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We consider a hydrodynamic description of transport for generic two dimensional electron sys-
tems that lack Galilean invariance and do not fall into the category of Fermi liquids. We study
magnetoresistance and show that it is governed only by the electronic viscosity provided that the
wavelength of the underlying disorder potential is large compared to the microscopic equilibration
length. We also derive the Coulomb drag transresistance for double-layer non-Fermi liquid systems
in the hydrodynamic regime. As an example, we consider frictional drag between two quantum Hall
states with half-filled lowest Landau levels, each described by a Fermi surface of composite fermions
coupled to a U(1) gauge field. We contrast our results to prior calculations of drag of Chern-Simons
composite particles and place our findings in the context of available experimental data.

I. INTRODUCTION

Hydrodynamic flow of electrons can occur in solid state
systems provided that the microscopic length scale of
momentum-conserving electron-electron collisions is suf-
ficiently short [1]. Under this condition the electron liq-
uid attains local equilibrium and can be described in
terms of slow variables associated with conserved quan-
tities such as momentum and energy. However, this
transport regime was hard to realize experimentally as
typically electron-impurity scattering degrades electron
momentum, whereas electron-phonon collisions violate
both momentum and energy conservations of the elec-
tron liquid. Early evidence for the so-called hydrody-
namic Gurzhi effect, related to the negative temperature
derivative of resistivity, was reported in thin potassium
wires [2], and later in the electrostatically defined wires
in the two dimensional electron gas of (Al,Ga)As het-
erostructures [3]. The recent surge of experiments de-
voted to revealing hydrodynamic regimes of electronic
transport is mainly focused on measurements conducted
on graphene [4,5].

In the context of transport theories, a hydrodynamic
description is powerful as it accurately describes most
liquids. All microscopic details of the system at hand are
then encoded into a handful of kinetic coefficients such
as viscosities and thermal conductivity. In certain cases
the latter can be controllably derived from the linearized
Boltzmann kinetic equation by following the perturba-
tive Chapman-Enskog procedure developed originally for
gases. However, we have examples now where this kind
of microscopic approach has to be substantially revisited.
Deriving hydrodynamics for linearly dispersing electronic
excitations in graphene represents an interesting exam-
ple where this standard computation scheme had to be
redone from scratch [6–10]. An even more dramatic ex-
ample is given by strongly correlated electron liquids [11],
where the effects of interactions are nonperturbative, and
thus a Boltzmann-like description may not be applica-
ble. Yet the hydrodynamic picture still holds [12] and
has to be viewed as a phenomenology that enables one

to express various transport observables in terms of pris-
tine kinetic coefficients of the electron liquid and cer-
tain thermodynamic quantities. This is our motivation
to consider a hydrodynamic description of transport for
strongly correlated electron liquids where we do not as-
sume Fermi liquid-like behavior. We also do not assume
Galilean invariance to be present. In this study we focus
on magnetotransport and frictional drag transresistance
in bilayers.

II. HYDRODYNAMIC FORMALISM

The general linearized set of equations that gov-
ern nonrelativistic magnetohydrodynamic transport in
two dimensional charged fluids are given by [13–17] (i)
the force equations (repeated indices imply summation
throughout this work)

∂t(Mvi) + ∂jTij = QEi + Sξi +BεijJj ,

Tij = Pδij − η(∂ivj + ∂jvi)− (ζ − η)∂kvkδij , (1)

which relate the rate of change of the momentum density
to pressure, viscous, thermoelectric and Lorentz forces.
M serves as an effective “mass density” and Q is the
effective charge density of the fluid. η and ζ respectively
are the shear and bulk viscosities. Ei and ξi represent the
electric field and thermal gradient. Fluctuations in the
fluid pressure P are given by dP = Qdµ+SdT , where S
is the entropy density and µ is the local screened chemical
potential per unit charge. (ii) The equations for charge
and heat currents read respectively as

Ji = Qvi − σQij(∂jµ− Ej −Bεjkvk)− αQij(∂jT − ξj),

JHi = TSvi − T ᾱQij(∂jµ− Ej −Bεjkvk)− κ̄Qij(∂jT − ξj),
(2)

where σQ, αQ and κ̄Q are microscopic “incoherent” con-
ductivities [18], and (iii) the continuity equations are

∂tQ+ ∂iJi = ∂t(TS) + ∂iJ
H
i = 0. (3)



2

Onsager reciprocity requires αQij(B) = ᾱQji(−B). The in-
coherent conductivities, viscosities and thermodynamic
properties are derived from correlation functions of the
underlying microscopic field theory of the non-Fermi liq-
uid [19–22]. This is a generalization of the usual theory of
hydrodynamics to systems without Galilean invariance.

A. Magnetotransport in a single layer

We consider the steady state solutions of these equa-
tions in the presence of a disordered chemical potential
µ(x). In the absence of applied electric fields and tem-
perature gradients, we can apply a background electric
field Ēi = ∂iµ to nullify currents and fluid motion, as-
suming a uniform temperature. We then look for steady
state solutions when this background is perturbed by an
infinitesimal uniform electric field δEi in linear response
[10,16]. The difference between the unperturbed and per-
turbed set of equations gives

∂iJi = ∂i(Qvi − σQij(∂jδµ− δEj −Bεjkvk)− αQij∂jδT )

=∂i(TSvi − T ᾱQij(∂jδµ− δEj −Bεjkvk)− κ̄Qij∂jδT )=0,

Q(∂iδµ− δEi) + S∂iδT − ∂j(η(∂ivj + ∂jvi))

− ∂i((ζ − η)∂kvk) = BεijJj , (4)

where the delta-quantities represent deviations from the
background values generated by the applied electric field
(vi ∼ O(δ)). We read off transport coefficients by look-
ing at the change of the uniform components of their
respective currents with respect to the applied elec-
tric field. For example, σxx = δJx(q = 0)/δEx and
σyx = δJy(q = 0)/δEx. The equations (4) need to be
given periodic boundary conditions in order to ensure a
unique solution; otherwise one may shift v by a constant
and cancel the effects by appropriately shifting δµ by a
function that has a constant gradient [16]. We can con-
sider the solution of (4) while treating disorder pertur-
batively [10,16]. Against a uniform background chemical
potential, it is easy to see that the only response is a

finite uniform velocity field v
(0)
i = εijδEj/B, which im-

plies σ
(0)
ij = εijQ

(0)/B, where Q(0) is the uniform charge
density in the absence of any disorder. Introducing a
small parameter ε to parameterize the strength of the
disorder, we expand µ(x) =

∑∞
n=1 ε

nµ(n)(x). All re-
sponses, densities, viscosities and microscopic conductiv-
ities may also be expanded in powers of ε. For example

vi(x) =
∑∞
n=0 ε

nv
(n)
i (x) and Q(x) =

∑∞
n=0 ε

nQ(n)(x).

Order by order in ε, there are 4 unknowns δµ(n), δT (n),

v
(n)
i and 4 equations in (4), so a unique solution is pos-

sible. This expansion in disorder strength while keeping
B finite implies the assumption that the magnetic field
relaxes momentum faster than the disordered potential
(see [23] for when both relaxation rates are comparable).
The expression for the uniform charge current at O(ε2)

is (in momentum space)

BJ
(2)
i (k = 0) = εijQ

(2)(k = 0)Ej − iεij

×
∫
k

(Q(1)(−k)δµ(1)(k) + S(1)(−k)δT (1)(k))kj . (5)

Thus, solving the equations at O(ε) gives all the infor-
mation needed to obtain the uniform conductivities up
to O(ε2).

In general the densities, viscosities and incoherent con-
ductivities depend on B, and their functional forms can
be deduced from the underlying quantum critical theory,
which is beyond the scope of hydrodynamics. However,
for small values of B these dependences can be neglected
as the dominant effect on magnetoresistance arises from
the long-range modulations of the equilibrium density
(see Refs. [24–26] for other large B effects). This con-
tribution exceeds the one due to the B-dependence of
the kinetic coefficients of the liquid by a parametrically
large factor controlled by the ratio of disorder wavelength
to electron equilibration length. We hence set the off-
diagonal components of the quantum critical transport
to zero. We assume that ∂Q/∂µ 6= 0 and ∂S/∂µ 6= 0, so
Q(1) 6= 0 and S(1) 6= 0. The solutions of (4) are provided
in the supplementary material [27].

Using (5) to read off the uniform charge current, we
see that σxx,yy are O(ε2), whereas σxy is O(1). Hence
the symmetrized electrical resistance is given by Tr ρ ≈
(σxx + σyy)/σ2

xy. This is in general a very complicated
function, with a potentially complicated temperature de-
pendence due to the temperature dependences of all the
microscopic coefficients. However, if we assume that the
disorder is very long wavelength, thus retaining only the
leading contribution in the inverse disorder wavelength in
the diagonal conductivity, we find a rather simple result

σij = σ
(0)
ij + ε2σ

(2)
ij = εij

Q(0) + ε2Q(2)(k = 0)

B

+
ε2

η(0)
εilεjm

∫
k

klkm|Q(1)(k)|2

k4
, (6)

which is consistent with Onsager reciprocity σij(B) =
σji(−B). All corrections from the microscopic incoher-
ent conductivities appear at higher orders in the inverse
disorder wavelength (for details see supplementary infor-
mation [27]). For the second term of (6) to be smaller
than the first, so the perturbative structure is consis-
tent, we must have (∂Q/∂ lnµ)� (η(0)Q(0))/(λ4µB))1/2,
where λµ is a characteristic wavelength of the disorder.
To leading order in ε, one gets the symmetrized mag-
netoresistance at leading order in the inverse disorder
wavelength

Tr ρ(B)− Tr ρ(0) =
ε2B2(∂Q/∂µ)2T

Q(0)2η(0)

∫
k

|µ(1)(k)|2

k2
. (7)

The temperature dependence of the magnetoresistance is
controlled only by the viscosity in this long-wavelength
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disorder limit, as was the case in [28] for the special case
of Galilean-invariant fluids (σQ = αQ = 0). However,
there the magnetoresistance was controlled only by the
viscosity regardless of the spectrum of the disorder. Since
we do not expect most non-Fermi liquid metals to be
Galilean-invariant, this is an important strengthening of
the previous result. It can additionally be shown that
the long-wavelength disorder result (7) is also insensi-
tive to the Hall viscosity [29] and vorticity susceptibility
[30], which are new parity-odd microscopic transport co-
efficients that can appear in the presence of a magnetic
field.

The above result could enable the extraction of the
temperature dependence of the viscosity of the electron
liquid as δρ(B)/ρ(0) ∝ 1/η(0) and thus allow for testing
theoretical models of potential non-Fermi liquid states in
the hydrodynamic regime. In the supplementary mate-
rial we also provide results for the magnetothermal resis-
tance.

B. Drag transport in bilayers

For drag type transport [31], we use our hydrodynamic
equations for each layer of the bilayer system, with E =
B = ξ = 0. Drag is generated by intrinsic hydrodynamic
fluctuations encoded in fluctuating noise terms [32–35]
added to Tij , Ji, J

H
i that are uncorrelated between the

layers (T 1,2
ij → T 1,2

ij + s1,2ij , J1,2
i → J1,2

i + r1,2i , JH 1,2
i →

JH 1,2
i + g1,2i )

〈s1,2ij (k, ω)s1,2lm (k′, ω′)〉 = 2T (η(0)(δilδjm + δimδjl)

+ (ζ(0) − η(0))δijδlm)δ(k + k′)δ(ω + ω′), (8)

〈r1,2i (k, ω)r1,2j (k′, ω′)〉 = 2TσQ(0)δijδ(k + k′)δ(ω + ω′),

〈g1,2i (k, ω)g1,2j (k′, ω′)〉 = 2T 2κ̄Q(0)δijδ(k + k′)δ(ω + ω′),

〈r1,2i (k, ω)g1,2j (k′, ω′)〉 = 2T 2αQ(0)δijδ(k + k′)δ(ω + ω′),

with all other correlators of the sources being zero. These
fluctuations induce fluctuations in the charge and entropy

densities in the layers (Q
(0)
1,2, S

(0)
1,2 → Q

(0)
1,2 + δQ1,2, S

(0)
1,2 +

δS1,2). The fluctuations of chemical potential and tem-
perature are expressed in terms of the charge and entropy
fluctuations

δµ1,2 =

(
∂µ

∂Q

)
S

δQ1,2 +

(
∂µ

∂S

)
Q

δS1,2, (9)

and likewise for δT1,2. We must add to the pressure term
in each layer the effects of intra and inter-layer Coulomb
forces generated by the fluctuations in the charge densi-
ties (the layers are separated by a distance d)

δP1,2 → δP1,2 +
2πQ(0)

k
(δQ1,2 + e−kdδQ2,1). (10)

The drag resistance measures the sensitivity of the elec-
tric field induced by the dragging force in the open-circuit

passive layer to the current flowing in the driven layer.
It is given by

ρD ≡
E2D

J1
=
F12(vx)− F12(0)

Q(0)2vx
, (11)

F12(vx) = −i
∫
k,ω

2π

k
kxe
−kd〈δQ1(k, ω)δQ2(−k,−ω)〉.

The derivation of these force and pressure relations only
requires a straightforward application of Coulomb’s law.
In additional to the noise sources, we also linearize in
the velocity vx (the driven layer is driven by this uni-
form velocity field, not by an electric field). Note that
J1 = Q(0)vx is valid even for non-Galilean invariant fluids
as the noise terms themselves cannot induce any uniform
current flow due to averaged inversion and time-reversal
symmetries. Thus J1 must vanish when vx = 0, and
renormalizations of Q(0) due to the noise terms are sub-
leading.

We neglect the effects of thermal currents: they pro-
duce only subleading effects at large spatial separations
(see supplementary information for further details [27]).
Switching to the basis defined by δQ± = δQ1 ± δQ2,
s±ij = s1ij ± s2ij , r

±
i = r1i ± r2i , the hydrodynamic equa-

tions can be reduced to the form

Π±δQ± +
M

2
kx(i(Dσ +Dη)k2 + ω)vx(δQ+ + δQ−) =

M

2
kxvxki(r

+
i + r−i )− iM(Dηk

2 − iω)kir
±
i −Q

(0)kis
±
ijkj ,

Π± = M(Dηk
2 − iω)(Dσk

2 − iω)

+ kQ(0)(2πQ(0)(1± e−kd) + b1k), (12)

where Dσ = σQ(0)(∂µ/∂Q)S , Dη = (η(0) + ζ(0))/M and

b1 = Q(0)(∂µ/∂Q)S . The solutions to these equations are

linearized in vx: δQ± = δQ
(0)
± +δQ

(1)
± vx. Since the vx-less

configuration obeys averaged inversion and time-reversal
symmetry and vx always appears as vxkx which is odd

under inversion, δQ
(0)
± is even under k → −k whereas

δQ
(1)
± is odd. The dragging force may be written as

F12(vx)−F12(0)

iπ
=

∫
k,ω

kxvx
kekd

(〈δQ(0)
+ (k, ω)δQ

(1)
− (−k,−ω)〉

− 〈δQ(0)
− (k, ω)δQ

(1)
+ (−k,−ω)〉). (13)

All other terms vanish upon momentum/frequency in-
tegration due to even/odd cancellations. Inserting the
solutions of (12), we obtain ρD = ρσD + ρηD, where ρσD is
generated by the charge fluctuations r± and ρηD is gen-
erated by the viscous fluctuations s±:

ρσD = M3TσQ(0)

∫ ∞
0

dk

∫
ω

(Dσ +Dη)k7(ω2 −D2
ηk

4)

e2kd|Π+|2|Π−|2
,

ρηD = MQ(0)2T (η(0) + ζ(0))

∫ ∞
0

dk

∫
ω

(Dσ +Dη)k9

e2kd|Π+|2|Π−|2
.

(14)
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This yields a complicated integral expression for ρD.
We can however make simplifications in the regimes of
“large” and “small” d. The model of Fermi surface cou-
pled to U(1) gauge field has roughly the following prop-
erties [20,21,36] for dynamical critical exponent z = 3 (m
is the effective fermion mass), corresponding to the case
of short-ranged interactions of composite fermions [36]:

Q(0) ∝ ek2F , M ∝ mk2F ,
(
∂µ

∂Q

)
S

∝ ~2

e2m
, b1 ∝

EF
e
,

σQ(0) ∝
(
EF
kBT

)2/3
e2

~
, η(0) ∼ ζ(0) ∝

(
EF
kBT

)2/3

~k2F .

(15)

d is said to be “large” when d3 � d3c ≡ M(Dη +

Dσ)2/Q(0)2. This gives

(kF d)3 �
(
EF
kBT

)4/3
εEF
e2kF

. (16)

We have set the electrostatic permittivity ε = 1 so far in
the paper but restored it in the last equation. We also
demand d� de ≡ ~2ε/(e2m), which is trivially achieved
as de is typically a very small distance scale (O(10−10) m
for m ∼ me/4).

For d� dc we obtain the leading contributions

ρσD ∼
~
e2

(
kBT

EF

)1/3 ln4

(
dk

2/3
F

d
1/3
e

(
kBT
EF

)4/9)
(kF d)4

,

ρηD ∼
~
e2

(
kBT

EF

)1/3 ln5

(
dk

2/3
F

d
1/3
e

(
kBT
EF

)4/9)
(kF d)5/(kF de)

. (17)

ρσD and ρηD have the same temperature scaling up to log-
arithms. However, ρηD falls off faster with d than ρσD.
This results should be contrasted to that obtained earlier
for Fermi liquids [34]. Note that even though the power
dependence on temperature is T 1/3, there is a ln4(T )
correction, which will make the temperature dependence
appear faster than T 1/3 but slower than T , which is con-
sistent with the data of Refs. [37,38] at large separations.

At small separations d � dc, all contributions to ρD
scale as Tn>1 (see further details in supplementary ma-
terials). This is again consistent with [38], which shows
an apparent crossover from positive to negative curva-
ture in ρD(T ) as a function of T as d is increased. In
Fig. 1 we show ρD(T ) obtained by numerically evaluat-
ing the integrals without the above approximations that
confirm the qualitative behaviors we discussed. It should
be carefully noted that in Fig. 1 the line corresponding to
d = 150 nm appears superficially above the line of d = 15
nm plot which is due to the choice of the normalization
factor ρ0(d). Drag is obviously a decaying function of
inter-layer separation d as is clear from (17).

0 1 2 3 4 5

0

0.09

0.18

0.27

0.36

0

0.003

0.006

0.009

0.012

FIG. 1: Normalized drag resistance ρD(T )/ρ0(d). ρD(T ) =
ρσD(T ) + ρηD(T ) is obtained by numerically evaluating (14)
for two different spatial separations. ρ0(d) = (~/e2)/(kF d)4.
Note the crossover from positive to negative curvature as d is
increased. This feature holds for other values of the dynamical
critical exponent 2 < z < 3 as well that can appear in the
theory of Ref. [36]. We use TF ∼ 50 K and m ∼ me/4 (dc ∼
10 nm at T ∼ 5 K). We set all constants of proportionality
in (15) to 1. Numerical values should be treated as order-of-
magnitude estimates only.

III. DISCUSSION

The most extensively studied example of transresis-
tance in the case of non-Fermi liquids corresponds to
inter-layer frictional Coulomb drag between bilayers of
half-filled Landau levels [37–40]. The theoretical ap-
proach that has proved most useful for understand-
ing the filling fraction ν = 1/2 state is the fermion
Chern-Simons field theory, which is based in turn on
the composite-fermion picture [36]. Previous calculations
[41–43] showed that the dominant low-temperature be-
havior for ρD scales with temperature as T 4/3 (see sup-
plementary material for a brief summary of this result
[27]). This unique power exponent can be traced back
to a special momentum dependence of the electronic lon-
gitudinal conductivity, as can be deduced from surface
acoustic wave measurements. Indeed, in the composite-
fermion picture, at ν = 1/2, the density response at
small frequencies and small wave-vectors is of the form
∝ (k3 − 8πiχωkF )−1, which can be viewed as slow dif-
fusion with an effective diffusion constant that vanishes
linearly with k (where χ is the thermodynamic compress-
ibility of the ν = 1/2 state). Since the typical frequency
is set by temperature ω ∼ T , the pole structure of long-
wavelength density fluctuations sets a characteristic scale
for momentum transfer between the layers k ∝ T 1/3 that
then carriers over to drag resistance ρD ∝ T 4/3. This
should be contrasted the Fermi liquid prediction ρD ∝ T 2

at lowest temperatures, and our prediction ρD ∝ T 1/3.
In our current understanding, the results of Ref. [41] cor-
respond to the “collisionless” regime of transport with re-
spect to intra-layer collisions, namely a long equilibration
length as mediated by interactions with the gauge field.
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We considered the opposite collision-dominated regime
where this length scale is assumed to be short. This
should explain the difference between the power expo-
nents 4/3 and 1/3 between two limiting cases. We hope
that understanding different transport regimes and cor-
responding temperature dependencies will be of help for
the interpretation of future experiments, as it also deep-
ens our current understanding of the existing transport
data and corresponding theories.
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