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We demonstrate that a weak external magnetic field can induce negative magneto-thermal-
resistance for magnons in a disordered two-dimensional antiferromagnet. We study the main effect
of a weak external magnetic field on the longitudinal thermal conductivity, κxx, for a disordered an-
tiferromagnet using the weak-localization theory for magnons. We show that the weak-localization
correction term of κxx positively increases with increasing the magnetic field parallel to the ordered
spins. Since this increase corresponds to a decrease of the thermal resistivity, this phenomenon is
negative magneto-thermal-resistance for magnons. This negative magneto-thermal-resistance and
the weak localization of magnons will be used to control the magnon thermal current in antifer-
romagnetic spintronics devices. We also discuss several implications for further experimental and
theoretical studies for disordered magnets.

I. INTRODUCTION

Negative magnetoresistance can occur in a disordered
electron system with a weak magnetic field. For electron
systems without disorder, the resistivity increases as the
magnetic field increases1. This tendency is called positive
magnetoresistance. If an electron system has impurities,
the resistivity can decrease with increasing the magnetic
field2–5. This negative magnetoresistance is observed in
a disordered two-dimensional electron system6.
The above negative magnetoresistance originates from

an effect of the magnetic field on the weak localization.
In two dimensions, impurities can induce the weak lo-
calization of electrons7, resulting in, for example, dras-
tic suppression of the electron charge current parallel
to an external electric field. This arises from the crit-
ical back scattering of electrons due to the multiple
impurity scattering between electrons in the presence
of time-reversal symmetry2,3. Since the magnetic field
breaks time-reversal symmetry, the magnetic field inter-
feres with the weak localization4,5. This effect results in
a reduction in the resistivity.
A similar magneto-transport phenomenon may occur

in a disordered antiferromagnet with a weak external
magnetic field. In a disordered two-dimensional anti-
ferromagnet (Fig. 1), the critical back scattering of
magnons drastically suppresses the magnon thermal cur-
rent parallel to temperature gradient8. This is the weak
localization of magnons. Since antiferromagnets have
time-reversal symmetry, the effect of an external mag-
netic field may lead to a magneto-thermal-transport phe-
nomenon characteristic of the disordered magnets.
In this paper, we study the longitudinal thermal con-

ductivity, κxx, for a disordered antiferromagnet with a
weak external magnetic field. As an effective model, we
use the Hamiltonian, which consists of the antiferromag-
netic Heisenberg interaction and magnetic anisotropy,
the mean-field type impurity potential, and the Zeeman
coupling. Extending the weak-localization theory8 for
a disordered antiferromagnet to the case with the weak
magnetic field, we analyze its main effect on κxx. We
show that as the magnetic field increases, κxx increases

FIG. 1: Schematic picture of our disordered two-dimensional
antiferromagnet. Orange circles represent magnetic ions that
exist even in the nondisordered system, and blue circles rep-
resent different magnetic ions. Up and down arrows represent
spin-up and spin-down, respectively. The Heisenberg interac-
tions between orangle circles, between an orange and a blue
circle, and between blue circles are J , J + J

′, and J + J
′′,

respectively. For more details, see Sec. II and Appendix A.

due to the positive increase of the weak-localization cor-
rection term of κxx in a similar way to the negative mag-
netoresistance for electrons2–4. This is negative magneto-
thermal-resistance for magnons due to the effects of the
weak localization and the weak magnetic field. Then, we
discuss the similarities and differences between our phe-
nomenon and the electrons’ phenomenon, and provide
experimental and theoretical implications. Throughout
this paper, we set h̄ = 1 and kB = 1.

II. MODEL

Our Hamiltonian consists of three parts as follows:

Ĥ = Ĥ0 + Ĥimp + ĤZ. (1)

Here Ĥ0 is the Hamiltonian of an antiferromagnet with-
out impurities, Ĥimp is the impurity Hamiltonian, and

ĤZ is the Hamiltonian of an external magnetic field.
First, Ĥ0 is given by the nearest-neighbor antiferromag-
netic Heisenberg interaction and the magnetic anisotropy
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as follows:

Ĥ0 = 2J
∑

〈i,j〉

Ŝi · Ŝj −K
[

∑

i∈A

(Ŝz
i )

2 +
∑

j∈B

(Ŝz
j )

2
]

, (2)

where site indices i and j satisfy i ∈ A and j ∈ B for
A or B sublattice. We have considered the positive J
and K. Second, Ĥimp is given by the mean-field-type
impurity potential8 as follows:

Ĥimp = −
∑

i∈Aimp

VimpŜ
z
i +

∑

j∈Bimp

VimpŜ
z
j . (3)

This Hamiltonian describes the main effect of impurities,
i.e., the change of the exchange interaction due to substi-
tuting part of magnetic ions by different magnetic ions8;
we treat this partial substitution as randomly distributed
impurities for magnets8 (see Fig. 1). For more details,
see Appendix A. We suppose that the numbers of Aimp

and Bimp are the same. Third, ĤZ is given by the Zeeman
coupling as follows:

ĤZ = −H
∑

i∈A

Ŝz
i −H

∑

j∈B

Ŝz
j . (4)

Then, we can express our Hamiltonian in terms of
magnon operators using the linear-spin-wave approxima-
tion9 for a collinear antiferromagnet. Using it, we obtain

Ĥ0 =
∑

q

∑

l,l′=A,B

ǫll′(q)x̂
†
qlx̂ql′ , (5)

Ĥimp =
∑

q,q′

∑

l=A,B

V imp
l (q − q′)x̂†

qlx̂q′l, (6)

ĤZ =
∑

q

∑

l=A,B

Hlx̂
†
qlx̂ql. (7)

Each quantity in those equations is defined as follows.
ǫll′(q) is given by

ǫll′(q) =

{

2S[J(0) +K] (l = l′)

2SJ(q) (l 6= l′)
, (8)

where S is spin quantum number, and J(q) =
J
∑z

j=1 e
iq·rj with z, coordination number. Magnon op-

erators x̂ql and x̂†
ql are given by

x̂ql =

{

âq (l = A)

b̂†q (l = B)
, (9)

and

x̂†
ql =

{

â†q (l = A)

b̂q (l = B)
, (10)

where âq and â†q are annihilation and creation operators

of a magnon for A sublattice, and b̂q and b̂†q are those for

B sublattice. V imp
l (Q) is given by

V imp
l (Q) =















Vimp
2

N

∑

i∈Aimp

eiQ·i (l = A)

Vimp
2

N

∑

j∈Bimp

eiQ·j (l = B)
, (11)

whereN is the total number of sites. Note that due to the
restriction of the sum of sites in Ĥimp [see Eqs. (3) and

(11)], Ĥimp is non-diagonal in terms of momentum, as
seen from Eq. (6). This property is the origin of the finite
back scattering in disordered systems; however, the finite
back scattering does not always imply the localization of
quasiparticles, such as magnons. Hl is given by

Hl =

{

H (l = A)

−H (l = B)
. (12)

We can also rewrite our Hamiltonian in the band rep-
resentation using the Bogoliubov transformation9,

x̂ql =
∑

ν=α,β

Ulν(q)x̂qν . (13)

The transformation matrix Ulν(q) is so determined that

the matrix of Ĥ0 + ĤZ is diagonalized. We thus get

UAα(q) = UBβ(q) = cosh θq, (14)

UAβ(q) = UBα(q) = − sinh θq, (15)

where the hyperbolic functions satisfy

tanh 2θq =
ǫAB(q)

ǫAA(q)
. (16)

As a result of the diagonalization, we obtain

Ĥ0 + ĤZ =
∑

q

∑

ν=α,β

ǫqν x̂
†
qν x̂qν , (17)

and

ǫqν =

{

ǫq +H (ν = α)

ǫq −H (ν = β)
, (18)

where ǫq =
√

ǫAA(q)2 − ǫAB(q)2. Since the magnon en-
ergy should be non-negative, the external magnetic field
should be smaller than the magnon dispersion energy for
discussions about the effect of the external magnetic field
on magnon transport of antiferromagnets. This is the
reason why we consider only the weak-field case of the
external magnetic field.

III. MAGNETO-THERMAL-TRANSPORT

As a magneto-transport property, we consider the lon-
gitudinal thermal conductivity κxx under the assump-
tions of local equilibrium and local energy conservation.
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κxx is given by jxQ = κxx(−∂xT ), where (−∂xT ) is tem-
perature gradient and jxQ is the thermal current. Since
the magnon thermal current is equal to the magnon en-
ergy current because of no charge current, we use the
thermal current and the energy current for magnons in
the same sense. Due to local energy conservation, we
can derive the magnon energy current for our model in a
similar way to the electron charge current8,10: the energy
current operator is determined by10

ĴE = i
∑

i,j

ri[ĥj , ĥi], (19)

where ĥi is defined by Ĥ =
∑

iĥi. By calculating the
right-hand side of Eq. (19) for our model, we obtain the
energy current operator,

ĴE =
∑

q

∑

l,l′=A,B

ell′(q)x̂
†
qlx̂ql′

=
∑

q

ǫAB(q)
∂ǫAB(q)

∂q
(â†qâq − b̂q b̂

†
q). (20)

Here, ell′(q) has been defined as eAA(q) = −eBB(q) =

ǫAB(q)
∂ǫAB(q)

∂q and eAB(q) = eBA(q) = 0.

In the weak-localization regime, we can express κxx as8

κxx = κ(Born)
xx +∆κxx, (21)

where κ
(Born)
xx is the longitudinal thermal conductivity in

the Born approximation,

κ(Born)
xx =

1

TN

∑

q

∑

l1,l2,l3,l4

exl1l2(q)e
x
l3l4(q)P

∫ ∞

−∞

dǫ

2π

×
[

−
∂n(ǫ)

∂ǫ

]

D̄
(A)
l4l1

(q, ǫ)D̄
(R)
l2l3

(q, ǫ), (22)

and ∆κxx is the weak-localization correction term,

∆κxx =
1

TN

∑

q,q′

∑

l1,l2,l3,l4

exl1l2(q)e
x
l3l4(q

′)P

∫ ∞

−∞

dǫ

2π

×
[

−
∂n(ǫ)

∂ǫ

]

∑

l,l′

D̄
(A)
l4l′

(q′, ǫ)D̄
(R)
ll3

(q′, ǫ)

× Γl′l(q + q′, ǫ)D̄
(A)
ll1

(q, ǫ)D̄
(R)
l2l′

(q, ǫ). (23)

For the derivation, see Appendix B. In those equations,
n(ǫ) is the Bose distribution function, n(ǫ) = (eǫ/T−1)−1;

D̄
(R)
ll′ (q, ǫ) and D̄

(A)
ll′ (q, ǫ) are retarded and advanced

Green’s functions of magnons after taking the impurity
averaging; Γl′l(q+q′, ǫ) is the particle-particle-type four-
point vertex function due to the multiple impurity scat-
tering. Furthermore, the vertex function and the Green’s
functions are connected by the Bethe-Salpeter equation,

Γll′(Q, ω) =γimpΠll′ (Q, ω)γimp

+
∑

l′′

γimpΠll′′ (Q, ω)Γl′′l′(Q, ω), (24)

where γimp = 2
N nimpV

2
imp with the impurity concentra-

tion nimp, and

Πll′(Q, ω) =
∑

q1

D̄
(R)
ll′ (q1, ω)D̄

(A)
ll′ (Q− q1, ω). (25)

To analyze the main effect of the weak magnetic field
on κxx, we first analyze the magnon Green’s functions.
We can express the retarded Green’s function in the ab-
sence of impurities as follows:

D
0(R)
ll′ (q, ω) =

Ulα(q)Ul′α(q)

ω − ǫq −H + iδ
−

Ulβ(q)Ul′β(q)

ω + ǫq −H + iδ
, (26)

where δ = 0+. Since for the weak magnetic field, H
is smaller than the magnon dispersion energy, the main
contribution for ω > 0 comes from the first term of the
right-hand side of Eq. (26), the positive-pole contribu-
tion; the main contribution for ω < 0 comes from the
second term, the negative-pole contribution. We thus

approximate D
0(R)
ll′ (q, ω) as

D
0(R)
ll′ (q, ω) ∼















Ulα(q)Ul′α(q)

ω − ǫq −H + iδ
(ω > 0)

−
Ulβ(q)Ul′β(q)

ω + ǫq −H + iδ
(ω < 0)

. (27)

Replacing δ in Eq. (27) by −δ, we obtain D
0(A)
ll′ (q, ω).

Then, we can derive the magnon Green’s functions in
the presence of impurities by using the Dyson equation
and taking the impurity averaging8; the Dyson equa-

tion, for example, for retarded quantities is D̄
(R)
ll′ (q, ω) =

D
0(R)
ll′ (q, ω)+

∑

l′′ D
0(R)
ll′′ (q, ω)Σ

(R)
l′′ (ω)D̄

(R)
l′′l′(q, ω) with the

self-energy in the Born approximation. In that deriva-
tion, we neglect the real part of the self-energy and con-
sider only its imaginary part because the imaginary part
is vital for the weak localization2,3. As a result, we obtain

D̄
(R)
ll′ (q, ω)

∼















Ulα(q)Ul′α(q)

ω − ǫq −H + i[γ̃(ω) + γ̃H(ω)]
(ω > 0)

−
Ulβ(q)Ul′β(q)

ω + ǫq −H + i[γ̃(−ω) + γ̃H(−ω)]
(ω < 0)

. (28)

Here γ̃(ω) is the damping that is finite even for H = 0,

γ̃(ω) =(cosh4 θq + sinh4 θq)πnimpV
2
impρ(ω)

=(cosh4 θq + sinh4 θq)γ(ω), (29)

and γ̃H(ω) is the damping that is finite only for H 6= 0,

γ̃H(ω) =(cosh4 θq + sinh4 θq)πnimpV
2
imp[ρ(ω −H)− ρ(ω)]

=(cosh4 θq + sinh4 θq)γ
H(ω), (30)

where ρ(ω) is the density of states for magnons, and q

of cosh4 θq and sinh4 θq are determined by ǫq = |ω|. For
the sake of simplicity, we consider only the magnetic-field
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effect coming from the damping and neglect the other
effect hereafter because the effect of the energy shifts in
the denominators of Eq. (28) is small for weak H and is
similar to the effect of the real part of the self-energy. As

a result, D̄
(R)
ll′ (q, ω) is expressed as follows:

D̄
(R)
ll′ (q, ω)

=















Ulα(q)Ul′α(q)

ω − ǫq + i[γ̃(ω) + γ̃H(ω)]
(ω > 0)

−
Ulβ(q)Ul′β(q)

ω + ǫq + i[γ̃(−ω) + γ̃H(−ω)]
(ω < 0)

. (31)

Similarly, we can express D̄
(A)
ll′ (q, ω) as follows:

D̄
(A)
ll′ (q, ω)

=















Ulα(q)Ul′α(q)

ω − ǫq − i[γ̃(ω) + γ̃H(ω)]
(ω > 0)

−
Ulβ(q)Ul′β(q)

ω + ǫq − i[γ̃(−ω) + γ̃H(−ω)]
(ω < 0)

. (32)

We next analyze Πll′(Q, ω) and Γll′(Q, ω) for small
Q = |Q| in the weak magnetic field. By combining Eqs.
(31) and (32) for ω > 0 with Eq. (25), we have

Πll′ (Q, ω) =
∑

q1

Ulα(q1)Ul′α(q1)

ω − ǫq1
+ i[γ̃(ω) + γ̃H(ω)]

×
Ulα(Q− q1)Ul′α(Q− q1)

ω − ǫQ−q1
− i[γ̃(ω) + γ̃H(ω)]

. (33)

Since Πll′ (Q, ω) for small Q is important in analyzing the
weak localization2,3,8, we use the approximations, which
are appropriate for small Q,

Ulα(Q− q1) ∼ Ulα(q1), (34)

and

ǫQ−q1
∼ ǫq1

−
∂ǫq1

∂q1
·Q = ǫq1

− vq1
·Q. (35)

Thus, Πll′ (Q, ω) for ω > 0 and small Q is given by

Πll′(Q, ω) ∼
∑

q1

Ulα(q1)Ul′α(q1)

ω − ǫq1
+ iγ̃(ω) + iγ̃H(ω)

×
Ulα(q1)Ul′α(q1)

ω − ǫq1
+ vq1

·Q− iγ̃(ω)− iγ̃H(ω)
. (36)

In addition, we approximate the momentum-dependent
Ulα(q1)

2 and vq1
as particular values, u2

lα = Ulα(q0)
2 and

vq0
; q0 is a certain momentum whose magnitude is small.

This approximation will be appropriate for a rough es-
timate because the main contributions in the sum of q1
come from the small-q1 contributions. [We will use the
similar approximation to derive Eq. (42) from Eq. (41).]
As a result of this approximation, we can easily perform

the sum of q1, and express Πll′ (Q, ω) for ω > 0 and small
Q as follows:

Πll′(Q, ω) ∼
u2
lαu

2
l′αγ(ω)[1−DH

S (ω)Q2τ̃ tot(ω)]

γimp[γ̃(ω) + γ̃H(ω)]
, (37)

where τ̃ tot(ω) = [γ̃(ω) +
γ̃H(ω)]−1= (cosh4 θq0

+ sinh4 θq0
)−1[γ(ω) + γH(ω)]−1,

and DH
S (ω) is the spin diffusion constant for d dimen-

sions, DH
S (ω) = 1

4dv
2
q0
τ̃ tot(ω). Similarly, we obtain the

expression of Πll′ (Q, ω) for ω < 0 and small Q,

Πll′ (Q, ω) ∼
u2
lβu

2
l′βγ(−ω)[1−DH

S (−ω)Q2τ̃ tot(−ω)]

γimp[γ̃(−ω) + γ̃H(−ω)]
.

(38)

Then, by using Eqs. (37), (38), and (24), we can express
Γll′(Q, ω) for small Q as follows:

Γll′(Q, ω) =
γ2
impΠll′ (Q, ω)

1− γimpΠAA(Q, ω)− γimpΠBB(Q, ω)

∼



















γimpu
2
lαu

2
l′αγ(ω)

γ̃H(ω) + γ̃(ω)DH
S (ω)Q2τ̃ tot(ω)

(ω > 0)

γimpu
2
lβu

2
l′βγ(−ω)

γ̃H(−ω) + γ̃(−ω)DH
S (−ω)Q2τ̃ tot(−ω)

(ω < 0)

.

(39)

This shows that Γll′ (Q, ω) does not diverge even in the
limit Q → 0 because of the damping that is finite only
for H 6= 0. This suggests that the weak magnetic field
suppresses the critical back scattering for Q = q + q′.
We finally analyze the main effect of the weak magnetic

field on κ
(Born)
xx and ∆κxx. Substituting Eqs. (31) and

(32) into Eq. (22) and performing the integral and sums,
we obtain

κ(Born)
xx ∼

1

TN

∑

q

(∂ǫq
∂qx

ǫq

)2[

−
∂n(ǫq)

∂ǫq

]

τ̃ tot(ǫq). (40)

In the above calculation, we have approximated [−∂n(ǫ)
∂ǫ ]

and γ̃(ǫ) + γ̃H(ǫ) as [−
∂n(ǫq)
∂ǫq

] and γ̃(ǫq) + γ̃H(ǫq) be-

cause the product of the Green’s functions in Eq. (22)
for ǫ > 0 or for ǫ < 0 is large around ǫ = ǫq or around
ǫ = −ǫq, respectively. Equation (40) shows that the
change of the lifetime, the inverse of the damping, is

the main effect of the weak magnetic field on κ
(Born)
xx .

Since the lifetime becomes short with increasing H , the

weak magnetic field reduces κ
(Born)
xx , resulting in the pos-

itive magneto-thermal-resistance; the thermal resistiv-
ity is defined as the inverse of the thermal conductiv-
ity. However, this contribution will be small because

τ̃ tot(ǫq) = 1
γ̃(ǫq)+γ̃H(ǫq)

∼ 1
γ̃(ǫq)

[1 −
γ̃H(ǫq)
γ̃(ǫq)

+ · · · ] and

γ̃H(ǫq)/γ̃(ǫq) is a small quantity for the weak magnetic
field. Then, we turn to ∆κxx. Since the dominant terms
of Γl′l(q+ q′, ǫ) in Eq. (23) come from the contributions
for small Q = |q + q′| [see Eq. (39)], we set q′ = −q
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in Eq. (23) except for Γl′l(q + q′, ǫ). Furthermore, for
comparison with the result8 without the magnetic field,
we introduce the cut-offs for the sum of q′ in Eq. (23) in
the same way as the case without magnetic fields8: the
lower value of Q = |q + q′| in the sum is replaced by
L−1, which approaches zero in the thermodynamic limit;
the upper value of Q is replaced by L−1

m , the inverse of
the mean-free path. Because of these simplifications, Eq.
(23) is reduced to

∆κxx =−
1

TN

∑

q

∑

l1,l2,l3,l4

exl1l2(q)e
x
l3l4(q)P

∫ ∞

−∞

dǫ

2π

×
[

−
∂n(ǫ)

∂ǫ

]

∑

l,l′

D̄
(A)
l4l′

(q, ǫ)D̄
(R)
ll3

(q, ǫ)

× D̄
(A)
ll1

(q, ǫ)D̄
(R)
l2l′

(q, ǫ)

′
∑

Q

Γl′l(Q, ǫ), (41)

where the prime in the sum of Q represents the cut-offs
of the upper and lower values. Our theory up to this
point is applicable to any dimension; hereafter, we apply
the theory to a two-dimensional case. In a similar way

to the case for κ
(Born)
xx , we can perform the integral and

sums in Eq. (41). As a result, we obtain

∆κxx ∼ −κ(Born)
xx

nimpV
2
imp

8πDH
S (ǫq0

)
τ tot(ǫq0

) ln
(LH

Lm

)

= −κ(Born)
xx

nimpV
2
imp

[v2
q0
/(c40 + s40)]

ln
(LH

Lm

)

, (42)

where τ tot(ω) = [γ(ω) + γH(ω)]−1, c40 = cosh4 θq0
, s40 =

sinh4 θq0
, and

LH =

√

γ̃(ǫq0
)

γ̃H(ǫq0
)
DH

S (ǫq0
)τ̃ tot(ǫq0

) = Lm

√

γ̃(ǫq0
)

γ̃H(ǫq0
)
. (43)

In the derivation of Eq. (42), we have approximated
the momentum-dependent cosh2 θq, sinh

2 θq, γ(ǫq), and

γH(ǫq) as particular values, cosh2 θq0
, sinh2 θq0

, γ(ǫq0
),

and γH(ǫq0
) in a similar way to Eq. (37) because the

main contributions in the sum of q in Eq. (41) come

from the small-q contributions due to the factor
∂n(ǫq)
∂ǫq

.

LH is a characteristic length of the magnetic-field effect,
and LH is much larger than Lm for the weak magnetic
field. In addition, LH/Lm ∝ H− 1

2 within the leading
order because the leading term of γ̃H(ǫq0

) is propor-
tional to H and γ̃(ǫq0

) is independent of H . From Eq.
(42), we can deduce three important properties of the
weak-localization correction term: one is that the co-
efficient of the logarithmic dependence of ∆κxx is in-
dependent of impurity quantities because nimpV

2
imp in

κ
(Born)
xx ∝ 1/nimpV

2
imp cancels out nimpV

2
imp appearing

in Eq. (42); another is that ∆κxx gives a negative
contribution to the magneto-thermal-resistance because
ln(LH/Lm) ∝ − lnH within the leading term; and the

other is that this contribution is not small because the
coefficient of ∆κxx is impurity-independent and because
γ̃(ǫq0

)/γ̃H(ǫq0
), appearing in ln(LH/Lm), is a large quan-

tity for the weak magnetic field. Combining Eqs. (40)
and (42), we have

κxx = κ(Born)
xx

[

1−
nimpV

2
imp

[v2
q0
/(c40 + s40)]

ln
(LH

Lm

)]

. (44)

For the expression without the magnetic field, LH in Eq.
(44) is replaced by L, and ∆κxx gives the negative log-
arithmic divergence in the thermodynamic limit8. From
the arguments in this paragraph, we conclude that the
negative magneto-thermal-resistance occurs in the two-
dimensional disordered antiferromagnet due to the effect
of the weak magnetic field on the weak localization.

IV. DISCUSSION

We first compare our result with magneto-transport
of disordered electron systems. As a magneto-transport
property of disordered electron systems, the longitudi-
nal charge conductivity of electrons, σC

xx, has been of-
ten analyzed. σC

xx in two dimensions shows the nega-
tive magnetoresistance due to the effect of a weak mag-
netic field on the weak-localization correction term of
σC
xx

2–5. In a similar way to σC
xx, the longitudinal ther-

mal conductivity of electrons in two dimensions may
show negative magneto-thermal-resistance. This nega-
tive magneto-thermal-resistance is similar to our phe-
nomenon. However, there is at least a major differ-
ence between them. Since in electron systems a ther-
mal current can induce a charge current, magneto-
thermal-transport for electrons accompanies magneto-
charge-transport for electrons. On the other hand, our
magneto-thermal-transport for magnons never accompa-
nies magneto-charge-transport because the charge cur-
rent is absent in magnets, magnetically ordered insula-
tors. Because of this major difference, our phenomenon
will be useful for magneto-thermal-transport free from
charge transport. In addition to this major difference,
there is a minor difference: the thermal current and en-
ergy current are the same in magnets, while these are
different in electron systems10.
We next discuss implications for experiments. First,

our negative magneto-thermal-resistance will be experi-
mentally observed in a quasi-two-dimensional disordered
antiferromagnet with a weak external magnetic field.
The more details are as follows. Our two-dimensional dis-
ordered antiferromagnet (Fig. 1) can be experimentally
realized by replacing part of magnetic ions in a quasi-two-
dimensional antiferromagnet by different magnetic ions;
the original magnetic ions and the different ones belong
to the same family of the periodic table. The reasons why
we consider such a replacement are that magnetic ions in
the same family have the same electron number in the
open shell, resulting in the same S, and that the main
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difference between different magnetic ions in the same
family is the difference in the overlap of the wave func-
tions, resulting in the difference in the exchange interac-
tion. Such an example is a quasi-two-dimensional anti-
ferromagnet in a Cu oxide with partial substitution of Ag
ions for Cu ions, such as La2Cu1−xAgxO4, in which Cu
ions have a (3d)9 configuration and Ag ions have a (4d)9

configuration8. In such a quasi-two-dimensional disor-
dered antiferromagnet, the weak localization of magnons
will be experimentally detectable by measuring κxx at
a low temperature in the absence of an external mag-
netic field, as proposed in Ref. 8. If the magnetic field,
whose direction is parallel to the directions of the ordered
spins, is applied to the quasi-two-dimensional disordered
antiferromagnet, the magnetic-field dependence of ∆κxx

will be ∆κxx ∝ lnH at a low temperature for weak
H . This logarithmic increase is the negative magneto-
thermal-resistance for the weak localization of magnons
in two dimensions. Then, our negative magneto-thermal-
resistance may be useful for enhancing the magnitude
of the magnon thermal current. In addition, by utiliz-
ing the effects of the weak localization of magnons8 and
the weak magnetic field, it may be possible to control
the magnitude of the magnon thermal current in spin-
tronics devices because the weak localization is useful for
reducing the magnitude, and the magnitude can vary by
changing the value of the weak magnetic field in the pres-
ence of the weak localization. Since the present possible
applications11–14 have focused mainly on non-disordered
magnets, our previous8 and present results will provide
a different possible way for applications using the prop-
erties of disordered magnets.

We finally discuss several directions for further theo-
retical studies. First of all, our theory can study the
magneto-thermal-resistance in any disordered antiferro-
magnets because this is applicable to disordered anti-
ferromagnets for any dimension, any S, and any lat-
tice with an antiferromagnetic two-sublatice structure.
As described in Sec. III, the equations formulated until
Eq. (41) are applicable to any dimension. In addition,
our theory is applicable even for not large S as long as
magnons can be defined because a ratio of Vimp to the
magnon dispersion energy is independent of S (see Ap-
pendix A); thus, our theory will be valid if temperature is
low enough to regard low-energy excitations as magnons.
Then, our theory is useful for studying other magneto-
thermal-transport phenomena, such as the thermal Hall
effect15,16 with an external magnetic field, in the disor-
dered antiferromagnet. While the essential excitations
for κxx are intraband, the interband excitations are essen-
tial for the thermal Hall conductivity15. Thus, by com-
bining the present result with the result of such a study,
it is possible to understand the roles of the different kinds
of excitations in magneto-transport phenomena for disor-
dered magnets. Moreover, our theory can be extended to
other disordered magnets. Such theories may be useful
for understanding the roles of the magnetic structure in
magneto-thermal-transport phenomena in the presence

of the weak localization of magnons.

V. SUMMARY

We have studied the main effect of a weak magnetic
field on κxx for magnons in a disordered two-dimensional
antiferromagnet in the weak-localization regime. We
have shown that the weak-localization correction term of
κxx, ∆κxx, increases with increasing the magnetic field.
This increase of ∆κxx is proportional to lnH within the
leading order. This phenomenon is negative magneto-
thermal-resistance for magnons and will be experimen-
tally observed in a disordered quasi-two-dimensional an-
tiferromagnet in the presence of a weak external mag-
netic field. Our magneto-thermal-transport phenomenon
is free from charge transports in contrast to the phe-
nomenon for electrons. Furthermore, our phenomenon
may be useful for changing the magnitude of the magnon
thermal current in antiferromagnetic spintronics devices.
Then, our theory provides a starting point for further
studies about magneto-thermal-transport phenomena for
magnons of various disordered magnets.
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Appendix A: Derivation of Eq. (3)

In this appendix, we explain how to derive Eq. (3).
Since its detail has been described in Ref. 8, we here
describe the main points. First, we assume that substi-
tuting part of magnetic ions by different magnetic ions
is one kind of disorder, and its main effect for disor-
dered Heisenberg antiferromagnets is the change of the
exchange interaction (see Fig. 1). (For the sake of sim-
plicity, we neglect the change of the magnetic anisotropy,
which is smaller than that of the exchange interaction.)

With this assumption, Ĥimp is given by

Ĥimp = 2
∑

〈i,j〉

∆JijŜi · Ŝj , (A1)

where

∆Jij =











J ′ (i ∈ A0, j ∈ Bimp)

J ′ (i ∈ Aimp, j ∈ B0)

J ′′ (i ∈ Aimp, j ∈ Bimp)

. (A2)

A0 or B0 represents A or B sublattice for magnetic ions
that exist even in the nondisordered system, orange cir-
cles in Fig. 1; Aimp or Bimp represents A or B sublattice
for different magnetic ions, blue circles in Fig. 1. Then,
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we assume that J ′ and J ′′ are much smaller than J . As
a result of this assumption, the effects of these terms on
the Neel temperature are negligible, i.e., the Neel tem-
perature of our disordered antiferromagnet is the same
as that of the nondisordered one. Since the main terms
of Ĥimp come from the mean-field type terms, we can
approximate Eq. (A1) as follows:

Ĥimp =−
∑

i∈A

V Ŝz
i +

∑

j∈B

V Ŝz
j

−
∑

i∈Aimp

VimpŜ
z
i +

∑

j∈Bimp

VimpŜ
z
j , (A3)

where V = 2Sz′J ′ and Vimp = 2Sz′′J ′′ with z′ and
z′′, the coordination numbers for ∆Jij = J ′ and for
∆Jij = J ′′, respectively. Due to this expression of Vimp,
a ratio of Vimp to the magnon dispersion energy is in-
dependent of S. In the mean-field approximation for
Ĥimp, we have assumed that the spin quantum number
for impurities is the same as that for magnetic ions of the
nondisordered system because our impurities arise from
substituting part of magnetic ions by different magnetic
ions which belong to the same family in the periodic ta-
ble and because such a substitution does not change the
spin quantum number (see Sec. IV). In our analyses, we
neglect the first and second terms of the right-hand side
of Eq. (A3) because their effects in the linear-spin-wave
approximation are the same as the effect of the magnetic
anisotropy of Ĥ0. As a result, Ĥimp is given by Eq. (3).

Appendix B: Derivation of Eqs. (21)–(23)

In this appendix, we derive Eqs. (21)–(23) using the
linear-response theory and a field theoretical technique.
This derivation is essentially the same as the derivation8

without external magnetic fields; thus, we provide the
brief explanation below. In the linear-response theory,
κxx is given by

κxx =
1

T
lim
ω→0

K
(R)
xx (ω)−K

(R)
xx (0)

iω
, (B1)

where

K(R)
xx (ω) = Kxx(iΩn → ω + i0+), (B2)

Kxx(iΩn) =
1

N

∫ T−1

0

dτeiΩnτ 〈Tτ Ĵ
x
E(τ)Ĵ

x
E〉. (B3)

Ωn is bosonic Matsubara frequency, Ωn = 2πTn (n =
0,±1, · · · ). Substituting the equation of the energy cur-
rent operator into Eq. (B3), we can express Kxx(iΩn) in
terms of the magnon Green’s functions in the Matsubara-
frequency representation as follows:

Kxx(iΩn) =
1

N

∑

q,q′

∑

l1,l2,l3,l4

exl1l2(q)e
x
l3l4(q

′)T
∑

m

× 〈Dl4l1(q
′, q, iΩm)Dl2l3(q, q

′, iΩm + iΩn)〉, (B4)

where Dll′(q, q
′, iΩn) are the magnon Green’s functions

before taking the impurity averaging. Then, by carrying
out the sum of Matsubara frequency in Eq. (B4) with a
field theoretical technique17–19 and combining that result
with Eqs. (B1) and (B2), we obtain

κxx =
1

TN

∑

q,q′

∑

{l1}

exl1l2(q)e
x
l3l4(q

′)P

∫ ∞

−∞

dǫ

2π

[

−
∂n(ǫ)

∂ǫ

]

× 〈D
(A)
l4l1

(q′, q, ǫ)D
(R)
l2l3

(q, q′, ǫ)〉, (B5)

where D
(A)
l4l1

(q′, q, ǫ) and D
(R)
l2l3

(q, q′, ǫ) are the ad-
vanced and retarded magnon Green’s functions in the
real-frequency representation before taking the impu-
rity averaging. In Eq. (B5), we have neglected

the terms including 〈D
(R)
l4l1

(q′, q, ǫ)D
(R)
l2l3

(q, q′, ǫ)〉 and

〈D
(A)
l4l1

(q′, q, ǫ)D
(A)
l2l3

(q, q′, ǫ)〉 because those are higher-

order contributions in the weak-localization regime3,8.
Then, by using the perturbation expansion of Ĥimp in
Eq. (B5), we can take the impurity averaging. As a re-
sult, we can express κxx in the weak-localization regime
as Eqs. (21)–(23).
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