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A patchwork method is used to study the dynamics of loss and recovery of an initial configuration
in spin glass models in dimensions d = 1 and d = 2. The patchwork heuristic is used to accelerate
the dynamics to investigate how models might reproduce the remarkable memory effects seen in
experiment. Starting from a ground state configuration computed for one choice of nearest neighbor
spin couplings, the sample is aged up to a given scale under new random couplings, leading to the
partial erasure of the original ground state. The couplings are then restored to the original choice
and patchwork coarsening is again applied, in order to assess the recovery of the original state.
Eventual recovery of the original ground state upon coarsening is seen in two-dimensional Ising spin
glasses and one-dimensional clock models, while one-dimensional Ising spin systems neither lose nor
gain overlap with the ground state during the recovery stage. The recovery for the two-dimensional
Ising spin glasses suggests scaling relations that lead to a recovery length scale that grows as a power
of the aging length scale.

Spin glass models are quintessential models for the
study of disordered magnetic alloys, in the case where
the interaction of magnetic moments has both frozen
randomness and competition. The equilibrium and non-
equilibrium behaviors of spin glass models are essentially
different from those for homogeneous materials. For ex-
ample, at zero temperature, the ground states do not
exhibit conventional magnetic order but instead exhibit
spatially randomly varying correlations of spins over long
distances. The spin glass, whether it is a model or ma-
terial, poses formidable challenges to the understanding
of its complex non-equilibrium behaviors, including ex-
tremely slow dynamics and strongly history-dependent
effects.1 At low temperature, the full relaxation time for
a spin glass material exceeds experimental time scales,
though the slow approach to equilibrium can be stud-
ied in detail. A prototypical example of the resulting
history-dependent effects is found in temperature cycling
experiments.2 Below the spin glass temperature, spin
glass samples are always out of equilibrium. If the oth-
erwise uniform-rate cooling of a spin glass material is
paused at one temperature, its magnetic susceptibility
will slowly vary, “aging” with time. Upon further cool-
ing and subsequent reheating at a uniform rate, when the
aging temperature is crossed, the magnetic susceptibility
will fluctuate from a monotonic curve, moving towards its
aged value. That is, the sample can “recall” its temper-
ature history. Numerous explanations for this memory
effect have been presented.3,4 Nonetheless, despite inten-
sive study, many aspects of spin-glass dynamics remain
poorly understood. As theoretical approaches, including
droplet5 and replica-symmetry-breaking6 pictures, rely
on distinct views of spin glasses and exact results are rare,
numerical approaches have proven invaluable for verify-
ing theories and motivating new ideas.7

Generic simulation approaches for spin glass models
can also be excessively slow, due to the computational
complexity of spin glass models. Finding the exact
ground states of spin glasses in the general case is an
NP-hard problem and so appears to require exponential
time to solve. Finding ground states in three dimen-

sion can be impractical for more than a few thousand
spins.8–10 Direct Monte Carlo simulations, using single-
spin-flip Glauber dynamics, have been used to explore
the non-equilibrium spin configurations.11 However, the
evolution of a spin glass model under Glauber dynamics
is extremely slow due to the high free-energy barriers be-
tween low free-energy configurations. Multiple applicable
techniques for accelerating the process to equilibrium in
spin glasses, such as parallel tempering12 and simulated
annealing,13 have been developed but are also limited,
though these techniques provide a wealth of informa-
tion on the non-equilibrium behaviors of spin glasses. A
fortunate exceptional case is the two-dimensional (2D)
Ising spin glasses (ISG). Efficient algorithms that run
in polynomial time do exist for exactly computing the
equilibrium states of the 2DISG in the absence of a
magnetic field.8,14 Here we exploit a fast algorithm for
regional equilibration, “patchwork dynamics”,15 imple-
mented here for zero temperature, to mimic the aging
and memory effects in low-dimensional spin glass sys-
tems.

Patchwork dynamics is motivated by the expected de-
pendence of free-energy barriers on length scale. For a
domain with scale L, the free-energy barrier B for the re-
versal of all spins is anticipated to scale as Lψ, where ψ is
a barrier exponent.5,16 At temperature T , a domain will
then survive for a characteristic time t ∼ eB/T , as ther-
mal excitation is required to conquer the free-energy bar-
rier. Given this exponential dependence on L, a strong
separation of time scales is provided by an examination
of geometrically separated length scales. Patchwork dy-
namics uses this separation to replace a dependence on
time scales by a dependence on length scales. This ap-
proach equilibrates the system at a given length scale di-
rectly using efficient equilibrium algorithms, which over-
come large energy barriers quickly, rather than waiting
for local single-site dynamics to slowly reach that length
scale. By equilibrating collections of spins on a suc-
cession of increasing length scales, patchwork dynamics
approximates the coarsening process. It takes advan-
tage of efficient equilibrium algorithms to investigate the
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non-equilibrium behaviors of spin glasses. The evolution
of spin glasses configurations is sped up, in a heuristic
fashion, by leaping over intermediate configurations with
higher-free energies. We use this approach with the hope
that it will provide us new insights into non-equilibrium
behaviors of spin glasses.

In this paper, we investigate Ising spin glass systems on
low-dimensional lattices: the square grid in two dimen-
sions, the quasi-1D “ladder”, and the one-dimensional
(1D) “chain”. We also examine the 1D m-state clock
model spin glasses (CMSG). For the ISG, the Hamilto-
nian is HI = −

∑
〈ij〉 Jijσiσj ; for the CMSG, the Hamil-

tonian has the form HC = −
∑
〈ij〉 Jij cos(θj − θi + αij).

For all models, the couplings Jij between nearest neigh-
bor spins 〈ij〉 are mean-zero independent Gaussian ran-
dom variables. The σi and θi are spin variables on a
d-dimensional lattice with σi = ±1 and θi = 2πn

m , where
n = 1, . . . ,m; the random noises αij between near neigh-
bor spins for the CMSG are random variables chosen
from a uniform distribution on the interval [0, 2π). Note
that the ISG is equivalent to the standard CMSG with
m = 2 where the angle αij can be eliminated in the
Hamiltonian. Highly efficient equilibrium algorithms ex-
ist for these spin glass systems in dimensions d = 1 and
d = 2.14,17

Patchwork dynamics can be employed to attempt
to replicate aging and memory effects. These dra-
matic history-dependent effects are typically observed
in temperature cycling experiments. Similar effects
are expected to be seen when the couplings are per-
turbed and then reverted rather than perturbing the
temperature.18,19 These behaviors are clearly related if
temperature and disorder chaos20 are related to the mem-
ory effects. At finite temperature, a small change in
temperature leads to randomization of the coarse-grained
couplings at the chaos scale. We mimic “temperature cy-
cling” experiments by “disorder cycling”, replacing the
temperature chaos by the disorder chaos at T = 0.

Our simulation protocol is divided into two stages. The
first stage is aging. We start with a ground state config-
uration for given couplings Jij as our initial spin config-
uration. In a finite sample, the ground states of the ISG
with a continuous distribution for Jij are doubly degen-
erate (as accidental degeneracies have zero probability),
distinguished by a global spin flip,21 while the m-state
CMSG possesses m-times degenerate ground states, re-
lated by spin rotation symmetry. This finite degeneracy
is a result of the continuous distribution of couplings that
are used here, so that (with unit probability in the choice
of random couplings) the energies of each configuration
is distinct from configurations that are not related by
global spin flips or rotations. The initial spin configura-
tion is randomly chosen from the twofold (m-fold) ground
state configurations (using the extended ground state
with variable boundary conditions for the 2DISG14). We
then change the couplings Jij to an independently chosen
set J ′ij , using disorder changes as a proxy for temper-
ature changes. Patches are then applied using the new
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Figure 1: (Color online). Plot showing the sample-averaged
spin overlap q of 2D Ising spin glass configurations with the
initial ground state in the aging and recovery stages, using
numerical patchwork dynamics simulations as a heuristic for
long time coarsening. (a) The spin configuration is initial-
ized to a ground state configuration with couplings Jij and is
then aged with uncorrelated couplings J ′ij with patch sizes `
geometrically increasing. The spin overlap qa(`) with the ini-
tial ground state state during aging decays consistently with
a power law with a fitted exponent −λ ' −1.42. (b) For
L = 512, we cease aging stage at scales ` = 1, 2, 4, 8, 16, 32,
revert the couplings to Jij , and then again apply patchwork
dynamics. The spin configuration recovers to the original
ground state as indicated by the increasing overlap, qr (s, `).
This plot shows that the spin overlap qr (s, `) initially grows
in a fashion consistent with qr (s, `) /qa(`) ∼ sκ with best esti-
mated κ ' 0.55 at larger ` and s. The inset shows saturation
of qr (s, `)→ 1 for smaller ` and large s.

couplings J ′ij at a sequence of increasing scales `. In each
step of the sequence, we choose randomly located patches
of length scale `, and update the spins in that patch to
the lowest energy configuration, given fixed spins at the
boundary of the patch. For each `, we apply C(L/`)d

patches, with coverage C = 20. This ages towards a
ground state for the new disorder J ′ij that is uncorre-
lated with the initial ground state for bond couplings Jij .
The second stage after this aging stage is recovery. We
halt the aging process at a chosen patch size, the aging
scale, and then the couplings are reverted to Jij . Recov-
ery advances by optimizing patches on successive length
scales s = 1, 2, 4, . . ., now using the original couplings.
The maximum of the patch size s used during recovery
is L/2, for a system of size L.

The sample averaged spin overlap q = N−1
∑
i σ

0
i σi

is a measure of the similarity of the initial ground state
configuration σ0

i with subsequent configurations σi for
the ISG, where N is the number of spins in the system.
The overlap q takes the maximal value q = 1 for σi = σ0

i ,
the minimal value q = −1 for σi = −σ0

i , and has average
value zero when σi is uncorrelated with σ0

i . The 2DISG
has N = L × L spins arranged on a square lattice with
toroidal boundary conditions14. The ladder IGS and the
chain Ising spin system also have periodic boundary con-
ditions and have k × L spins where k is the number of



3

1

1.2

1.4

1.6

1 10 100

(a)

0.3

0.4

0.5

0.6

0.7

1 10 100

(b)

λ

`

L = 256
L = 512

κ

s

` = 16, L = 256
` = 32, L = 256
` = 16, L = 512
` = 32, L = 512

Figure 2: (Color online). Plots of local exponents λ and κ de-
rived from neighboring data points plotted in Fig. 1 in the (a)
aging and (b) recovery stages. The points are plotted versus
effective patch scales ` and s, the geometrical mean of two sub-
sequent patch scales used to determine the local exponents.
The local exponents λ(`) and κ(s) appear to plateau for ` and
s greater 50. The small ` and s deviations are attributed to
lattice effects. We extrapolate that under the limit of infinite
sample sizes the exponents of 2D Ising spin glasses aging and
recovery dynamics are λ ' 1.42± 0.08, κ ' 0.55± 0.06. Data
shown are averaged over 105 samples.

layers of length L with open boundaries in the layer di-
rection (k = 2 in the ladder ISG and k = 1 in the chain
system). In equilibrium, the overlap between two equi-
librium configurations is used to extract thermodynamic
behavior of spin glasses.22 Here we use the overlap with
the initial global ground state to quantify the aging and
memory effects. For the 1DCMSG, the spin overlap is

chosen to be q = N−1
∑
i cos(θ0

i − θi). The θ0
i and θi are

spin variables in the initial state and subsequent states,
respectively; the number of spins is N = L and periodic
boundary conditions are imposed. The notation qa(`)
and qr (s, `) will be used to denote overlaps computed in
the aging stage at scale ` and the recovery stage at scale
s, respectively.

Our patchwork heuristic aging and recovery proce-
dures were applied to the 2DISG with sample sizes L =
256, 512. The behaviors of spin overlap qa(`) and qr (s, `)
during aging and recovery shown in Fig. 1. In the aging
stage, the decay of spin overlap qa(`) is well described
by an asymptotic power law, qa(`) ∼ `−λ. This result is
consistent with the conjecture introduced by Fisher and
Huse,5 where λ is an independent exponent of spin glass
dynamics, and previous numerical results on 2D patch
dynamics.15

In the recovery stage, we expect that the spin con-
figuration will approach a ground state for Jij as the
patch size reaches L. However, it is undetermined
whether the initial spin configuration σi = σ0

i or the
reversed configuration σi = −σ0

i will be reached, given
that the ground states are doubly degenerate. Since

qr (s, `) > 0, our results indicate that samples approach-
ing the initial spin configuration dominate those access-
ing the opposite ground state configuration, which sta-
tistically confirms that the 2DISG does have a memory
of the initial spin configuration. We confirm that during
the recovery stage, until saturation, the growth of spin
overlap is well described by another asymptotic power
law, qr (s, `) /qa(`) ∼ sκ, until saturation to q = 1 is
approached.15

To attain an improved estimate of the scaling expo-
nents λ and κ, we present the local exponents of spin

overlap in Fig. 2. These are the slopes, ∆ln(qa(`))
∆ln(`) and

∆ln(qr(s,`))
∆ln(s) , between two neighbor patch sizes. The patch

sizes ` and s on the horizontal axes in Fig. 2 are the ge-
ometrical mean of the two subsequent patch sizes used
to calculate the local exponent. Given our high preci-
sion and our use of local slopes (rather than a simpler
power law fit), we can see that λ and κ are not con-
stant at small ` and s and appear to crossover to a large
distance limit for `, s ≥ 50. The estimated values are
λ = 1.42 ± 0.08, κ = 0.55 ± 0.06, where systematic un-
certainties are subjective and exceed the statistical error
estimates at these length scales. We use these values to
show consistency with power law fits to the largest scale
points in Fig. 1.

We observe in these latest simulations that as the max-
imum patch size ` decreases, the spin overlap in the recov-
ery stage qr (s, `) diverges from the asymptotic power law
seen for large `. Instead, the spin overlap qr (s, `) crosses
over to a plateau as patch sizes s increase at fixed small
values of `. The existence of this plateau is consistent
with the spin configurations reaching the global ground
state, which implies that the spin overlap qr (s, `) → 1
at sufficiently large s. This suggests a scaling form for
recovery that incorporates an initial power law increase
followed by a plateau at qr (s, `) = 1. We emphasize that
this scaling form assumes full recovery to the original spin
direction with probability near 1, consistent with simu-
lations for s � `. We also assume that the power law
fits for aging and recovery are valid, so that the start-
ing spin overlap qa(`) at the start of the recovery stage
is `−λ. This overlap then grows qr (s, `) ∼ sκ`−λ dur-
ing recovery until this overlap qr (s, `) approaches unity.
This leads to a crossover recovery scale sc at patch size

sc ∼ `
λ
κ at which the spin overlap qr (s, `) approaches

1. The existence and scaling of this recovery scale is a
central result of this current work. As λ > κ, the coars-
ening length scale for recovery sc grows faster than the
aging scale `. The aging process erases the initial state
sufficiently that the recovery scale, defined as the point
where the overlap exceeds some fixed fraction of unity,
say 1/2, must span a scale many times that of the aging
scale, in the 2DISG.

Assuming a single recovery scale, scaling forms for both
the spin overlap qr (s, `) and the domain wall bond den-
sity ρ in the recovery stage are fixed. Scaling collapses
for these statistics are shown in Fig. 3, based on this



4

10−1

100
(a)

10−4

10−3

10−2

10−1

100

10−3 10−2 10−1 100 101 102

(b)

df = 1.27

λ = 1.0
κ = 0.55

q
r
(s
,`
)

q
a
(`
)
s−

κ
ρ
s2

−
d
f

s/`
λ
κ

` = 1
` = 2
` = 4
` = 8
` = 16
` = 32

Figure 3: (Color online). Scaling collapses for (a) the spin
overlap qr (s, `) and (b) domain wall bond density ρ in the
recovery stage for sample size L = 512. For the patch size s
smaller than the crossover length sc, the spin overlap scales as
qr(s,`)
qa(`)

∼ sκ with κ ' 0.55 and the domain wall bond density

scales as ρ ∼ sdf−2 with df ' 1.27. The statistics qr(s,`)
qa(`)

s−κ

and ρs2−df are used to check the scaling sc ∼ `
λ
κ . The de-

viations at small scaling parameters are ascribed to lattice
effects. We adopt here λ ' 1.0, which is the local exponent
for small aging patch size `, where we see a divergence from a
simple power law at larger `, where λ approaches λ ≈ 1.4. The
two statistics exhibit scaling collapses at an identical signifi-
cant patch size sc, which is consistent with our expectation.

description. The domain wall density is the fraction of
bonds belonging to domain walls that separate ground
states A, with spins σ0

i , and Ā, with spins −σ0
i . The

number of domain wall bonds in the 2DISG are taken to
scale as sdf , with the domain walls for domains at recov-
ery scale s < sc are taken to have the standard 2DISG
domain wall fractal dimension df ' 1.27.23,24 The do-
main wall bond density ρ thus scales as sdf−2 until the
recovery scale sc is reached. To better describe our data
following scaling collapses, we use the estimate λ = 1.0,
the value of the effective exponent for small `, given that
our data show the plateau in Fig. 1 for small aging patch
sizes, such as ` = 1, 2, 4, along with the large s value
κ = 0.55. We do not observe the scaling collapse for
larger `, because under that circumstance the patch size

sc that scales sc ∼ `
λ
κ exceeds L/2 and thus is unreach-

able for our system sizes. The spin overlap qr (s, `) and
domain wall bond density ρ in Fig. 3 both indicate an
identical patch scale sc where qr (s, `) approaches 1 and ρ
vanishes rapidly from the scaling collapses, which corrob-
orates our anticipated connection. Those points slightly
deviating from a single curve for the scaling collapse at
fixed values of s smaller than sc are believed to stem from
lattice effects. Overall, this scaling collapse with effective
exponents for the domain wall density support a scaling
picture for the recovery scale and for the relationship be-
tween domain wall density and recovery scale.

We have also carried out simulations to explore how

the recovery depends on the sample preparation. For
the results above (and those below for lower dimensional
systems), we studied recovery after a specific coarsen-
ing process. This process decreases the spin overlap with
the initial configuration by growing domains at the patch
scale that are given by an independent set of spin cou-
plings. For comparison, we have prepared samples by
randomly selecting a subset of the initial spins and then
flipping all of the spins in that subset. The size F of the
subset chosen determines the overlap q with the initial
configuration, via the relation q = 1 − 2F/N . There
is no spatial correlation in which spins are flipped or
remain unchanged in this process (by contrast, such a
correlation could conceivably result from patchwork ag-
ing). The overlap can be tuned arbitrarily without going
through an aging process. We find that the recovery
qr(s) from the chosen values for q are described by the
same exponent κ, i.e., qr(s) ∼ qsκ. This suggests that
the memory left after the aging process is not specific to
coarse-graining towards another ground state. Isolated,
uncorrelated remnant spins can be used to recover the
initial configuration with the same quantitative growth
of overlap.

To explore the effect of dimensionality on these non-
equilibrium behaviors of spin glasses, we investigate
memory effects in Ising spin systems with lower dimen-
sionality, including the frustrated ladder ISG and the
chain Ising spin system. Patchwork dynamics drives the
spin configuration to a state that is low energy at the
given scale for the given couplings. In the limit of cover-
age C →∞, the configuration is minimal with respect to
arbitrary changes of spins up to that scale. This scale-
dependent optimization results in domain walls separat-
ing subsets of global ground states. This is consistent
with the droplet picture used by Fisher and Huse,5 where
the energy and geometry of the domain walls depends on
dimensionality, and the droplet energy and geometry af-
fects equilibration and aging.5 These ladder and chain
systems are both one-dimensional at large scales. Their
ground states both consist of spins with statistically ran-
dom orientations, as in the 2DISG. Nonetheless, there is
an essential difference between their ground states. In the
ground states of the chain Ising spin system, all bonds but
for at most one are satisfied. Therefore, the chain Ising
spin system is not a spin glass, as there is no frustration.
A bond is satisfied when neighbor spins on that bond are
parallel if the bond coupling Jij is positive, or they are
in opposite orientations if Jij is negative. Frustration
results only from boundary conditions. The situation
where a single bond with the minimum absolute value of
Jij is unsatisfied in the ground state of the chain system
occurs with probability 1

2 due to the randomness of the
Jij . With respect to the ladder ISG, conversely, frus-
trated plaquettes8 commonly exist in its ground states.
Bonds belonging to a frustrated plaquette cannot be all
satisfied. Thus, the ground states of the ladder ISG in-
clude a finite density of unsatisfied bonds. Though the
chain Ising system does not have frustration, the effects
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Figure 4: (Color online). Patchwork dynamics simulations on
the ladder Ising spin glass and the chain Ising spin system for
sample size L = 217 = 262 144. (a) In the aging stage spin
overlap qa(`) of the k = 2 ladder and the k = 1 chain behave
similarly and are well interpreted by a power law, which is

qa(`) ∼ `−λ
′

with λ′ ' 1.0. (b) In the recovery stage spin
overlap qr (s, `) of the ladder and chain have somewhat dis-
tinct behaviors. In both cases, the aging stage is terminated
at various scales ` = 2, 4, 8. The ladder ISG exhibits a weak
initial memory effect. The statistic qr (s, `) /qa(`) slightly
grows and crosses over to a plateau of 1.5, as is seen in the up-
per curves. For the chain system, the statistic qr (s, `) /qa(`)
stays constant at qr (s, `) /qa(`) ' 1, which indicates that the
chain system does not possess memory recovery.

of disorder remain important and, as we will see, the re-
covery of memory in the chain is quite similar to that in
the ladder and can be analyzed.

We applied the patch aging and recovery protocols to
the two-layer (k = 2) ladder ISG system and to the chain
Ising spin system, for sample sizes L ≤ 217 = 262 144.
The evolutions of spin overlaps for aging and recovery
are displayed in Fig. 4. The spin overlap qa(`) for both
the ladder and the chain in the aging stage appear to fol-
low power law decays, as seen in the 2DISG. The power
laws for the two one-dimensional cases are similar to each
other: The spin overlap qa(`) for both ladder and chain
systems are both well described by a single power law,
qa(`) ∼ `−λ′

with a best fitted exponent λ′ = 1.00±0.03.
However, in the recovery stage the spin overlap qr (s, `)
behave distinctly from each other at small recovery scales
s. The recovery also differs at larger scales from that seen
for the 2DISG (at all scales). To study the recovery of
the spin overlap, we interrupt the aging at ` = 2, 4, 8
and then revert the couplings to the original Jij . The
recovery statistic qr (s, `) /qa(`) of the ladder ISG grows
slightly and crosses over to a plateau qr (s, `) /qa(`) ' 1.5.
Compared to the 2DISG, the memory effects for the lad-
der ISG are weak and apparently do not include a power
law growth at large recovery patch sizes, only a plateau
value for the recovery ratio qr/qa that is independent of
L. We have also studied the ISG with more layers, such
as k = 3, where memory effects are apparently stronger
than those of the two-layer ladder ISG, but we still find a
plateau to a fixed recovery ratio that increases with k. It
is plausible to infer that the capability of memory grows
and trends towards the full recovery seen in the 2DISG,
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Figure 5: (Color online). Spin overlap q of 1D m-state clock
model spin glasses in patchwork dynamics. The sample size
is L = 217 = 262 144 and the number of spin states is
m = 2, 4, 6, 8. (a) The spin overlap qa(`) decay as power laws
qa(`) ∼ `−λC in the aging stage. The exponent λC slightly de-
creases, as m increases. (b) The spin overlap qr (s, `) in the re-
covery stage show significantly difference for various m. In the
data displayed, we cease the aging at ` = 8. The absence of
memory effect is indicated form = 2 as in the case of the chain
Ising spin glasses. The spin overlap qr (s, `) for m = 4, 6, 8 can
be well described by power laws qr (s, `) /qa(`) ∼ sκC , with
small κC . The 1D clock model spin glasses show the recovery
of memory for m = 4, 6, 8. The exponent κC grows as the
spin degrees of freedom m increase (see text), which indicates
weak reinforcement of memory with the increase of m.

as k increases. The k = 1 chain shows no initial recovery.
The statistic qr (s, `) /qa(`), the ratio of overlap in recov-
ery to the overlap at maximal aging, of the chain system
does not grow but stays fixed at 1 for all length scales s,
within our numerical error. This implies that the chain
system does not show either any memory effects or any
further aging under recovery coarsening.

We find it interesting that the chain Ising spin system
shows no memory in our simulations. To explain this
absence of memory, with the goal of possibly explain-
ing the plateau in the k > 1 one-dimensional systems, we
calculate analytically the expected change of spin overlap
when patches of arbitrary size s are applied during the
recovery stage. This expected change can be computed
for an arbitrary spin configuration. Given a spin config-
uration in a given sample with fixed Jij , we define ∆i as
the change of spin overlap qr (s, `) caused by optimizing
the spins in a patch with size s starting at position i+ 1,
that is, with boundary spins σi and σi+s+1 fixed. The
average 〈∆i〉 is then defined as the expectation value of
the change in the spin overlap, where the angle brack-
ets indicate an average over the position i. We will use
the symbol + for a spin of the same sign as in the cho-
sen ground state configuration; the symbol − means a
spin has the opposite orientation. The overlap can be
found from the sum of the number N+ of + spins, with
q = L−1(2N+ − 1). There are L different patches with
size s and they can be classified into four categories, one
for each patch boundary condition. Boundary conditions
for these categories are indicated by ++, −−, −+ and
+−, with the two symbols referring to the relative ori-
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entation of two boundary spins for the linear patch with
respect to the ground state configuration. The number
of four different categories of patches in a given sample
and given s are respectively n++, n−−, n−+ and n+−.
When a patch is applied, the value of ∆i depends on
the category and the spins inside the patch. All spins in
patches with boundary conditions ++ will be set to +;
spins in patches with boundary conditions −− will have
a post-patch orientation of −; for patches with bound-
ary conditions +− or −+, a domain wall will result at
b(i, s) where b(i, s) is the relative location for the local
minimum of Jij within the given patch. The sign of the
spin with respect to the ground state changes between
the spin with index i + b(i, s) and the spin with index
i + b(i, s) + 1. We use the notation

∑
i,+− to indicate

a sum over all i restricted to patches of type +−, for
example. When a patch forces a spin σk to be +, the
change in overlap is (1−σk)/L. and when a patch forces
a spin σk to be −, the change in overlap is (−1− σk)/L.
Thus, given a uniform probability over location for the
placement of patches, 〈∆i〉 can be written as

〈∆〉 =
1

L

∑
∆i

=
1

L

(∑
i,++

i+s∑
k=i+1

(1− σk) +
∑
i,−−

i+s∑
k=i+1

(−1− σk)

+
∑
i,−+

i+b(i,s)∑
k=i+1

(−1− σk) +

i+s∑
k=i+b(i,s)+1

(1− σk)


+
∑
i,+−

i+b(i,s)∑
k=i+1

(1− σk) +

i+s∑
k=i+b(i,s)+1

(−1− σk)

)

=
s

L

(
−
∑

σk + n++ − n−− + n−+ − n+−

)
+

2

L

∑
i,+−

b(i, s)−
∑
i,−+

b(i, s)

 . (1)

Letting N− be the number of − spins, the number of
patch categories is constrained by the equations

2n++ + n+− + n−+ = 2N+ (2)

2n−− + n+− + n−+ = 2N− (3)

N+ −N− =
∑

σk , (4)

from counting the contributions of each type of patch
category to the total number of up or down spins (Eq. (2)
and Eq. (3)) and from the definitions of N+ and N−
(Eq. (4)). It follows from Eqs. (2-4) that

−
∑

σk + n++ − n−− = 0 . (5)

It is also true, for a given sample, due to the periodic
boundary condition, that

n−+ = n+− . (6)

To show this, the set of sites {1, . . . , L} can be de-
composed into distinct orbits O1, O2, . . ., where each or-
bit Om is a sequence of sites Om = {im + k(s + 1)
mod L|k = 0, 1, . . .}. These orbits are sets of the left ends
of patches where the patches share boundary points. As
L is finite, each Oi is finite. In each orbit Oi, there must
be an equal number of +− and −+ patches. Since n+−
and n−+ is the sum of these counts over the set of orbits,
we have n−+ = n+−.

Using Eq. (5) and Eq. (6), we can write the expected
change in overlap for a patch of size s in a given sample,
〈∆(Jij)〉, as

〈∆(Jij)〉 =
2

L

∑
i,+−

b(i, s)−
∑
i,−+

b(i, s)

 . (7)

The distance to the domain wall for mixed boundaries
b(i, s) can take any integer value in the range [0, L − 1].
In an individual sample, it is likely that

∑
i,+− b(i, s) 6=∑

i,−+ b(i, s). However, if we average over a large num-
ber of samples, the mean change of the spin overlap
〈∆(Jij)〉 = 0, due to the statistical left-right symme-
try that does not on average distinguish −+ from +−
boundary points. We conclude that during patch dy-
namics for the 1D Ising spin system, the overlap with
the ground state for the Jij used does not change. This
analytic result is consistent with our simulation results
for the recovery phase.

In the ladder system, there is an initial recovery seen
in qr/q`, but this ratio reaches a fixed value at larger
recovery patch size s. This plateau is plausibly explained
using our observed and proven fixed value for qr/q` for
the 1D chain system, through universality. The effective
dimensionality of domain walls is zero in both the ladder
and chain systems and the cost of domain walls is finite in
both cases. This suggests that an initial recovery in the
ladder system occurs for patch sizes s not much larger
than the plaquette size, the scale where frustration is
evident and the spins are behaving roughly as in the two-
dimensional case. At large s, the frustration of the spin
plaquettes is not relevant, as domain walls have finite
cost and are of transverse size less than the patch scale.
The recovery then approaches that for the 1D chain, with
little additional recovery of the initial state.

We have also explored how the symmetry of the spin
degrees of freedom (DOF) affects the recovery of mem-
ory in spin glasses. We employ our patch aging/recovery
protocols on the 1DCMSG with varying number of sin-
gle spin states, m = 2, 4, 6, 8. In the ground states of the
1DCMSG with L > 2m, the bonds are mostly all sat-
isfied, as the periodic boundary conditions can lead up
to m unsatisfied bonds. These ground states are m-fold
degenerate. The spin overlap in coupling cycling simlua-
tions are exhibited in Fig. 5. In the aging stage, the spin
overlap qa(`) is well fitted by power laws, qa(`) ∼ `−λC .
A local exponent analysis shows that, as the number of
spin states m increases, the local power law exponent λC
marginally decreases with increasing m, though perhaps
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within systematic uncertainties. For example, quantita-
tively, the fitted exponent λC ' 0.97, 0.94 for m = 2, 4
respectively. We then study the behavior of spin overlap
qr (s, `) in the recovery stage after halting the aging at
` = 8. The 1DCMSG with m = 2 exhibits no memory ef-
fects, as in the case of the chain Ising spin system, though
the Hamiltonian is slightly different from the chain case.
Form > 2, the 1DCMSG exhibits memory effects and the
statistic qr (s, `) /qa(`) is plausibly described by a small
power law growth for recovery, qr (s, `) /qa(`) ∼ sκC . A
logarithmic growth of the recovery ratio with r is possi-
ble, though the fit is less good. The strength of memory
exhibits some enhancement as m increases over the range
we studied , as is seen in Fig. 5; the estimated scaling ex-
ponent κC ' 0.14 with m = 8 is greater than κC ' 0.12
with m = 6.

In conclusion, patchwork dynamics provides an ef-
ficient heuristic technique to investigate the non-
equilibrium behaviors of large spin glass systems, which
are more difficult to study at large scales using conven-
tional Monte Carlo methods. We use patchwork dynam-
ics to mimic the cooling and reheating processes on spin
glass materials, by varying the bond couplings in a ran-
dom fashion. The spin overlap and domain wall density
show memory effects, as magnetic susceptibility does in
experiments.2 We expand upon the scaling description
of the aging and recovery stages, consistent with numeri-

cal evidence. In particular, we identify a recovery scale sc
which grows as a power law of the aging scale `, sc ∼ `λ/κ,
where λ is the decay exponent for the spin overlap dur-
ing aging and κ is the overlap recovery exponent. As
the exponent ratio λ/κ ≈ 2.58, the recovery scale grows
much more quickly than the aging scale. Thus recov-
ery of the original spin direction requires coarsening to a
scale that grows faster than the aging scale that causes
erasure. We note that the recovery exponent κ is inde-
pendent of whether the erasure is caused by coarsening
through aging or through random flipping of the spins.
We have also studied how the dimensionality and the spin
symmetry affect the strength of memory in various spin
glass models. It is notable that the chain system shows
the exact absence of memory effects. The ladder ISG,
effectively one-dimensional at long scales but with local
frustration, exhibits a plateau in recovery, i.e., the mem-
ory effect is only a finite multiple of the aged memory,
so that full recovery does not occur. Simulations results
from the one-dimensional clock model spin glass indicate
that memory effects become stronger as the number of
spin states increases.
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