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We present theoretical studies of the intrinsic spin orbit torque (SOT) in a single domain ferro-
magnetic layer with Rashba spin-orbit coupling (SOC) using the non-equilibrium Green’s function
formalism for a tight-binding Hamiltonian. We find that, in the case of a small electric field, the
intrinsic SOT to first order in SOC has only the field-like torque symmetry and can be interpreted
as the longitudinal spin current induced by the charge current and Rashba field. We analyze the re-
sults in terms of the material-related parameters of the electronic structure, such as the band filling,
band width, exchange splitting, and the Rashba SOC strength. On the basis of these numerical and
analytical results, we discuss the magnitude and sign of SOT. Our results suggest that the different
sign of SOT in identical ferromagnets with different supporting layers, e.g. Co/Pt and Co/Ta, can
be attributed to electrostatic doping of the ferromagnetic layer by the support.

PACS numbers: 75.85.+t, 75.25.-j, 75.47.Lx, 71.15.Mb

I. INTRODUCTION

Magnetization switching in nanoscale devices induced by
electric currents has been a subject of intensive research
in recent years.1 One of the most studied approaches is
the transfer of spin angular momentum between non-
collinear ferromagnetic layers, an effect known as spin
transfer torque (STT).2,3 In this case, the charge cur-
rent is spin polarized by a magnetic layer with a pinned
magnetization and the spin angular momentum is de-
posited in a free layer causing precession and reversal of
the magnetization. Recently, an alternative way to pro-
duce spin torque and manipulate the magnetization di-
rection in a ferromagnetic layer was demonstrated, which
it does not require the presence of a second polarizing fer-
romagnet. Instead, the spin torque is produced by spin-
orbit coupling (SOC).4–6 This spin-orbit torque (SOT)
was observed in 3d ferromagnets grown on 5d materi-
als with strong SOC, such as Pt4,5,7,8 or Ta.6,9,10 In this
setup, the charge current flows in the plane parallel to
the interface and SOT has been shown to produce do-
main wall motion11,12 and magnetization precession.13,14

Moreover, recent studies reported on a giant SOT aris-
ing at the interface between a topological insulator and
a ferromagnet15,16 or another magnetically-doped topo-
logical insulator.17

The presence of SOT in single nanomagnets has been
predicted theoretically based on analytical models.18,19

Two principal mechanisms of SOT have been proposed.
The first mechanism is based on the Rashba effect at the
interface between a ferromagnetic layer and supporting
non-magnetic metal with strong SOC. The charge cur-
rent passing through the ferromagnet produces intrin-
sic torques due to Rashba SOC.4,5,18,20–22 The second
mechanism is based on the bulk spin Hall effect (SHE)

in the support. In this case, the charge current pass-
ing through the support produces spin accumulation at
the interface which exerts SOT on the magnetization in
a ferromagnet.6,7,23,24 The particular experimental setup
determines which of the two mechanisms dominates. The
observation of a strong dependence of the SOT magni-
tude on the support thickness and its sign reversal at
small thicknesses10 suggest that for a thick supporting
layer the current flows predominantly through the sup-
port and the SHE-SOT dominates. On the other hand,
when the support is very thin the current flows through
the ferromagnetic layer and the Rashba-SOT dominates.

Many theoretical works employ a picture of conduction
electrons interacting with localized magnetic moments
in the presence of Rashba SOC18,20–22 or SHE.23,24 The
conduction electrons are assumed to be free and their in-
teraction with localized moments is treated on the level
of the s-d exchange model.25,26 In the context of trans-
port calculations, the majority of works deal with the
quasi-classical Boltzmann approach.18,21,23,24,27 All these
approaches assume linear regime, in which SOT is pro-
portional to the charge current and the torquance is ex-
pressed in terms of phenomenological parameters, such
as the spin Hall angle and spin polarization of the carri-
ers. There is also a couple of reports on first-principles
calculations of SOT, where the torquance is related to the
Berry phase curvature of the occupied states.28,29 Nev-
ertheless, the band structure dependence and the finite
bias behavior of SOT remain largely unexplored.

In this paper, we discuss the intrinsic SOT arising from
the band structure alone for a ferromagnetic layer with
Rashba spin-orbit coupling. We develop ballistic trans-
port formalism based on the Keldysh non-equilibrium
Green’s function (NEGF) method and a single-orbital
tight-binding (TB) Hamiltonian model. To gain insights
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FIG. 1. a) Schematic view of the 2D ferromagnetic layer in
the xy plane. The charge current j direction is along the
x-axis. The magnetization M is defined by the spherical an-
gles θ and φ. The purple arrows indicate the current-induced
electron spin density. The blue arrows denote T⊥ and T ‖
contributions to the total SOT. b) Schematic view of the two-
probe setup consisting of the scattering region C and two
electrodes L and R.

into physical picture, we derive an analytic expression
for SOT to first order in SOC and use it to analyze the
SOT dependence on the band structure parameters and
applied voltage. We show that the first order in SOC
terms leads to the field-like SOT in the ballistic regime.

II. METHODOLOGY

We consider a two dimensional ferromagnetic layer in the
so-called current-in-plane (CIP) geometry schematically
shown in Fig. 1a. The direction of the charge current j is
chosen to be along the x axis and the unit vector S along
the magnetization M is given in the conventional spher-
ical coordinate system, S = (cosφ sin θ, sinφ sin θ, cos θ).
The induced SOT can be separated into two components
which have the symmetry of antidamping-like torque
(DLT), T ‖ = T‖ S × [(ez × j)× S], and field-like torque
(FLT), T⊥ = T⊥(ez × j)×S. These torques are also re-
ferred to as parallel and perpendicular to the plane given
by the directions of the magnetization S and (ez × j),
where ez is the unit vector along the z axis.

A. Hamiltonian matrix elements

The Hamiltonian of the system in the absence of SOC is

Ĥ0 =
∑
nm,σ

tnmĉ
+σ
n ĉσm − jex

∑
n,σσ′

ĉ+σ
′

n (σ · S)σ
′σ ĉσn, (1)

where the first term corresponds to the conduction elec-
trons with diagonal elements representing the onsite en-
ergies, ε0 = tnn, and off-diagonal elements representing
the electron hopping parameters, tn,m6=n. We consider
the hopping parameter to be non-zero between nearest
neighbors only, t = tn,n+1 = tn+1,n. The second term is
the so-called s-dmodel, where jex stands for the exchange
coupling and σ is the vector of the Pauli matrices.25,26

The Rashba SOC Hamiltonian is written in the tight-
binding basis as30

ĤSO = −λ
∑
n,σσ′

[
ĉ+σ

′

n+ey (iσσ
′σ
x )ĉn

−ĉ+σ
′

n+ex(iσσ
′σ
y )ĉn + H.C.

]
,

(2)

where λ is the Rashba SOC strength, ex and ey are the
unit vectors in the x and y axes respectively.

The equations above can be Fourier transformed and
written in the momentum space as

Ĥ0(k) =

(
ε0 − jex cos θ + t p(k) −jex sin θ e−iφ

−jex sin θ eiφ ε0 + jex cos θ + t p(k)

)
(3)

and

ĤSO(k) = −λ
(

0 r(k)
r∗(k) 0

)
, (4)

where p(k) = 2(cos kx + cos ky) and r(k) = 2(i sin kx +
sin ky). Finally, the total Hamiltonian of the system is

Ĥ = Ĥ0 + ĤSO.

B. Non-equilibrium charge and spin transport for
current-in-the-plane geometry

In order to calculate transport properties we separate the
system into three regions along the x axis, a scattering
region (C) connected to the left (L) and right (R) semi-
infinite leads all made of the same material as shown
in Fig. 1b. A finite voltage drop eV = µL − µR is in-
troduced between the leads by maintaining them in lo-
cal thermodynamic equilibrium with the corresponding
chemical potentials µL(R). Thus, the occupation of the
leads is governed by the Fermi-Dirac distribution func-
tion fL(R) = 1/(1 + e(E−µL(R))/kBT ). The system is as-
sumed to be periodic in the y direction perpendicular to
the current. For a fixed applied voltage, the choice of size
of the scattering region determines the electric field in the
material. In the limit of an infinite scattering region the
electric field tends to zero.
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In this setup, the charge and spin current densities
between any two neighboring planes i and i+ 1 in the x
direction are given in the NEGF formalism as31

I =
e

~

∫
dE dky

4π2
Trσ[Ĥi,i+1Ĝ

<
i+1,i(E, ky)

− Ĥi+1,iĜ
<
i,i+1(E, ky)]

(5)

and

IS =

∫
dE dky

8π2
Trσ[(Ĥi,i+1Ĝ

<
i+1,i(E, ky)

− Ĥi+1,iĜ
<
i,i+1(E, ky))σ],

(6)

where all quantities are 2× 2 matrices in the spin space,
Hi,i+1 is the Hamiltonian matrix element between the
planes i and i + 1, and G<i,i+1 is the NEGF. The inte-
gration is performed over the energy and y component of
the wave vector k.

Similarly the spin density of conduction electrons aris-
ing from the s-d exchange coupling is given by32

µ = −iµB
∫
dE dky

8π2
Trσ

[
Ĝ<i,i(E, ky)σ

]
, (7)

where µB is the Bohr magneton. All quantities are in-
dependent of the plane index i. Having calculated the
magnetic moment, the spin torque can be readily found
as

T = −jex
µB

S × µ. (8)

C. Non-equilibrium Green’s function matrix
elements

The NEGF for a standard two-probe geometry is written
in the form33,34

Ĝ< = iĜ(fLΓ̂L + fRΓ̂R)Ĝ+, (9)

where Ĝ is the retarded Green’s function (GF), Γ̂L(R) =

i(Σ̂L(R) − Σ̂+
L(R)) is the escape rate to the electrodes,

Σ̂L(R) = Ĥ+
L(R)C ĝLL(RR)ĤL(R)C is the self-energy due to

the attachment of electrodes, and ĝLL(RR) is the surface

GF of each electrode. Using this expression, the non-
equilibrium spin density Eq. (7) and SOT Eq. (8) can
be calculated in general, for any arbitrary strength of
Rashba SOC, size of the scattering region and applied
electric field. The general expression for SOT given by
Eq. (7), however, overshadows the fundamental physics
of the phenomenon.

In order to elucidate the behavior of SOT and de-
rive its analytical expression, we simplify our further ap-
proach by adopting the limiting case of large scattering
region where the bias induced electric field almost van-
ishes. Moreover, due to the periodicity along the y axes,
the retarded GF matrix elements can be written in the

mixed (real and reciprocal space) representation as the

Fourier transform of GF, Ĝ(k), in momentum space

Ĝn,m(ky) =
1

2π

π∫
−π

dkx e
ikx(n−m)Ĝnm(k), (10)

where Ĝ(k) =
[
(E + iη)Î − Ĥ(k)

]−1
, η is a positive in-

finitesimal, n and m are layer indexes along the x axis.
Under these assumptions, the surface GF of the elec-
trodes can be found from the bulk GF, because con-
necting two semi-infinite systems restores an infinite pe-
riodic system.35 For the self-energies we obtain Σ̂L =
Ĝ−1i+j,i+1Ĝi+j,iĤi,i+1 and Σ̂R = Ĝ−1i,i+jĜi,i+j+1Ĥi+1,i,

where i ∈ (−∞,∞) and j ∈ [1,∞). Since the bulk GF is
periodic, its matrix elements depend only on the differ-
ence of their coordinates, Ĝn,m = Ĝn−m. Thus, substi-
tuting into Eq. (9) we obtain

Ĝ<i,j =− fLĜi+1,iĤi,i+1Ĝ
+
i,i + fLĜi,iĤi+1,iĜ

+
i,i+1

− fRĜi,i+1Ĥi+1,iĜ
+
i,i + fRĜi,iĤi,i+1Ĝ

+
i+1,i.

(11)

Finally, taking into account an explicit form of the Hamil-
tonian matrix elements Ĥi,i+1 = Ît − iλσ̂y and using

Ĥ+
i+1,i = Ĥi,i+1, the diagonal NEGF matrix element can

be written as

Ĝ<i,i = fLt(Ĝi,iĜ
+
i,i+1 − Ĝi+1,iĜ

+
i,i)

+ fRt(Ĝi,iĜ
+
i+1,i − Ĝi,i+1Ĝ

+
i,i)

+ ifLλ(Ĝi,iσ̂yĜ
+
i,i+1 + Ĝi+1,iσ̂yĜ

+
i,i)

− ifRλ(Ĝi,i+1σ̂yĜ
+
i,i + Ĝi,iσ̂yĜ

+
i+1,i).

(12)

Now we can expand the NEGF matrix elements in or-
ders of the SOC strength and retain in the expressions
only the lowest order in λ. The somewhat lengthy algebra
is given in Appendix A. The principal result is that the
spin density can be decomposed into two components, as
follows

µ = µ‖ + µ⊥ = S(µ0 + 2Syµ1) + (0,−2µ1, 0), (13)

where µ0 and µ1 are the zeroth and first orders in the
expansion in λ. From Eq. (8) it is clear that only the
second term produces SOT, T = T⊥ (Sz, 0,−Sx), which
has the field-like symmetry, where

T⊥ = −2jexµ1

µB
=

~λ
et

(I↑ − I↓) =
2λ

t
ISz . (14)

This field-like SOT can be interpreted as the longitudi-
nal spin current induced by the charge current and SOC.
Taking into account that the spin current is an even func-
tion with respect to the time-reversal symmetry, this ex-
pression is an odd function of the magnetization. On top
of this, for an infinite scattering region the damping-like
torque is expected to appear to second order in the SOC
strength, i.e. T⊥ � T‖. Here, it is worth to note that
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for a finite size system, when an applied electric field
has to be taken into account, the corresponding solution
of Eq. (9) reveals an additional DLT component. How-
ever, as the size of the scattering region increases, this
DLT vanishes, while the FLT survives and converges to
a form given by Eq. (14). Thus, we state that for a finite
size system where the bias induced voltage drop can not
be neglected the resulting SOT exhibits both the FLT
and DLT components, which can be regarded of intrinsic
origin in the ballistic limit.

Similar expression for the FLT was obtained in the con-
text of the Boltzmann transport equation.18 However,
the main difference comes from the underlying model
and method. In the Boltzmann approach longitudinal
spin current is proportional to the momentum relaxation
time, which diverges at low impurity concentrations and
gives unphysical infinite current and torque, while our
approach based on the Keldysh formalism shows the cor-
rect ballistic limit. Our results are in agreement with re-
cent theoretical predictions based on the non-equilibrium
Green’s function formalism showing that low charge cur-
rents flowing solely at the interface of a ferromagnetic
layer and topological insulator can induce antidamping-
like SOTs.36 In addition, the Keldysh formalism is a com-
pletely general approach and can be extended to include
any kind of disorder.37 In this case, the impurity con-
tribution to SOT would be extrinsic and depend on the
impurity type and their distribution.

Our result is also in agreement with previous stud-
ies which show that the interfacial SOC results predom-
inantly in field-like torques.28,29 However, some recent
publications reported on the intrinsic DLT of a compa-
rable magnitude.27,38 In this approach based on the lin-
ear response theory, SOT is analyzed in terms of the in-
traband and interband electronic transitions arising due
to the effect of the electric field on the charge distribu-
tion and the shape of wave functions, respectively. These
studies revealed that the only intrinsic component is the
DLT, while the FLT is of extrinsic origin as it is in-
versely proportional to the spectral broadening caused
by impurities. Interestingly, other complementary stud-
ies showed that the DLT cancels when the vertex correc-
tions are taken into account.39 We believe that the linear
response theory has its well known drawbacks, as it also
suffers in the clean limit leading to a divergence of FLT.
In this regard, the Keldysh formalism is a more reliable
tool that allows us to investigate the origin of SOT even
in the ballistic regime. As it is clear from our deriva-
tion, for example, Eqs. (A5) and (A13), the interband
transitions disappear once the voltage drop is neglected,
so only the intraband transitions survive giving rise to
the FLT. In case of a finite electric field present in the
scattering region, Eq. (9) contains additional spin mixing
terms, which correspond to the intrerband transitions in
our single-orbital model and result in appearance of the
DLT component.

FIG. 2. a) Bias dependence of the SOT efficiency for different
values of the electron hopping parameter t (jex = 1.0 eV,
λ = 0.01 eV and EF = 1.0 eV); b) SOT dependence on the
Fermi level (jex = 1.0 eV, λ = 0.01 eV and V = 0.1 V); c)
SOT dependence on the exchange interaction parameter for
different values of the electron hopping parameter (EF = 1.0
eV, λ = 0.01 eV and V = 0.1 V); here, the negative sign of
jex stands for the magnetization reversal.

III. RESULTS AND DISCUSSION

The first step to perform calculations of SOT is a
parametrization of the tight-binding model. Many exper-
imental studies use Co or CoFe as the ferromagnetic layer
and Pt or Ta as the support.6,9,18 Thus, the ferromag-
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netic material is either Fe or Co, which have very similar
band structures but differ in occupation by one electron.
Within the s-d exchange model, centers of the majority
and minority bands are at ε↑ = ε0−jex and ε↓ = ε0+jex,
respectively. The exchange splitting between two bands
is 2jex and the band width is 8t. Thus, for |jex/t| > 4
the material has a gap between the majority and minor-
ity bands. For a typical ferromagnet, such as Co or Fe,
the exchange splitting is of the order of a couple of eV
and the band width is of the order of several eV. There-
fore, this band structure can be described by choosing
jex = 1.0 eV and t = −1.0 eV, respectively, which is rep-
resentative for a metallic ferromagnet with the exchange
splitting of 2.0 eV. Note that for jex = 1.0 eV, the case
of |t| < 0.25 eV is an insulator. Without any loss of gen-
erality, we set the onsite energy ε0 = 0.0 eV, while the
band occupation is controlled by shifting the Fermi level
EF . We also choose λ = 0.01 eV for the SOC strength.

Using this parametrization, we calculate SOT from
Eq. (14) and plot in Fig. 2a the SOT efficiency as a
ratio of SOT to the charge current, T⊥/I. The Fermi
level is chosen at EF = −1.0 eV, which corresponds
to the half-filled majority band and completely empty
minority band. For comparison between the metallic
(t = −1.0 eV) and insulating (t = −0.1 eV) cases, we also
plot the SOT efficiency for several different band widths.
The main observation is that the SOT efficiency decreases
exponentially with the band width. Another observation
is that SOT is fairly independent of the bias. Because
of the choice of EF , only the majority band contributes
to the transport, I↑ 6= 0 and I↓ = 0, as a result SOT
is proportional to the current and the SOT efficiency is
constant. At higher bias, the minority band also con-
tributes to the charge current, and the overall efficiency
and SOT decrease when the current increases.

In order to gain further insight into the origin of SOT
we investigate its dependency on the main parameters of
the model, i.e. band filling and exchange splitting. In
Fig. 2b the dependence on the band occupation is shown
for different band widths. The applied bias voltage is set
to V = 0.1 V . As it is seen, SOT is an antisymmetric
function with respect to EF . The magnitude of T⊥ peaks
around the middle of the majority and minority bands
at ε0 − EF = ∓1.0 eV, respectively. The contributions
to SOT come only from the energy regions with avail-
able carriers, therefore, for an insulating system SOT has
two narrow peaks around the band centers. We find that
partially occupied bands contribute to the SOT, with less
than half-filled majority bands producing positive contri-
bution and more than half-filled negative and vice versa
for the minority bands. Therefore, the maximum SOT
values correspond to the 1/4 and 3/4 filled bands.

It is worth noting that in the area of 1/2 filling the sign
of T⊥ can change for small charge doping shifting of EF
to the left or right. This fact can explain the difference
in the sign of SOT for the cases of Co/Pt and Co/Ta.9

Chemically, Co (or CoFe) is between Ta and Pt in elec-
tronegativity. Interfacing the ferromagnetic layer with a

substrate is essentially chemical doping of the interface.
The difference in electronegativity between the ferromag-
net and the support will cause charge to flow through the
interface, where the flow will be in different direction in
the case of the two substrates, holes in the case of Pt and
electrons in the case of Ta. Since the ferromagnetic layer
is extremely thin this interface doping could change sig-
nificantly the Fermi level position of the whole system.
This could be sufficient to make the transport majority-
or minority-dominated, that, in turn, changes the sign of
SOT.

Calculations with realistic band structures show that
the magnitude and sign of the Rashba SOC strength, and
respectively the band contribution to SOT, vary from
band to band.40 Nevertheless, we believe that our model
captures the basic physics of the phenomenon. The main
observation is that bands with different spin chirality
and different occupation give contributions of different
signs to SOT. Our simplified band structure model has
a particle-hole symmetry which is the reason that SOT
changes its sign exactly at 1/2 filling. The sign of SOT in
the realistic band structure case will depend on the de-
tailed balance of the occupation of the majority and mi-
nority bands. Nevertheless, it is feasible that this balance
is changed significantly by means of the interface charge
transfer to alter the sign of SOT. Moreover, the Rashba
parameters themselves depend on the electric field at the
interface, which is determined by the band alignment at
the interface.

Finally, in Fig. 2c the dependence of T⊥ on the ex-
change splitting is shown. As it is seen, SOT is a non-
monotonous function of jex, that is not obvious, as intu-
itively it is expected that larger exchange couplings lead
to larger SOT. However, SOT reaches its maximum (min-
imum) value at the same jex for all curves. This value of
jex corresponds to the case when one of the spin-channels
gives the highest contribution.

IV. CONCLUSIONS

We present analytical and numerical results for SOT in
a single domain ferromagnetic layer with Rashba SOC.
We find that, in the limit of large samples, to first or-
der in SOC this torque has the FLT symmetry and is
proportional to the longitudinal component of the spin-
current, while the DLT component arises for finite size
systems due to the bias induced voltage drop. We give
the analytical expression of SOT in terms of the mate-
rial related parameters of the electronic structure that
enables physically transparent analysis. Our results in-
dicate that the SOT efficiency decreases with the band
width and the magnitude and sign of the band contribu-
tions to SOT depend on the band spin component and
occupation. This makes it possible to change the overall
sign of SOT by electrostatic doping. Thus, experimental
observations of the opposite signs of SOT in Co/Pt and
Co/Ta layers could be explained in terms of the hole and
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electron doping of the Co layer from the supporting Pt or
Ta layers, respectively. We expect that our results may
be useful to selecting specific material combinations with
optimal properties.
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Appendix A: Perturbation expansion in SOC
parameter

If we consider the zeroth order with respect to the SOC
parameter, Eq. (12) can be simplified as

Ĝ
<(0)
i,i = fLt(ĝi,iĝ

+
i,i+1 − ĝi+1,iĝ

+
i,i)

+ fRt(ĝi,iĝ
+
i+1,i − ĝi,i+1ĝ

+
i,i),

(A1)

where ĝ is the GF in the absence of SOC. Its explicit
angular dependence is given by

g↑↑ =
1

2
(g↑(1 + cos θ) + g↓(1− cos θ)),

g↓↓ =
1

2
(g↑(1− cos θ) + g↓(1 + cos θ)),

g↑↓ =
1

2
(g↑ − g↓) sin θe−iφ,

g↓↑ =
1

2
(g↑ − g↓) sin θeiφ,

(A2)

and g↑(↓) is the GF corresponding to the case when the
magnetization is perpendicular to the plane (or in the lo-
cal coordinate frame aligned with the magnetization S).
For t < 0 its analytical expression is

gσi,j(ky) =
1

2π

π∫
−π

dkx
eikx(xi−xj)

Eσ − 2t cos kx + iη

= −i

(
Eσ

2t + i

√
1−

(
Eσ

2t

)2)|xi−xj |
√

4t2 − Eσ2
,

(A3)

where E↑(↓) = E − εo ± jex − 2t cos ky. The matrix ele-

ments of Ĝ
<(0)
i,i are then given by

G
<↑↑(0)
i,i =− it(fL + fR)Im[(g↑i+1,ig

↑∗
i,i + g↓i+1,ig

↓∗
i,i)

+ (g↑i+1,ig
↑∗
i,i − g

↓
i+1,ig

↓∗
i,i) cos θ],

G
<↓↓(0)
i,i =− it(fL + fR)Im[(g↑i+1,ig

↑∗
i,i + g↓i+1,ig

↓∗
i,i)

− (g↑i+1,ig
↑∗
i,i − g

↓
i+1,ig

↓∗
i,i) cos θ],

G
<↑↓(0)
i,i =− it(fL + fR)Im[(g↑i+1,ig

↑∗
i,i

− g↓i+1,ig
↓∗
i,i) sin θe−iφ],

G
<↓↑(0)
i,i =− it(fL + fR)Im[(g↑i+1,ig

↑∗
i,i

− g↓i+1,ig
↓∗
i,i) sin θeiφ].

(A4)

In the ballistic regime, when the scattering region is large
enough, we can safely neglect the voltage drop induced
by an applied bias voltage. As it was pointed out, in this
limit Eq. (9) is transformed to Eq. (11). However, it is
worth noting that when dealing with finite size systems
the voltage drop should appear in the definition of GFs of
Eq. (9) rendering this transformation impossible. More-
over, under this assumption one can further simplify:

Im(g↑i+1,ig
↑∗
i,i − g

↓
i+1,ig

↓∗
i,i) = − 1

2t
Im(g↑i,i − g

↓
i,i). (A5)

The magnetic moment arising due to the s-d exchange
coupling in the absence of SOC can be written as

µ0 = −µBt
∫
dE dky

4π2
(fL + fR)

× Im(g↑i+1,ig
↑∗
i,i − g

↓
i+1,ig

↓∗
i,i)S

= µB

∫
dE dky

8π2
(fL + fR) Im(g↑i,i − g

↓
i,i)S.

(A6)

This magnetic moment is collinear to the magnetization
and, therefore, it does not create any torques. In equi-
librium fL = fR = f(EF ), and we obtain

µ0 = µB

∫
dE dky

4π2
f(Ef )Im(g↑i,i − g

↓
i,i)S

= µB(〈n↑i 〉 − 〈n
↓
i 〉)S,

(A7)

where 〈nσi 〉 =
∫
dE
2π ρ

σ
i (E)f(EF ) is the average number of

s-electrons of spin σ at atom i, and ρσi = Im
∫ dky

2π gσi,i is
the density of states (DOS).

Let us define the charge and z-component of the spin
currents given by Eqs. (5) and (6) in the absence of SOC
with respect to the local coordinate frame aligned with
the magnetization S

I =
et

~

∫
dE dky

4π2
[G
<↑↑(0)
i+1,i −G

<↑↑(0)
i,i+1

+G
<↓↓(0)
i+1,i −G

<↓↓(0)
i,i+1 ],

ISz =

∫
dE dky

8π2
[G
<↑↑(0)
i+1,i −G

<↑↑(0)
i,i+1

−G<↓↓(0)i+1,i +G
<↓↓(0)
i,i+1 ].

(A8)
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Using Eqs. (A4) and (A2) we obtain

I =
et

~

∫
dE dky

4π2
[θ(4t2 − E↑2) + θ(4t2 − E↓2)],

ISz =

∫
dE dky

8π2
[θ(4t2 − E↑2)− θ(4t2 − E↓2)],

(A9)

where θ(t) is the Heaviside step function. Integration
with respect to ky yields I = I↑ + I↓ and ISz = ~

2e (I↑ −
I↓), where

Iσ =
e

h

∞∫
−∞

dE

2π
(fL − fR)Dσ(E) (A10)

and

Dσ(E) = θ(16t2 − (E − εσ)2)
[
θ(4t2 − (E − εσ + 2t)2)

+
1

π
arccos

(
E − εσ − 2t

2t

)
θ

(
E − εσ

t

)
− 1

π
arccos

(
E − εσ + 2t

2t

)
θ

(
−E − ε

σ

t

)
].

Here Iσ is the contribution of the charge current from the
channel with spin σ, Dσ is the corresponding transmis-
sion function, and εσ = εo ± jex. Note that in the limit
of low temperatures the integral for Dσ can be taken
analytically.

Next, we collect the terms of Eq. (12) with the first
power of λ

Ĝ
<(1)
i,i = fLt

(
ĝi,iĜ

(1)+
i,i+1 + Ĝ

(1)
i,i ĝ

+
i,i+1 − ĝi+1,iĜ

(1)+
i,i − Ĝ

(1)
i+1,iĝ

+
i,i

)
+ fRt

(
ĝi,iĜ

(1)+
i+1,i + Ĝ

(1)
i+1,iĝ

+
i,i − ĝi,i+1Ĝ

(1)+
i,i − Ĝ

(1)
i,i+1ĝ

+
i,i

)
+ ifLλ

(
ĝi,iσy ĝ

+
i,i+1 + ĝi+1,iσy ĝ

+
i,i

)
− ifRλ

(
ĝi,iσy ĝ

+
i+1,i + ĝi,i+1σy ĝ

+
i,i

)
,

(A11)

where Ĝ(1) stands for the GF’s correction to first order
in SOC

Ĝ(1)
nm(ky) =

1

2π

π∫
−π

dkx ĝ(k)ĤSO(k)ĝ(k)eikx(n−m).

(A12)

Having substituted Ĝ(1) in Eq. (A11), we obtain the final

expression for the on-site matrix elements of Ĝ
<(1)
i,i

G
<↑↑(1)
i,i = iλ(fR − fL)

[
1

t
Re(g↑i,i + g↓i,i) sin θ cosφ

+
1

2
Re[(Λ1 + Λ2 −

1

t
(g↑i,i + g↓i,i)] sin 2θ sinφ

]
,

G
<↑↓(1)
i,i = λ(fR − fL)[(sin2 θ sin2 φ− 1)Re[Λ1 + Λ2]

+
i

2
Re[Λ1 + Λ2 −

1

t
(g↑i,i − g

↓
i,i)] sin2 θ sin 2φ

− 1

t
Re(g↑i,i + g↓i,i)] sin2 θ sin2 φ],

G
<↓↑(1)
i,i = λ(fR − fL)[(1− sin2 θ sin2 φ)Re[Λ1 + Λ2]

+
i

2
Re[Λ1 + Λ2 −

1

t
(g↑i,i − g

↓
i,i)] sin2 θ sin 2φ

+
1

t
Re(g↑i,i + g↓i,i)] sin2 θ sin2 φ],

G
<↓↓(1)
i,i = iλ(fR − fL)

[
1

t
Re(g↑i,i + g↓i,i) sin θ cosφ

− 1

2
Re[(Λ1 + Λ2 −

1

t
(g↑i,i + g↓i,i)] sin 2θ sinφ

]
,

(A13)

where

Λ1 = g↑∗i,i(g
↓
i+1,i − 2tK),

Λ2 = g↓∗i,i(g
↑
i+1,i − 2tK),

K =
1

2π

π∫
−π

dkx g
↑(k)g↓(k) sin2 kx.

Since all matrix elements of Ĝ<(1) are proportional to the
difference between the Fermi-Dirac functions of the left
and right leads, they vanish in equilibrium. Following the
definition of Eq. (7), we can write the current-induced
contribution µ1 to the magnetic moment to first order
in λ

µ1x = µ1 sin2 θ sin 2φ,

µ1y = 2µ1(sin2 θ sin2 φ− 1),

µ1z = µ1 sin 2θ sinφ,

(A14)

where the coefficient µ1 depends on the band structure
and applied bias

µ1 = −µBλ
4π2

∫
dEdky(fL − fR)Re[Λ1 + Λ2]. (A15)

It can be further simplified

Re[Λ1 + Λ2] =
1

2tjex

(
θ(4t2 − E↑2)− θ(4t2 − E↓2)

)
,

that yields

µ1 = − µBλ

8π2tjex

∫
dE(fL − fR)(D↑(E)−D↓(E))

= − µBλ~
2etjex

(I↑ − I↓).

(A16)
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Finally, the total magnetic moment µ to first order in
SOC can be written

µ = µ‖ + µ⊥ = S(µ0 + 2Syµ1) + (0,−2µ1, 0), (A17)

where only the second term leads to SOT, which is of the
field-like symmetry,

T = T⊥ (Sz, 0,−Sx) (A18)

and

T⊥ = −2jexµ1

µB
=

~λ
et

(I↑ − I↓). (A19)

Appendix B: Equation of motion for the spin density

Generally, the result given above can be derived directly
from the equation of motion for the spin density. The
spin current operator in the second quantization is

ĵ
S

i→j = − i
4

∑
σσ′

(
ĉ+σ

′

j {σ, t̃ji}σ
′σ ĉσi −H.C.

)
, (B1)

where {σ, t̃ji} is the symmetrized product of the Pauli
matrices and tight-binding Hamiltonian of a general form

Ĥ =
∑
ij,σσ′

t̃σσ
′

ij ĉ+σi ĉσ
′

j .

In the absence of SOC, the Hamiltonian Ĥ0 given by
Eq. (1) produces the well-known “kinetic” contribution
to the spin current

ĵSxi→j = − it
2

(ĉ+↑j ĉ↓i + ĉ+↓j ĉ↑i − ĉ
+↑
i ĉ↓j − ĉ

+↓
i ĉ↑j ),

ĵ
Sy
i→j = − t

2
(ĉ+↑j ĉ↓i − ĉ

+↓
j ĉ↑i − ĉ

+↑
i ĉ↓j + ĉ+↓i ĉ↑j ),

ĵSzi→j = − it
2

(ĉ+↑j ĉ↑i − ĉ
+↓
j ĉ↓i − ĉ

+↑
i ĉ↑j + ĉ+↓i ĉ↓j ),

(B2)

while the SOC part of the Hamiltonian ĤSO given by
Eq. (2) gives rise to the SOC-induced spin currents with
the only non-zero components

ĵSxSO,i→i+ex
= λρ̂i,i+ex ,

ĵ
Sy
SO,i→i+ey

= −λρ̂i,i+ey ,
(B3)

where ρ̂ij = 1
2

∑
σ(ĉ+σj ĉσi + H.C.).

Starting from the equation of motion for the spin den-
sity operator in a Heisenberg picture

dŝi
dt

= − i
~

[ŝi, Ĥ] (B4)

with ŝi = ~
2

∑
σσ′ ĉ

+σ′

i σσ
′σ ĉσi , we obtain41

dŝi
dt

+ div ĵ
S

i − jexŝi × S = ĵ
ω

i , (B5)

where ĵ
ω

is given by

ĵωxi =
λ

t
(ĵSzi→i+ex

+ ĵSzi−ex→i),

ĵ
ωy
i =

λ

t
(ĵSzi→i+ey

+ ĵSzi−ey→i),

ĵωzi =
λ

t
(ĵSxi→i+ex

+ ĵSxi−ex→i + ĵ
Sy
i→i+ey

+ ĵ
Sy
i−ey→i)

(B6)

and reflects the fact that spin is not a conserved quantity
in the presence of SOC which acts as a magnetic field
forcing spin to precession.42

Taking statistical averages of the spin density in a
steady sate gives〈

div ĵ
S

i

〉
− jex 〈ŝi × S〉 =

〈
ĵ
ω

i

〉
.

For the sake of simplicity, we consider the magnetization
lying in the xz plane, S = (sin θ, 0, cos θ), and the spin
polarized current flowing along the x axis. In a ballistic
regime, the divergence of the spin current is close to zero
on a macroscopic scale, when the system is large enough
so that all inhomogeneities are negligible. To first order
in SOC, we can also neglect all the induced currents flow-
ing along the transverse y direction. However, one should
take into account that the non-collinearity between ŝi
and S to first order in SOC is driven by the transverse
component of the spin current, that is ĵSzi→i+ey

, and ac-

cording to Eq. (B6) only ŝy produces SOT with the non-
zero x and z components

−jex 〈ŝy〉Sz =
2λ

t

〈
ĵSzi→i+ex

〉
,

jex 〈ŝy〉Sx =
2λ

t

〈
ĵSxi→i+ex

〉
,

(B7)

respectively. All the averages in this equation can be
expressed through NEGF Ĝ<i,j = i〈ĉ+j ĉi〉. Taking into

account Eqs. (7) and (8), and substituting 〈ĵSzi→i+ex
〉 =

ISz cos θ and 〈ĵSxi→i+ex
〉 = ISz sin θ after a transformation

to the global coordinate frame, we finally obtain

T⊥ =
2λ

t
ISz (Sz, 0,−Sx)

=
~λ
et

(I↑ − I↓)(Sz, 0,−Sx),

(B8)

that is the same result obtained in Appendix A. It is
worth noting that the DLT is absent in this derivation as
the electric does not appear explicitly in the Hamiltonian.
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