dimensions

Two dimensions is special, as the magnetic order is
completely suppressed at any finite temperature due to
strong thermal fluctuations. In addition, the ultra-violet
divergence in Il(q) cannot be removed by 1

Jq2 subtraction

in 2D, so we evaluate the momentum integrals in eq.(24)
directly:∑

q

Il(q) =

∫
d2q

(2π)2

1

J(q2 + al/J)

=
1

4πJ
[ln(Λ2 + al/J)− ln(al/J)]

≈ 1

4πJ
[2 ln Λ− ln(al/J)], (40)

where we have introduced an explicit momentum cut-
off, Λ. The approximation in the third line is valid
when al is small compared to Λ. We can then substi-
tute these results into eq.(24), rescale T

2J2 (u, g1, g3) →
(u, g1, g3), 1

J (r, ϕ, ψx, ψy, η) → (r, ϕ, ψx, ψy, η) as before,
and absorb the prefactor of the integration 1/(4π) in the
temperature T0, in order to obtain a new set of saddle-
point equations:

r̄0 − r
u

= ln(r + ϕ− ψ) + ln(r + ϕ+ ψ) + 2 ln(r − ϕ)

ϕ

g1
= ln(r + ϕ− ψ) + ln(r + ϕ+ ψ)− 2 ln(r − ϕ)

ψ

2g3
= − ln(r + ϕ− ψ) + ln(r + ϕ+ ψ), (41)

where we introduce r̄0 = r0 + 8u ln Λ, and r = r0 + η,
as before. Note that we can already see the absence of
magnetic order here, as in the absence of bond-orders,
magnetic order emerges when r = 0. In this limit, the
first equation becomes r = r0 − 4u ln r, where the right
hand side diverges as r → 0, implying that r can never
reach zero, and thus the system cannot order.

In solving these equations, we first consider the simpler
limit g3 = 0, in which ψ = 0, and the equations reduce

to those in Fernandes et al. 39 . For completeness, we
reproduce those results here. The saddle point equations
in (41) simplify into two equations:

r =r̄0 − 2u ln(r2 − ϕ2)

r =ϕ coth
( ϕ

4g1

)
. (42)

We can introduce ϕ∗ ≡ ϕ/(4g1) to eliminate r and sim-
plify to a single equation,

ϕ∗ cothϕ∗ + α ln
( ϕ∗

sinhϕ∗

)
= ¯̄r0 (43)

where we introduce ¯̄r0 ≡ r̄0/(4g1) − α ln(4g1) and α ≡
u/g1.

Recall that ¯̄r0 decreases with decreasing temperature,
just as r0 does. The leading instability of the system with
decreasing temperature can be found from the maximum
of the left hand side of (43), where the value of ϕ∗ at the
transition will be the location of the maximum. When
the maximum occurs at ϕ∗ = 0, as it does for sufficiently
large α, the transition is second order. For smaller α,
the maximum occurs at a finite ϕ∗ and the transition is
first order. By investigating the slope of the ¯̄r0 vs ϕ∗ plot
at ϕ∗ = 0, we find that there is a critical value of α, i.e.
αϕ = 2, beyond which the ϕ transition changes from first
to second order, as shown in Fig. 3(a).

According to the discussion in Sec. II C, magnetic or-
der will occur if r = |ϕ|. However, the second equation
in eqs.(42) implies that r can only reach −ϕ as −ϕ→∞,
and therefore magnetic order will not occur even in the
presence of a preemptive nematic transition.

For finite g3, we now consider the ψ transition. As ψ
acts as a field for ϕ, ϕ will either already be nonzero,
governed by the equations above, or will turn on with
ψ. In either case, it is necessary and sufficient to explore
the transitions of ψ. By eliminating r, eqs.(41) now yields
two equations instead of one.

¯̄r0 =α ln(βψ∗ cschψ∗) + βψ∗ cothψ∗ − (α+ 1)ϕ∗

β =
2ϕ∗

ψ∗[cothψ∗ − cschψ∗exp(−2ϕ∗)]
(44)

where we have defined β ≡ g3/g1, rescaled ψ∗ ≡ ψ
4g3

and

ϕ∗ and ¯̄r0 are defined as above.
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FIG. 3. (Color online) Here we show the first and second
order transitions for ϕ and ψ. In (a), g3 = 0, and ψ = 0. We
plot ¯̄r0 as a function of the Ising-bond order ϕ∗ = ϕ/(4g1)
in 2D for two representative values of α ≡ u/g1 in the region
1 < α < αϕ(green dashed) and α > αϕ(red solid) where
αϕ = 2. For 1 < α < αϕ, the ϕ transition is first order, as ¯̄r0

is maximized at a finite ϕ∗. For α > αϕ, the ϕ transition is
second order as ¯̄r0 is maximized at ϕ∗ = 0. In (b), we show
the g3 > 0 results for the ψ transition. We plot the rescaled
¯̄r0 as a function of ψ∗ = ψ/(4g3) in 2D for β ≡ g3/g1 = 0.1
and for two representative values of α in the region 1 < α <
αψ(green dashed) and α > αψ(red solid) where αψ = 3.3.
These describe first and second order transitions of ψ.

To examine the nature of the ψ transition, we need
to find ¯̄r0 as a function of ψ∗. To do so, we first solve
ϕ∗ from the second equation in (44) for ψ∗. Then we
substitute it into the first equation in (44). For simplicity,
¯̄r0 is rescaled to ¯̄r0res ≡ ¯̄r0(ψ∗)/¯̄r0(0)− 1 and plotted as
a function of ψ∗ in Fig. 3(b) for two representative α’s.
Again, the transition will occur at the ψ∗ that maximizes
¯̄r0res, and will be second order if that ψ∗ is zero, and first
order otherwise.

For any given β, the maximum of ¯̄r0res approaches
infinity as α→ 1, meaning that α = 1 is unphysical. As
α increases, the maximum of ¯̄r0res moves towards smaller
ψ∗. There is a critical value αψ(β) separating the first
and second order transition of ψ. For 1 < α < αψ, the
maximum of ¯̄r0res is at a finite ψ∗, which means ψ∗ turns
on discontinuously. For α > αψ, the maximum of ¯̄r0res

is at ψ∗ = 0, which implies a second order transition.
As before, the absence of the magnetic order can be

verified by checking that r can never reach −ϕ+ψ. From

the last equation in (41), we find r+ ϕ = ψ coth
(
ψ

4g3

)
>

ψ, which means r > −ϕ + ψ. So again there is no mag-
netic order.

Regarding the first order transition of ψ, the actual
¯̄rcr0 at which the first order ψ∗ occurs is actually slighter
lower than ¯̄rmax0 . The reason is that the effective action
Seff develops a local minimum at ψ∗ = 0. We have found
where the local minimum develops at ¯̄r0 = ¯̄rmax0 , ψ∗ =
ψ∗cr. However, for this local minimum to be the global
minimum, the condition Seff(ψ∗cr) 6 Seff(ψ∗ = 0) must
be satisfied. So we must evaluate the effective action at
both local minima ψ∗ = 0 and ψ∗ = ψ∗cr, and find the
actual ¯̄rcr0 at which Seff(ψ∗cr) = Seff(ψ∗ = 0). In Fig. 4,
we present the phase diagram of ψ in the (α, r̄0) plane
with both the actual r̄cr0 and r̄max0 plotted. Clearly, the
difference between r̄cr0 and r̄max0 is negligible. In the rest
of paper, we neglect this difference and approximate r̄cr0
with r̄max0 . The same argument applies to the first order
transition of ϕ and the actual r̄cr0 as a function of α is
presented in Fig. 5 by Fernandes et al. 39 , and is also
negligible. Again, we neglect this difference in the rest of
the paper.

FIG. 4. The phase diagram of ψ in the (α, r̄0) plane for d = 2
and β = 0.1. The upper spinodal (blue line) shows r̄max0 with
the lower one (dot-dashed orange line) showing r̄cr0 , which is
the actual first order transition line where the global minimum
of the effective action shifts from ψ = 0 to a finite ψ.

Now we can combine the ϕ and ψ results to present
the phase diagram in r̄0 and α for two representative β’s,
shown in Fig. 5. There are several characteristic regions
of behavior classified by the nature and splitting of the
two transitions, Tϕ and Tψ.

We find that for any given β, the two transition lines
will intersect at α = αs: for α < αs, ϕ and ψ turn
on simultaneously, while for α > αs, the two transitions
split. In total, there are three critical values of α that
separate four possible regions of transitions: αs, and αϕ
and αψ which mark the change from first to second order
transitions of ϕ and ψ, respectively. Depending on the
relative magnitude of αs and αϕ, there are two possible
phase diagram topologies. For αs < αϕ, typically there
are four phase regions as shown in Fig. 5(a). While for
αs > αϕ, there are three possible phase regions as shown
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FIG. 5. (Color online) Two example phase diagrams of the on-
set of ϕ(red) and ψ(blue) with r̄0 plotted versus α for two val-
ues of β. Since r̄0 is linear in T , it can be thought of as a proxy
for the transition temperature. α = u/g1 tunes the relative
strength of uniform fluctuation and NNN biquadratic cou-
pling, while β = g3/g1 tunes the relative strength of the NN
and NNN biquadratic couplings. Tϕ(red) indicates rotational
symmetry breaking (ϕ), while Tψ(blue) indicates dimerization
(ψ), which breaks the diagonal mirror mirror symmetry. Solid
lines indicate second order transitions; dashed lines indicate
first order transitions; and the double-dashed line indicates
simultaneous first order transitions. The three critical values
of α are indicated with vertical black lines: αϕ with a solid
line, αψ with a dotted line and αs with a dashed line. In
part (a) αs=2.12 and αψ = 3.3; in part (b) αs = 1.8, αϕ = 2
and αψ = 2.18. Different regions of behavior are labeled with
Roman numerals, and their extent in α and β is indicated in
Fig 6.

in Fig. 5(b).
αϕ is independent of β, but both αψ and αs vary with

β. We present all three values in a “phase diagram” in the
(α, β) plane in Fig. 6. Both αψ and αs increase mono-
tonically with β, and both approach 1 as β → 0, and ∞
as β → βψ = 0.26 and βs = 0.48 respectively. There are
five regions of behavior. Utilizing the short-hand nota-
tion TOi to stand for the i-th(i = 1, 2) order transition
temperature of the order parameter O(= ϕ,ψ), the five
regions are, I: Tϕ1 = Tψ1, meaning simultaneous first
order transitions for ϕ and ψ; II: Tϕ2 > Tψ1, meaning
a second order transition for ϕ followed by a first order

FIG. 6. The five regions of behavior in the (α, β) plane. I:
Tϕ1 = Tψ1; II: Tϕ2 > Tψ1; III: Tϕ2 > Tψ2; IV: Tϕ1 > Tψ1;
V:Tϕ1 > Tψ2. TOi stands for the i-th(i = 1, 2) order tran-
sition temperature of the order parameter O(= ϕ,ψ). The
asymptotic value of β as αψ(dotted) and αs(dashed) ap-
proaching infinity is βψ = 0.26 and βs = 0.48 respectively.
The vertical solid line strands for αϕ = 2. It intercepts with
αψ and αs at βϕψ = 0.04 and βϕs = 0.08 respectively. Note
that αs and αψ stop at α = 1 since the effective action Seff is
unbounded below for α < 1.

FIG. 7. (Color online) The onset of ϕ (red) and ψ (blue)
as functions of −∆r̄0, for α in the three different regions for
β = 0.1, d = 2 as shown in Fig. 5(a). Black dashed lines
indicate where ψ first turns on. In figure (a), α = 1.5 <
αs(region I) (b) αs < α = 2.5 < αψ(region II of the phase
diagram); (c)α = 3.5 > αψ(region III), which shows ψ is
almost first order at α slightly larger than αψ = 3.3; (d)
α = 5 > αψ(region III).

transition for ψ; III: Tϕ2 > Tψ2, meaning distinct sec-
ond order phase transitions for ϕ and ψ; IV: Tϕ1 > Tψ1,
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meaning distinct first order transitions for ϕ and ψ; V:
Tϕ1 > Tψ2, meaning a first order transition for ϕ followed
by a second order transition for ψ.

In Fig. 7, we plot the onset of ϕ∗ and ψ∗ for β = 0.1
and several values of α as functions of r̄0 to illustrate
the generic behavior of these order parameters at the
transitions. We plot −∆r̄0 = r̄0,cr − r̄0 along the x-axis,
where we have shifted r̄0 by the r̄0,cr where ϕ onsets,
and changed the sign so that increasing x corresponds
to decreasing temperature. One point of interest is the
large jump in ϕ∗ as ψ∗ undergoes a first order transition,
as shown in Fig. 7(b). This jump originates from the
linear ϕψ2 coupling that causes ψ2 to act as a field for ϕ.

B. Three dimensions

Next we treat the three-dimensional limit, where we
find no pre-emptive nematic transitions, just a single,
simultaneous first order transition. For d = 3, the saddle-
point equations in eqs.(36) become:

r̄0 − r
u

=
√
r + ϕ− ψ +

√
r + ϕ+ ψ + 2

√
r − ϕ

ϕ

g1
=
√
r + ϕ− ψ +

√
r + ϕ+ ψ − 2

√
r − ϕ

ψ

2g3
= −

√
r + ϕ− ψ +

√
r + ϕ+ ψ. (45)

We follow the same steps as for 2D, solving the above
saddle-point equations for both g3 = 0 and g3 6= 0, and
obtaining the overall phase diagram.

For g3 = 0, ψ = 0, and we only need to solve the saddle
point equations in eqs.(45) for r and ϕ.

r̄0 − r
2u

=
√
r + ϕ+

√
r − ϕ

ϕ

2g1
=
√
r + ϕ−

√
r − ϕ. (46)

We can define z ≡ ϕ/r in order to eliminate r from the
above equations,

r̄0 = 8g2
1

(
α+

1

1 +
√

1− z2

)
. (47)

As before the transition will occur for the z where r̄0 is
maximized. In 3D, this is clearly always at |z| = 1, where
r = −ϕ. As this maximum is at a nonzero ϕ, the transi-
tion is first order, and the condition for magnetic order is
satisfied at the transition, and so the two transitions will
be simultaneous. In order to examine the nature of the
magnetic transition, we return to the saddle-point equa-
tions including M , (38), which simplify for d = 3 and
g3 = 0:

r̄0 − r
u

= 2
√
r + ϕ+ 2

√
r − ϕ−M2

ϕ

g1
= 2
√
r + ϕ− 2

√
r − ϕ−M2

(r + ϕ)M = 0. (48)

From the final equation, we find that either r = −ϕ or
M = 0. Setting r = −ϕ and substituting it into the first
two equations, we obtain:

r̄0 + ϕ

u
= 2
√
−2ϕ−M2

ϕ

g1
= −2

√
−2ϕ−M2. (49)

from which we get the relationship between r̄0 and M ,

r̄0 =g2
1

[
(1− α)

M2

g1
+4(1 + α)

(
1 +

√
1 +

M2

2g1

)]
. (50)

A straight forward calculation shows that M at the max-
imum r̄0, denoted as Mϕ, is generically nonzero.

Mϕ =
2
√

2g1α

α− 1
. (51)

which means the first order nematic instability of ϕ trig-
gers a first order magnetic order transition.

FIG. 8. (Color online) Three dimensional phase diagram for
ϕ,ψ and M , for two different values of β = g3/g1. At β = 0
(dashed pink), ψ of course does not turn on, and we have a
simultaneous first order transition of ϕ and M . At nonzero
β, all three transitions are simultaneous and first order (thick
double-dashed dark green), with increasing β increasing the
transition temperature( r̄0). Inset: all three order parameters
ϕ/10(red), ψ(blue) and M(brown) as a function of −∆r̄0 for
α = 2 and β = 0.1.

Next we turn to the finite g3 problem, where we sim-
ilarly find that the Ising-bond order transition for ψ is
accompanied by a simultaneous magnetic transition at
r = −ϕ + ψ, which means that all three transitions are
simultaneous. For conciseness, we will directly start with
the saddle-point equations includingM , (38), and replace
r = −ϕ+ ψ:

r̄0 − (ψ − ϕ)

u
=
√

2ψ + 2
√
ψ − 2ϕ−M2

ϕ

g1
=
√

2ψ − 2
√
ψ − 2ϕ−M2
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ψ

2g3
=
√

2ψ +M2. (52)

We can solve the third equation for ψ(M),

ψ = 2g2
3

(
1 +

√
1 +

M2

g3

)2

. (53)

Substituting this expression into the second equation, we
find ϕ(M). At last, we substitute both ϕ(M) and ψ(M)
into the first equation to get r̄0(M).

r̄0 = g2
1

[
4(α+ 1)− (α− 2β − 1)

M2

g1

+ 2β(α+ 2β − 1)

(
1 +

√
1 +

M2

g3

)

+4(α+1)

√√√√1+
M2

g1
+

1

2
β(β−1)

(
1+

√
1+

M2

g3

)2]
.(54)

r̄0(M) reaches its maximum value at a finiteMψ, which
turns on at a higher r̄0 than Mϕ for all β 6= 0, implying
that ψ and ϕ transitions are always simultaneous, and
coincident with the magnetic transition. All in all, for
three dimensions, we will have only one single first or-
der transition line in the phase diagram for any given β.
Therefore, there are no preemptive Ising transitions any
more, as in the SS case5–7,9,39,42–48. Representative phase
diagrams in 3D are shown in Fig. 8. As β decreases, the
simultaneous first order transition approaches, but is al-
ways above the simultaneous transition line for β = 0,
indicating that the ψ bond order enhances the transition
temperature beyond that with only ϕ and M , just as ϕ
enhances the transition temperature beyond that of only
M , where M orders at r = −ϕ(+ψ) > 0, while the bare
magnetic order emerges at r = 0. This means that the
emergence of the Ising-bond orders increase the ordering
temperature of M . Therefore, even though all the tran-
sitions are simultaneous and first order, the Ising-bond
order transitions are primary, and the magnetic transi-
tion is induced by their feedback.

C. Intermediate dimensions(2 < d < 3)

1. Generic solution

For intermediate dimensions, we get a range of behav-
ior that interpolates between the 2D and 3D results. As
before, we begin with the simple case where ψ = 0, which
we treat by setting g3 and ψ to zero. Again, these results
reproduce Fernandes et al. 39 . These equations govern
the region in the (α, r̄0) plane above the ψ transition.
Eqs.(36) reduce to

r̄0 − r
2u

= (r + ϕ)
d−2
2 + (r − ϕ)

d−2
2

ϕ

2g1
= (r + ϕ)

d−2
2 − (r − ϕ)

d−2
2 . (55)

We again introduce z ≡ ϕ/r and eliminate r to obtain,

r̄0 = (2g1)
2

4−dQ(α, z), (56)

where

Q(α, z) =

[
(1 + z)

d−2
2 − (1− z) d−2

2

z

] d−2
4−d

×

[
(α+

1

z
)(1 + z)

d−2
2 + (α− 1

z
)(1− z)

d−2
2

]
.(57)

As before, the transition occurs at the value of z that
maximizes Q(α, z). There are three regions in (r̄0, α)
separated by two critical values of α.

αϕ1 =
1

3− d
, αϕ2 =

6− d
6− 2d

. (58)

In the region 1 < α < αϕ1, r̄0 reaches its maximum
when |z| = 1. Here, r = −ϕ, and thus a simultaneous
magnetic transition is triggered by ϕ. In this case, we use
eqs.(38) to solve for both ϕ and Mϕ, where we use the
subscript to indicate that this is the magnetization (and
thus magnetic transition) that emerges when ψ = 0.

r̄0 − r
u

= 2 (r + ϕ)
d−2
2 + 2 (r − ϕ)

d−2
2 −M2

ϕ

ϕ

g1
= 2 (r + ϕ)

d−2
2 − 2 (r − ϕ)

d−2
2 −M2

ϕ

(r + ϕ)Mϕ = 0. (59)

From the last equation, we find that r = −ϕ or Mϕ = 0.
We then substitute r = −ϕ into the first two equations
and solve to find

r̄0 + 2uM2

g1(1 + α1)
= 2

[
2(r̄0 + 2uM2)

(1 + α1)

] d−2
2

+M2

r̄0 = 4u(−2ϕ)
d−2
2 + (α1 − 1)ϕ. (60)

Using the last equation, we can solve for the ϕcr at which
r̄0 is maximized.

ϕcr = −2
d

4−d

(α− 1

d− 2

)− 2
4−d

, (61)

which is always finite, indicating that the simultaneous
transition of ϕ and Mϕ is always first order.

For αϕ1 < α < αϕ2, the first instability occurs for 0 <
|z| < 1. A second order magnetic transition then follows
below the first order ϕ transition. In the region α > αϕ2,
both transitions are second order. A representative phase
diagram, for d = 2.5 is shown in Fig. 9.

Now we turn to the full problem, where we allow ψ to
be nonzero. It can turn on simultaneously with or below
the ϕ and magnetic transitions. In order to solve the
saddle point equations here, we introduce z ≡ ϕ/r, as
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FIG. 9. (Color online) The phase diagram for g3 = 0, d = 2.5
in the (α, r̄0) plane, showing ϕ(top, red) and Mϕ(bottom,
gray). First(second) order transitions are indicated by
dashed(solid) lines. For 1 < α < αϕ1, the Ising bond-order, ϕ
and magnetic order, Mϕ turn on simultaneously (thick dashed
gray line). For αϕ1 < α < αϕ2, the transitions split. The
transition of ϕ remains first order while Mϕ is now second or-
der. Finally, for α > αϕ2, both transitions are second order.
For d = 2.5, αϕ1 = 2 and αϕ2 = 3.5.

before and z1 ≡ ψ/r. The saddle-point equations (36)
become

r
2−d
2
r̄0−r
u

=(1+z−z1)
d−2
2 +(1+z+z1)

d−2
2 +2 (1−z)

d−2
2

r
4−d
2
z

g1
=(1+z−z1)

d−2
2 +(1+z+z1)

d−2
2 −2 (1−z)

d−2
2

r
4−d
2

z1

2g3
=− (1 + z − z1)

d−2
2 +(1 + z + z1)

d−2
2 . (62)

We can again eliminate r to find two equations: r̄0 as a
function of z and z1,

r̄0 =g
2

4−d

1 Q1(z, z1), (63)

and a constraint relating z and z1 via β = g3/g1.

β = Q2(z, z1). (64)

Here, the two Q functions are given by,

Q1(z, z1)=

[
(1+z−z1)

d−2
2 +(1+z+z1)

d−2
2 −2(1−z) d−2

2

z

] d−2
4−d

×

[
(α+

1

z
)(1 + z − z1)

d−2
2 + (α+

1

z
)(1 + z + z1)

d−2
2

+ 2(α− 1

z
)(1− z)

d−2
2

]
,

Q2(z, z1) =
z1

2z

(1+z−z1)
d−2
2 +(1+z+z1)

d−2
2 −2(1−z) d−2

2

−(1 + z − z1)
d−2
2 + (1 + z + z1)

d−2
2

.

(65)

The leading instability is determined by solving for
z1(z) at a given β, and looking for the z1 that maximizes
the resulting Q1(z1). If this z1 is zero, the transition
is second order, while if it is finite, with |z| + z1 < 1,
the transition is first order. Finally, if the maximum oc-
curs where |z| + z1 = 1, i.e. r = |ϕ| + ψ, the magnetic
transition occurs simultaneously. Fig. 10 displays |z(z1)|
and |z(z1)|+ z1 as determined from the constraint equa-
tion, (64), which are used to determine the value of z at
the transition, and whether magnetic order is triggered.
|z|+z1 gradually increases and reaches one as z1 increases
from 0 to its maximum value. For small β, |z| decreases
monotonically as z1 increases, but for large β, |z| under-
goes an upturn before decreasing with increasing z1. In
Fig. 11, we present the leading instability in both the
(z1, z) and (z1, Q1) planes. By investigating the slope of
Q1(z1) at the maximum z1 and z1 = 0, we find these three
different regions of behavior. For 1 < α < αψ1(figs.(a)
and (d)), ψ and M develop simultaneously at a first or-
der transition. For αψ1 < α < αψ2(figs.(b) and (e)), ψ
remains first order, but M develops at a second order
transition. For α > αψ2(figs.(c) and (f)), the two transi-
tions are both second order. Note that to obtain the full
phase diagram, we must compare the ψ = 0 results with
these.

FIG. 10. (Color online) |z|(dark red) and |z|+ z1(dark green)
as functions of z1 for d = 2.5 and β = 0.1. Note that when
|z|+ z1 = 1, magnetic order onsets.

In the first region, where the ψ transition is first order
and simultaneous with magnetism, the magnetic tran-
sition will also be first order. In order to see this, we
once again go back to the effective action with the mag-
netic order parameters and solve eqs.(39) by substituting
r = ψ − ϕ,

r̄0 − (ψ − ϕ)

u
= (2ψ)

d−2
2 + 2 (ψ − 2ϕ)

d−2
2 −M2 (66)

ϕ

g1
= (2ψ)

d−2
2 − 2 (ψ − 2ϕ)

d−2
2 −M2 (67)

ψ

2g3
= (2ψ)

d−2
2 +M2. (68)
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FIG. 11. (Color online) Examples of how the three regions
may be resolved by considering several representative val-
ues of α = 4.5, 8 and 30 for d = 2.5 and β = 0.1. Left
column[(a)-(c)]: leading instabilities as shown in the (z1, z)
plane. We show the solution of z and z1 at the maximum
of Q1(z, z1) for representative values of α in the three re-
gions: 1 < α < αψ1(top), αψ1 < α < αψ2(middle) and
α > αψ2(bottom). The blue line represents Q2(z, z1) = β,
and the purple line represents the maxima of Q1(z, z1). Their
intersection is indicated with red dots. The dashed black line
indicates the asymptotic line |z|+ z1 = 1, at which magnetic
order develops. As the intersection point is difficult to resolve
by eye, the inset shows the difference between the purple and
blue lines ∆z as a function of z1. Right column[(d)-(f)]: lead-
ing instabilities as shown in the (z1, Q1) plane. We plot Q1,res

as a function of z1 to show the value of z1 that maximize
Q1,res. For this d and β, αψ1 = 4.8, αψ2 = 12.1.

From (68), we solve for M as a function of ψ.

M =

[
ψ

2g3
− (2ψ)

d−2
2

] 1
2

, (69)

which implies that ψ
2g3
− (2ψ)

d−2
2 ≥ 0, or that ψ ≥

1
2 (4g3)

2
4−d , which is consistent with a first order tran-

sition for ψ. From the first two equations, we get

r̄0 =4u (ψ − 2ϕ)
d−2
2 + ψ + (α− 1)ϕ

β =
ψ/2

2g1[(2ψ)
d−2
2 − (ψ − 2ϕ)

d−2
2 ]− ϕ

, (70)

which we solve for ψ(ϕ) and r̄0(ψ). In the first region,
where α < αψ1, Mψ turns on simultaneously with ψ,
meaning a first order ψ transition triggers a first order
magnetic transition. In the second region, α > αψ1, Mψ

becomes second order and appears below ψ. We find that
for any β, Mψ always has a higher transition tempera-
ture (r̄0) than Mϕ, meaning that the second Ising bond-
ordering further boosts the magnetic transition temper-
ature, and also that we need only consider the magnetic
transition obtained with ψ 6= 0.

To illustrate the general form of our results, we present
an example phase diagram for d = 2.5 and β = 0.1 in Fig.
12. There are four regions in total. In region i, we have a
simultaneous first order transition of ϕ, ψ and M ; region
vii is a second order transition of ϕ, followed by simul-
taneous first order transitions of ψ and M ; region v is a
second order transition of ϕ followed by a first order tran-
sition of ψ and later followed by a second order transition
of M , where though the transitions of ψ and M are close,
they are distinct; region vi contains three distinct second
order phase transitions. These phase diagrams are in gen-
eral defined by a number of critical points. For clarity,
we now define: αs, where Tϕ = Tψ, and below which
the two transitions are simultaneous and first order; αϕ,
where Tϕ becomes second order; αψ, where Tψ becomes
second order; and αM , where TM becomes second order,
which always occurs when TM = Tψ. In terms of the
previous definitions, αϕ = Max[αϕ2, αs], αψ = αψ2, and
αM = αψ1, while αs is new and requires comparing the
g3 = 0 and g3 6= 0 results. Not all critical points will oc-
cur in all phase diagrams, or rather they will not always
be distinct, as one can see in Fig. 12, where αϕ coincides
with αs and is thus not shown.

FIG. 12. (Color online) The phase diagram in the (r̄0, α)
plane for d = 2.5 and β = 0.1, which shows first (dashed) and
second (solid) order transitions of ϕ (red), ψ (blue) and M
(brown). The four regions of behavior are, i: Tϕ1 = Tψ1 =
TM1; vii: Tϕ1 > Tψ1 = M1; v: Tϕ2 > Tψ1 > TM2; vi: Tϕ2 >
Tψ2 > TM2, where the notation is defined in Sec. III A. The
thick dashed green line represents simultaneous first order
transitions of ϕ, ψ and M while the thick dashed purple line
indicates simultaneous first order transitions of ψ and M . In
this figure, αs = 3.83, αM = 4.64 and αψ = 12.11.
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As the dimensionality and β vary, the critical values
of α evolve, leading to a number of different regions of
behavior. In general, as the dimensionality increases, the
phase space for magnetic order increases from zero in two
dimensions to being everywhere (below any transition) in
three dimensions. The phase space for second order tran-
sitions gradually vanishes as we approach three dimen-
sions. In the next section, we demonstrate this evolution,
and the rich range of possible phase diagrams, by show-
ing the results for several representative dimensionalities
in detail.

2. Evolution of the phase diagram for 2 < d < 3

As the dimension increases above d = 2, magnetism
is now allowed, but it is still relatively weak, and the
magnetic transition temperature only reaches the bond-
order transition temperatures for small α, at which point
the two bond-order transitions are already simultaneous
and first order. We show two example phase diagrams in
Fig. 13, in the (α, r̄0) plane for two representative values
of β.

In Fig. 14, we plot the four critical values of α versus
β. For d = 2.1, there are six possible classes of behav-
ior, in contrast to the five classes for d = 2. These are
described in the caption and are separated by the criti-
cal αs/M/ϕ/ψ(β)’s discussed above. Two of these critical
lines asymptote to finite values of β as α → ∞: the tri-
critical point where ψ becomes first order, αψ asymptotes
to βψ = 0.245; and the critical point where Tϕ = Tψ,
αs asymptotes to βs = 0.46. However, the intersec-
tion of magnetic and bond-order transitions, αM does
not asymptote to a finite value of β, at least not within
the realm of validity of our approach, β < 1.

As the dimensionality increases, the phase diagram
in the (α, β) plane maintains the same topology up to
d = 2.4, but with all lines pushed down and out to the
right. However, the αM line decreases more rapidly and
touches αs for d = 2.4, as shown in Fig. 16 (a). Moreover,
αM begins to asymptote to a finite βM < 1 for larger d’s.
As the dimensionality continues to decrease, αM moves
through αs, intersecting it at two points, and creating
two new regions vii and viii, and a “reentrant” pocket
of region ii, as is shown in Fig. 16 (b), for d = 2.45.
Region vii(viii) consists of a first(second) order transi-
tion of ϕ followed by simultaneous first order transitions
of ψ and M . Finally, at d = 2.55, the lower intersec-
tion point disappears, and αM and αs asymptote to the
same βs = βM , causing region ii to vanish completely
from the phase diagram. As the dimensionality contin-
ues to increase, αM is completely below αs, and while
all lines continue to move out to larger α and shrink to-
wards β = 0, the topology of the phase diagram remains
the same out to three dimensions. The phase space of
region i, where all three transitions are simultaneous and
first order continuously grows until it takes over the whole
phase diagram in three dimensions.

FIG. 13. (Color online) Two example phase diagrams show-
ing how ϕ (red), ψ (blue) and M (brown) develop as α varies,
for d = 2.1. r̄0 plays the role of temperature and the ratios
of the biquadratic couplings are: (a) β = 0.1; (b)β = 0.05.
Dashed(solid) lines indicate first(second) order transitions.
The thick dashed green line indicates simultaneous first or-
der transitions of ϕ, ψ and M , while the thick dashed red
line indicates simultaneous first order transitions of ϕ and ψ
only. The regions of different classes of behavior are indi-
cated in Fig. 14. The corresponding critical values of α’s in
the above figures are: (a)αM = 1.54, αs = 2.3 and αψ = 3.75
; (b)αM = 1.4, αs = 1.93, αϕ = 2.17 and αψ = 2.39 .

We show the behavior for d = 2.9 in Figures 15 and
17, showing a representative phase diagram in the (α, r̄0)
plane for β = 0.05 and the phase diagram in the (α, β)
plane, respectively.
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FIG. 14. The phase diagram in the (α, β) plane for d = 2.1.
The phase space is divided into six different classes of behavior
by αϕ (vertical, solid), αψ (dotted), αM (dot-dashed) and αs
(dashed): i: Tϕ1 = Tψ1 = TM1; ii: Tϕ1 = Tψ1 > TM2; iii:
Tϕ1 > Tψ1 > TM2; iv: Tϕ1 > Tψ2 > TM2; v: Tϕ2 > Tψ1 >
TM2; vi: Tϕ2 > Tψ2 > TM2. The notation in defined in Sec.
III A. As β → 0, αψ/M/s approaches α0 = 1.11 for d = 2.1.
For d = 2.1, αϕ = 2.17 and intersects with αψ and αs at
βϕψ = 0.04 and βϕs = 0.08 respectively.

FIG. 15. (Color online) The phase diagram in the (α, β) plane
at d = 2.9 and β = 0.05, which shows first(dashed lines) and
second(solid lines) transitions of ϕ(red line), ψ and the mag-
netic order. There are totally two regions of different classes
of behavior separated by αs = 16.1. i: Tϕ1 = Tψ1 = TM1;
viii: Tϕ2 > Tψ1 = TM1. The notation is defined in Sec.
III A. The thick dark green dashed line represents simulta-
neous first order transitions of ϕ, ψ and the magnetic order
while the thick dark purple dashed line indicates simultaneous
first order transitions of ψ and the magnetic order M .

FIG. 17. The phase diagram in the (α, β) plane for d = 2.9.
The different regions are defined in Fig. 16. The inset
shows the dense regions at small β. The corresponding
asymptotic values of β as αψ/M/s approaches infinity are:
βϕ = 0.012, βM = 0.018 and βs = 0.14.

IV. CONCLUSIONS

In this paper, we explored how a double-stripe mag-
netic order that breaks two discrete lattice symmetries
can be melted by fluctuations in up to three differ-
ent stages, realizing two distinct spin-driven bond-order
phases. The first, nematic phase is captured by a next-
nearest neighbor Ising bond order, ϕ that breaks the
C4 rotational symmetry to C2, while the second phase
is captured by a dimerized nearest neighbor Ising bond
order, ψ, which breaks both translation and diagonal
mirror symmetries. As ψ also breaks the C4 rotational
symmetry, it can only develop below or simultaneously
with ϕ. We developed an effective field theory to study
the interplay of these different transitions, as a function
of changing dimensionality and relative biquadratic cou-
pling strengths. To characterize different phases, we in-
troduced two dimensionless control parameters, α and
β, which are the ratio of overall strength of magnetic
fluctuations to the NNN biquadratic coupling, and the
ratio of the NN to the NNN biquadratic couplings, re-
spectively. Therefore, larger α means harder, more local-
ized spins or relatively weaker NNN biquadratic coupling,
while larger β means stronger NN biquadratic coupling
relative to NNN biquadratic coupling. In 2D, where there
is no magnetism, the two nematic transitions are simul-
taneous and first order at small α. As α increases, they
split and become second order, and the splitting increases
as β increases. As interlayer coupling is added(here, by
going to intermediate dimension), magnetism develops
at a third phase transition. While in three dimensions,
all three transitions are simultaneous and first order, in
intermediate dimensions the phase diagram can become
quite complex, with up to eight different regions of be-
havior classified by which transitions become simultane-
ous in addition to the first/second order nature of each
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FIG. 16. Evolution of the transition values separating regions of different phase transition behavior αϕ(solid), αψ(dotted),
αM (dot-dashed) and αs(dashed) in the phase diagram in the (α, β) plane as the dimensionality increases for 2 < d < 3. Figure
(a) displays the critical situation where the dashed line touches the dot-dashed line at d = 2.4, as seen more clearly in the
inset. In general for 2 < d < 2.4, there are totally six regions in the phase diagram labeled as i to vii. i: Tϕ1 = Tψ1 = TM1;
ii: Tϕ1 = Tψ1 > TM2; iii: Tϕ1 > Tψ1 > TM2; iv: Tϕ1 > Tψ2 > TM2; v: Tϕ2 > Tψ1 > TM2; vi: Tϕ2 > Tψ2 > TM2. Figure
(b) shows at d = 2.45, two more regions emerge, thus giving rise to totally eight regions of different classes of behavior. vii:
Tϕ1 > Tψ1 = TM1; viii: Tϕ2 > Tψ1 = TM1. The inset shows the dense regions at small α and β. The αM transition line crosses
the αs transition line twice at (α, β) = (2.79, 0.045) and (6.56, 0.215). Figure (c) shows the seven phase regions at d = 2.55
where the dashed line merges with the dot-dashed line at large α. Figure (d) is for d = 2.6, which has totally seven phase
regions. The notation is defined in Sec. III A. The corresponding asymptotic values of β as αψ/M/s approaches infinity are:
(a) βϕ = 0.175, βM = 0.92 and βs = 0.38; (b) βϕ = 0.16, βM = 0.85 and βs = 0.36; (c) βϕ = 0.135 and βM = βs = 0.33; (d)
βϕ = 0.11, βM = 0.23 and βs = 0.3.

transition. We find that, as the dimensionality increases
from two dimensions to three dimensions, all the criti-
cal transitions lines β as a function of α are not only
pushed down (meaning more first order transition phase
space), but also intersect or switch positions, leading to
a wide variety of possible phase diagrams. Real, quasi-
two-dimensional materials may take any number of paths
through this phase space as they are tuned by pressure
or doping.

Double-stripe magnetism is realized in the “11” iron-
based superconductors Fe1+yTe1−xSex, which has a si-
multaneous first order nematic and magnetic transition.
It has also been predicted by density functional theory
as the ground state for BaTi2Sb2O, which may show a

weakly first order nematic (ϕ and ψ) transition and no
observed magnetic transition19.
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