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In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that
can be in the terahertz range, making them interesting components for spintronic devices. Here,
it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a
system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-
dependent interplay between spin-torque, ac spin-accumulation and magnetic degrees of freedom is
studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent
conductivity of the normal metal. Further, a comparison is made between spin-current and Oersted
field-induced excitation under the condition of constant power injection.

Spin-transfer torque (STT) and giant magnetoresis-
tance [1–6] form the foundation of spintronics, together
with more recent additions such as spin-orbit torques,
whose prominent manifestations are the spin-Hall and
inverse spin-Hall effects (SHE/ISHE) [7–9]. The lat-
ter, besides their usefulness for device applications, have
also developed into standard experimental methods of
spin current generation and detection. The interplay
of spin-currents and ferromagnetic materials continue to
be at the core of developments towards magnetic ran-
dom access memory (STT-MRAM), sensors, and radio-
frequency components.
Parallel to these efforts, antiferromagnetic materials

have recently been considered as active components in
spintronic applications. So far, most theoretical studies
show that, similarly to ferromagnets, the order param-
eter of an antiferromagnet can be manipulated by spin-
transfer torque [10–14] or by optical and magnetic pulses
[15–17], and other excitation mechanisms have been pro-
posed [18]. Insulating antiferromagnets are also inten-
sively studied in conjunction with spin transport [19–22].
In the context of practical applications, antiferromag-

nets exhibit a number of advantages compared to fer-
romagnets [23]: First, their compensated magnetic mo-
ments lack any stray fields, which have been identified
as potentially limiting the performance of ferromagnet-
based STT-MRAM. In addition, antiferromagnet dynam-
ics can be significantly faster than in ferromagnets —
their response can be at THz frequencies. Besides the
conventional generation of STT through perpendicular-
to-plane injection of polarized dc or — in the case of STT
ferromagnetic resonance [24] — ac charge currents, the
SHE can be employed for the same purpose. In latter
case, a nonmagnetic metal (NM) with pronounced spin-
orbit coupling is placed adjacent to the magnetically or-
dered layer. A charge current parallel to the plane of the
NM layer will result in spin-current, whose spatial direc-
tion is set by the vector product of the charge current and
the spin-polarization direction [9]. Studies exploiting the
SHE in this particular geometry have so far mostly been
performed on ferromagnetic and ferrimagnetic materials
[25–30], and few on antiferromagnetic layers [31].

FIG. 1. Schematic of the structure. An antiferromagnetic
insulator is coupled to a normal metal layer with pronounced
spin-orbit coupling, which is subjected to a rapidly oscillating
charge current jext in the x-direction. The order parameter of
the antiferromagnet is excited by the spin-Hall effect in a sam-
ple geometry that is typically used in ferromagnetic resonance
experiments. The inset illustrates the processes taking place
near the interface between both layers: as a result of the oscil-
lating spin-current, an ac spin-accumulation with amplitude
µ̂s builds up, as represented by the continuous lines extending
from the interface into the normal metal layer. When driven
near antiferromagnetic resonance (dashed lines in the normal
metal and dashed arrows in the antiferromagnet), the spin-
accumulation amplitude changes, leading to changes in the
total spin current Js,z across the interface.

In this work, an experiment is proposed that takes ad-
vantage of the SHE in order to study antiferromagnets
in a sample geometry similar to that used to do ferro-
magnetic resonance spectroscopy, where the role of the
Oersted field is replaced by an oscillating spin-current.
Resonant excitation of antiferromagnetic insulators by
spin-orbit torques can be of significantly higher efficiency
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compared to that by Oersted fields. In deriving the
frequency-dependent waveguide conductivity it will be
shown that the resonant precession of the antiferromag-
netic order parameter affects the ac electrical transmis-
sion properties of the waveguide. The proposed method
can be used to investigate in principle any antiferromag-
netic insulator thin film, including MnF2 [32–34] and NiO
[21, 35–37].
The considered system consists of an antiferromagnetic

insulator (AFM) with two symmetric sublattice magneti-
zations which is assumed to exhibit a uniaxial anisotropy.
The AFM is coupled to a normal metal (NM) thin film
with strong spin-orbit interaction that serves as a wave-
guide for an rapidly oscillating ac charge current.
The coordinate system is depicted in Fig. 1: The x-

axis is the direction of current propagation and coincides
with the direction of uniaxial anisotropy in the AFM. The
z-axis is the direction perpendicular to the NM/AFM in-
terface, which is assumed to lie in the x-y plane (z = 0).
Denoting the thicknesses of NM and AFM films by dN
and dA, respectively, the NM film occupies the space
[0, dN ] and the AFM is located in [−dA, 0]. An exter-
nally imposed oscillating charge current density of fre-
quency ω = 2πf , jext(t) = êxj0 cos(ωt), flows along the
x-direction, where êi, i ∈ {x, y, z} denotes the unit vec-
tor along the ith direction. That current arises from a
time-dependent electric field Eext(t) = E(t)êx, so that
jext(ω) = σ(ω)Eext(ω), where σ(ω) is the frequency-
dependent conductivity of the NM.
As the goal is to investigate processes in the scale of

hundreds of GHz and higher, the frequency dependence
of the conductivity will be included in the calculation. In
the frequency domain, and to first order in the excitation,

µs(z, ω) = σsf(ω)D(ω)
∂2

∂z2
µs(z, ω) (1)

for the spin-accumulation µs in the normal metal. In
Eq. (1), D(ω) := 1

3
σtr(ω)v

2
F is the diffusion constant, and

σsf(ω) := i/(ω + i/τsf), and σtr(ω) := i/(ω + i/τtr) refer
to the spin-flip and transport conductivities, respectively.
Similarly, τtr and τsf denote the transport and spin-flip
relaxation times, respectively, and vF is the Fermi ve-
locity, i.e., the velocity of electrons with kinetic energy
equal to the Fermi energy in the normal metal. With
κ(ω) = [σsf(ω)D(ω)]−

1

2 as the inverse of the frequency-
dependent spin diffusion length, the general solution of
Eq. (1) is

µs(z, ω) = A(ω) exp[−κ(ω)z] +B(ω) exp[κ(ω)z]. (2)

The frequency-dependent spin current along the z-
direction, caused by the gradients in the spin-
accumulation and the external electric field via the ISHE
is then

Js,z(z, ω) = −σ(ω)θSHE(ω)êy −
σ(ω)

2e

∂µs(z, ω)

∂z
, (3)
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FIG. 2. The effective conductance G , as defined in Eq. (14)
further below, determines the influence of the AFM magneti-
zation dynamics on the spin-accumulation at the NM/AFM
interface. This example is based on a Pt/MnF2 bilayer with
the sample parameters in Table I, and dA = 5nm. The spin-
mixing conductance is set to 1.9×1014 Ω−1m−2. The dashed,
dotted and solid lines correspond to the real part, imaginary
part and the absolute value of G , respectively. The peak po-
sition corresponds to the AFM resonance frequency.

where e > 0 is the elementary charge and θSH de-
notes the Spin-Hall angle. The requirement that the
above spin current vanishes at the lower boundary of the
normal metal, Js,z(dN , ω) = 0, allows to express spin-
accumulation with A(ω)+B(ω) = µs(0, ω) as the single
parameter:

cosh[κ(ω)dN ]µs(z, ω) = cosh[κ(ω)(dN − z)]µs(0, ω)

− 2eκ−1(ω) sinh[κ(ω)z]êyθSHE(ω), (4)

Accordingly, the spin current at the NM/AFM interface
is

Js,z(0, ω) = [σ(ω)/(2e)]κ(ω) tanh[κ(ω)dN ]µs(0, ω)

− 2σ(ω)
sinh2[κ(ω)dN/2]

cosh[κ(ω)dN ]
êyθSHE(ω). (5)

We now consider the spin currents in the AFM. There
are two contributions [10, 28, 38], one related to the spin-
transfer torque,

JSTT
s,z (t) =

Gr

2e

∑

i

mi(t)× [mi(t)× µs(0, t)], (6)

and the one arising from spin pumping

JSP
s,z (t) =

~Gr

2e

∑

i

mi(t)×
d

dt
mi(t). (7)

In Eqs. (6) and (7), mi (i ∈ {1, 2}) denote the two
sublattice magnetization unit vectors, and for simplicity
it is assumed that the spin-mixing conductanceGr is real.
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This assumption can be made, since its imaginary part
is usually orders of magnitude smaller than its real part
[12]. The goal is to solve the continuity condition at the
NM/AFM interface,

Js,z(0, t) = JSTT
s,z (t) + JSP

s,z (t) (8)

for µs(0, t), while considering that the magnetization dy-
namics of the sublattices is governed by two coupled
Landau-Lifshitz-Gilbert equations [10, 28],

dmi

dt
=− γmi ×Hi + αmi ×

dmi

dt
+ γGmi × [mi × µs(0, t)]. (9)

The exchange coupling between the lattice magneti-
zations is mediated by the effective fields µ0MsHi =
−∇mi

E , derived from the energy density E with
(µ0Ms)

−1E = −λm1 · m2 − hext ·
∑

mi −
1

2
hk

∑

(êx ·
mi)

2− 1

2
hp

∑

(êz ·mi)
2. Here, Ms is the saturation mag-

netization of each sublattice. Furthermore, γ is the gy-
romagnetic ratio, while hk and hp denote the strength of
two uniaxial anisotropies to include biaxial cases such as
NiO. The axes of hk and hp are oriented along the x-
and z- direction, respectively. λ determines the strength
of the exchange interactions between the sublattice mag-
netic moments, and G = ~Gr/(4e

2µ0MsdA) is the scaled
(real) spin-mixing conductance. The external magnetic
field is assumed to consist only of the time dependent
Oersted field hOe generated by the oscillating charge cur-
rent, hext = hOeêy. Finally, the effective damping α is
the sum of the Gilbert damping α0 and a contribution
γ~G, accounting for spin-pumping.
The AFM resonance frequency can be as high as 0.1-

1THz, i.e., it is comparable to τ−1

sf
and τ−1

tr . Thus, the
spin-accumulation in the NM and the magnetization dy-
namics in the AFM take place on the same time scale,
which requires a self-consistent solution of Eq. (8). This
is in contrast to previous work considering similar sam-
ple geometries [28, 29], where the dynamical time scales
of the magnetic system and the conductor could be sep-
arated, and the time dependence only entered through
the boundary conditions. To this end, it is helpful to
note that the interest is in small angle precession of the
magnetizations. It is therefore sufficient to expand to
first order in the deviations of the sublattice magnetiza-
tions from the ground state, where the lattice magnetiza-
tions are largely oriented along the anisotropy axis, i.e.
mi ≈ (−1)i−1êx+δmi,yêy+δmi,zêz. The dynamic parts
of the lattice magnetizations, the spin-accumulation and
the Oersted field can be considered as small and of first

order in Eext. Then, the linearized equation of motion
for the magnetizations reads

d

dt
δm(t) = M δm(t) + N hOe(t) + A p(t), (10)

with δm(t) := [δm1y(t), δm1z(t), δm2y(t), δm2z(t)]
T and

p(t) = [0, µsy(0, t), µsz(0, t)]
T . Furthermore, in Eq. (10),

− (1 + α2)γ−1
M :=









α(hk − λ) hk − hp − λ −αλ −λ
−hk + λ α(hk − hp − λ) λ −αλ
−αλ λ α(hk − λ) −hk + hp + λ
−λ −αλ hk − λ α(hk − hp − λ)









,

A := −
γ

1 + α2
G









0 1 −α
0 α 1
0 1 α
0 −α 1









,

and N := − γ
1+α2 (−α, 1,−α,−1)T . Then, to first order,

the expressions (6) and (7) can be written as

JSTT
s,z (ω) = −

Gr

e
p(ω), (11)

and

e

~Gr

JSP
s,z (ω) =L [−iω − M ]−1[N hOe(ω) + A p(ω)]

+
γ

1 + α2
[hOe(ω)êy + αGp(ω)], (12)

where

L := −
1

2

γ

1 + α2
×

×







0 0 0 0

hk − 2λ −α(hk − hp) hk − 2λ α(hk − hp)

αhk hk − hp − 2λ −αhk hk − hp − 2λ






.

With Eqs. (11) and (12), Eq. (8) can be solved for
µs(0, ω). In the symmetric sample orientation considered
here, only the y-component of the spin-accumulation is
non-vanishing:

µsy(0, ω)

eθSHE(ω)
=

[

cosh(dNκ)G (ω)

2σ sinh2(dNκ/2)
+ coth

(

dNκ

2

)

κ

2

]

−1

(13)

with the effective conductance

G (ω) = Gr

γ2(hk − 2λ)(hk − hp + iG~ω) + αγω[G~ω − i(2hk − hp − 2λ)]− (1 + α2)ω2

γ2(hk − hp)(hk − 2λ)− iαγ(2hk − hp − 2λ)ω − (1 + α2)ω2
(14)
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FIG. 3. Time domain spin-voltage amplitudes µ̂sy/(2e) as a function of the excitation frequency ω = 2πf , computed for the
example systems Pt/MnF2 and Pt/NiO with the material parameters displayed in Table I. For the spin-mixing conductance
Gr, a value of 1.9 × 1014 Ω−1m−2 is assumed, the normal metal thickness is set to dN = 10nm and j0 = 106 A/cm2. In (a),
the line profiles are shown for various thicknesses of the AFM layer. The line positions correspond to the AFM mode with
frequency ω = γ

√

(hk − hp)(hk − 2λ). The frequency shift between the two materials is largely associated with the order of
magnitude higher exchange coupling in NiO. Higher AFM layer thicknesses lead to narrow linewidths, which is a consequence
of the spin-pumping contribution to the damping of the AFM oscillations. The resonant driving of the AFM by the spin-current
leads to increased spin pumping, which creates a shift in the local spin-accumulation in the normal metal. The spatial and
frequency dependence of the induced change in spin-accumulation is shown in (b) for Pt/MnF2 and dA = 5nm. The changes
in the spin currents associated with the resonant precession of the AFM magnetic moments cause changes in the net charge
current, as a consequence of the SHE. The resulting effect on the mean current density is captured by an effective conductance
shown in panel (c).

TABLE I. Material parameters used in the calculations

Antiferromagnet parameters [34–36, 39] Normal metal parameters [40, 41]

Ms hk hp λ α0 γ σ(0) τtr τsf λN θSH

[Am−1] [Am−1] [Am−1] [Am−1] [mA−1s−1] [Ω−1m−1] [fs] [fs] [nm]

MnF2 4.77 × 104 6.76 × 105 0 −4.22× 107 1.0× 10−3 2.08 × 105
2.44× 106 18 10 1.4 0.12

NiO 5.60 × 105 9.79 × 103 −5.71× 105 −6.81× 108 1.0× 10−3 2.41 × 105

The quantity G (ω) contains all the properties of the AFM
and establishes the link between the two subsystems of
wave-guide and magnet. An example for G (ω), computed
for MnF2, is shown in Fig. 2. The line-shaped feature re-
flects the increased spin pumping activity when the AFM
is driven near resonance. With G (ω), it is possible to
compute the self-consistent spin-accumulation resulting
from the interplay with the AFM. Examples are shown
in Fig. 3.
The influence of the Oersted field generated by the

oscillating current is much smaller than that of the
SHE, and therefore its contribution to the result (13)
has been omitted. The two excitation mechanisms can
be compared when taking into account the full expres-
sion for JSP

s,z in Eq. (12) which still contains the Oer-
sted field. Such a comparison is made in Fig. 4 as a
function of waveguide thickness under the experimen-
tally relevant condition of constant power injection, cor-
responding to a fixed value of the mean injected power
〈P 〉 ∼ dNj

2
0/|σ(ω)|. In the figure, the solid line repre-

sents the full solution including SHE and Oersted field.
The case represented by the dashed line refers to the
situation where the Oersted field is omitted (correspond-
ing to the result in Eq. (13)). Similarly, the result given
by the dotted line is obtained by setting the spin-Hall
angle to zero, resulting in a pure Oersted field excita-
tion. Starting at low dN, the AFM precession amplitude
first increases, as the spin-accumulation builds up on the
length scale of the spin diffusion length λN. As dN is
increased further, the current density and thus the influ-
ence of the spin-transfer torque decrease, until the Oer-
sted field starts to dominate at dN ≈ 0.5µm. At this
length scale, however, the skin depth is expected to limit
further increase of the Oersted field’s influence.
The spin-accumulation imbalance induced by the AFM

dynamics influences the charge transport through the
NM layer via the SHE. The waveguide thickness-averaged
charge current density and the electric field are related
by the effective electric conductivity σ̃ with
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FIG. 4. AFM precession amplitude at resonance under the
condition of constant power injection into the wave guide.
The initial increase of the amplitude results from the build-up
of spin-accumulation, hence λN is the relevant length scale. At
higher NM thickness, the total current and thus the influence
of the Oersted field increase. This trend is however limited
by the skin depth (not included in the calculation), which is
estimated to be hundreds of naometers for the frequencies.

σ̃

σ
− 1 = 4θ2SH

sinh(κdN

2
)
[

κσ sinh(κdN

2
) + G cosh(κdN

2
)
]

dNκ [κσ sinh(κdN) + 2G cosh(dNκ)]
.

(15)

The above change in the conductivity is shown in Fig.
3(c). The resonant dynamics of the AFM is transferred
via the ISHE to the charge flow through the spin-Hall
metal, resulting in an effective conductivity that exhibits
a peak at the resonance frequency of the AFM. The
effect is caused by the magnetization dynamics; it takes
place on top of the spin-accumulation background set
by the so-called Spin-Hall magnetoresistance [42, 43].
The size of the feature is small due to the averaging over
the waveguide and the fact that it is of second order in
θSH. However, transport effects of comparable size have
been measured at GHz frequencies [44], and modules
extending network analyzer operation to the THz range
are available.
In summary, the analysis here considers the time-

dependent interplay between the AFM spin dynamics
and the spin-transport in the waveguide on an equal,
self-consistent footing. The proposed method provides
an efficient mechanism to excite and study spin-waves in
normal metal / antiferromagnet thin film systems. From
a practical point of view, ac-spin currents generated by
spin-orbit torques provide a new way to study antiferro-
magnetic resonance in insulators and thus characterize
their magnetic interactions, including their magnetic
anisotropy, exchange and damping.
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[16] O. Gomonay, M. Kläui, and J. Sinova, Appl. Phys. Lett.

109, 142404 (2016).
[17] T. Higuchi and M. Kuwata-Gonokami, Nat. Commun. 7,

10720 (2016).
[18] A. Sekine and T. Chiba, Phys. Rev. B 93, 220403(R)

(2016).
[19] C. Hahn, G. de Loubens, V. V. Naletov, J. B. Youssef, O.

Klein, and M. Viret, Europhys. Lett. 108, 57005 (2014).
[20] H. Wang, C. Du, P. C. Hammel, and F. Yang, Phys. Rev.

Lett. 113, 097202 (2014).
[21] T. Moriyama, S. Takei, M. Nagata, Y. Yoshimura, N.

Matsuzaki, T. Terashima, Y. Tserkovnyak, and T. Ono,
Appl. Phys. Lett. 106, 162406 (2015).

[22] Y. M. Hung, C. Hahn, H. Chang, M. Wu, H. Ohldag,
and A. D. Kent, AIP Adv. 7, 055903 (2017).

[23] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono,
and Y. Tserkovnyak, arXiv:1606.04284v2 (2017).

[24] J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski,
R. A. Buhrman, and D. C. Ralph, Nat. Phys. 4, 67
(2008).

[25] L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman,
Phys. Rev. Lett. 106, 036601 (2011).

[26] Y. Zhou, H. -J. Jiao, Y. -t. Chen, G E. W. Bauer, and J.
Xiao, Phys. Rev. B 88, 184403 (2013).

[27] H. -J. Jiao and G. E. W. Bauer, Phys. Rev. Lett. 110,
217602 (2013).

[28] T. Chiba, G. E. W. Bauer, and S. Takahashi, Phys. Rev.
Applied 2, 034003 (2014).

[29] R. Cheng, J. -G. Zhu, and D. Xiao, Phys. Rev. Lett. 117,
097202 (2016).

[30] M. Schreier, T. Chiba, A. Niedermayr, J. Lotze, H.
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