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We develop a machine learning method to construct accurate ground-state wave functions of
strongly interacting and entangled quantum spin as well as fermionic models on lattices. A re-
stricted Boltzmann machine algorithm in the form of an artificial neural network is combined with a
conventional variational Monte Carlo method with pair product (geminal) wave functions and quan-
tum number projections. The combination allows an application of the machine learning scheme to
interacting fermionic systems. The combined method substantially improves the accuracy beyond
that ever achieved by each method separately, in the Heisenberg as well as Hubbard models on
square lattices, thus proving its power as a highly accurate quantum many-body solver.

I. INTRODUCTION

Obtaining accurate ground-state wave functions of
many-body quantum Hamiltonians is one of the grand
challenges in condensed matter physics. Great successes
so far are, for example, Bardeen-Cooper-Schrieffer (BCS)
wave functions for conventional superconductivity [1],
Bethe-ansatz wave function for one-dimensional interact-
ing systems [2], and Laughlin wave functions for frac-
tional quantum Hall effect [3].
However, in order to construct the ground-state wave

functions of many-body interacting systems and grasp
the essential physics encoded in them, we often need to
resort to numerical estimates. Currently, many numeri-
cal techniques are available such as the variational Monte
Carlo (VMC) method [4–9], the density matrix renormal-
ization group [10, 11], tensor network methods [12, 13],
and the path-integral renormalization group [14]. Among
them, the VMC method offers an accurate ground-state
wave function for quantum spins as well as fermions on
various lattices.
Recently, alternative approaches, based on machine

learning, have attracted growing attention in many-body
physics [15–48]. In particular, Carleo and Troyer [49]
have proposed a machine-learning algorithm, which uses
a restricted Boltzmann machine (RBM) as a variational
wave function |Ψ〉 for representing the ground states of
quantum spin systems. In this scheme, hidden artificial
neurons are introduced on top of the the physical degrees
of freedom (quantum spins), to mediate entanglement in
the state. The RBM variational wave functions are self-
optimized through machine learning.
We can express a general quantum state |Ψ〉 by using

the Fock space basis {|x〉} in the form of a variational
function as

|Ψ〉 =
∑

x

|x〉F(x)〈x|φref 〉 (1)

∗ nomura@ap.t.u-tokyo.ac.jp

with a correlation factor F(x) [50, 51] and a reference
state |φref〉. The RBM wave function in Ref. [49] is ob-
tained by employing an RBM for F(x) and a product
state for |φref〉 so that 〈x|φref〉 = 1 is satisfied for any or-
thonormalized complete set x. The product state |φref〉
is not able to describe nonlocal quantum entanglement,
although it is essential in strongly correlated systems.
Then the entanglement has to be represented solely by
the RBM factor F(x). However, alternative choices of
|φref〉 may already incorporate typical quantum corre-
lations and can potentially allow |Ψ〉 to more efficiently
capture ground state entanglement. In fact, in the many-
variable VMC (mVMC) method [9], a pair-product (PP)
wave function (or equivalently geminal wave function in
quantum chemistry [52–54]) is chosen as |φref〉, which can
efficiently capture a substantial part of the non-local en-
tanglement in strongly correlated quantum systems by
using many variational parameters.

In this paper, we propose a variational wave function
for studying strongly correlated quantum systems called
RBM+PP which combines flexible and nonempirical cor-
relation factor given by RBM and entangled reference
state given by the PP wave function to inherit the ad-
vantages of both. When applied to the two-dimensional
(2D) Heisenberg model on a square lattice, we show that
our method significantly outperforms the original RBM
method [49], which itself outperforms existing numerical
techniques for finite lattices based on tensor networks.

The PP wave function can also flexibly incorporate
non-local correlations in fermionic systems and account
for the fermionic sign, allowing RBM+PP to be applied
to interacting systems of fermions. When applied to
the Hubbard model we show that the combined method
achieves greater accuracy than either method applied
separately. To the best of our knowledge, this is the
first application of the RBM-based wave functions to in-
teracting fermions. The RBM+PP method thus provides
a powerful tool not only for quantum spins but also for
highly entangled quantum states such as strongly corre-
lated itinerant fermions.
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The structure of the paper is as follows. In Sec. II,
we explain the RBM+PP method after introducing in-
dividual RBM and PP wave functions. In Sec. IV, we
apply the RBM+PP scheme to Heisenberg and Hubbard
models and show significant improvement from RBM and
mVMC results. The representability of the RBM+PP
wave function is discussed in detail in Sec. V. Finally,
we give a summary and present future perspectives in
Sec. VI.

II. RBM+PP METHOD

In this section, we will define RBM and PP states and
explain how these are combined in RBM+PP method.

A. RBM wave function

The RBM state in Ref. [49] for spin Hamiltonians is
given by setting F(x) = N (x) with a neural-network
correlation factor N (x) and |φref〉 to be the product state
|φproduct〉 (〈x|φproduct〉 = 1) in Eq.(1), which from now
we refer to as product-basis RBM (P-RBM) (Fig. 1(a)).
N (x) is defined by an artificial neural network (ANN) as

N (x)=
∑

{hk}

exp
(

∑

i

aiσi +
∑

i,k

Wikσihk +
∑

k

bkhk

)

,(2)

where x = (σ1, σ2, . . . , σNvisible
) is a real space config-

uration of Nvisible physical variables and σi is the i th
discrete-valued physical variable (visible-layer spin vari-
able). In the S = 1

2 Heisenberg model, we take σi =

2Sz
i = ±1 with Sz

i being the z-component of the S = 1
2

spin at site i. Here Nvisible is equal to the number of sites
Nsite. The auxiliary pseudo spin variables hk = ±1 are
for the hidden neurons and {ai,Wik, bk} is a set of varia-
tional parameters. In this study, we take variational pa-
rameters to be real. Importantly, as there are no weights
connecting hidden neurons, the sum over hidden vari-
ables can be evaluated exactly and Eq.(2) can be reduced

to the form N (x) ≡
∏

k 2 cosh
(

bk+
∑

i Wikσi

)

×e
∑

i
aiσi ,

which can be computed efficiently for each x.
In fermionic models we define a different RBM state

which we refer to as F-RBM. The correlation factor
F(x) = N (x) is taken similarly to, but by slightly
modifying the spin case. For |φref〉, our most primi-
tive choice is a Fermi-sea state rather than the prod-
uct state. This is because the product state is too poor
in representing fermionic entanglement. The Fermi sea
is the ground state of the noninteracting fermion lattice
models, much like product states are ground states of
noninteracting spin models, and is thus able to account
for the most primitive part of the fermionic entangle-
ment and signs. We can use the same form of N (x) as
Eq. (2) by doubling the number of the visible-layer vari-
ables (Nvisible = 2Nsite) and mapping fermionic modes
to these spins as (σ2i, σ2i−1) = (2ni↑−1, 2ni↓−1) where

niσ is the number operator for the fermions at site i with
spin σ.
As discussed in Ref. [49], the accuracy of the wave func-

tion can be controlled by the “hidden variable density”
α, which is defined as Nhidden/Nvisible with the number
of neurons Nhidden in the hidden layer and the number
of physical variables Nvisible in the visible layer.

B. PP wave function

Whereas the RBM states in the first step use the prod-
uct and Fermi-sea states for |φref〉, more sophisticated
choices of |φref〉 are able to incorporate more involved
entanglement directly into the state. In this work we
will use the pair-product (PP) state |φpair〉 as |φref〉. The
PP wave function is given by

|φpair〉 =
(

Nsite
∑

i,j=1

∑

σ,σ′=↑,↓

fσσ′

ij c†iσc
†
jσ′

)Ne/2

|0〉 (3)

where Ne is the number of electrons, fσσ′

ij are variational

parameters, and c†iσ is the operator creating a σ-spin elec-
tron at site i. For a given real space configuration x,
φpair(x) = 〈x|φpair〉 can be expressed as the Pfaffian of a
matrix, and can be calculated efficiently, much like N (x).
Note that an accurate description of the node position is
crucially important for fermionic wave function while the
simple product state with the positive definite coefficients
does not describe the node. In contrast, the Pfaffian wave
function is able to optimize the nodal structure within the
framework of the Pfaffian wave function. Therefore, the
PP wave function can account for typical non-local en-
tanglement not only in non-frustrated spin systems but
also in frustrated spin and fermionic systems.
In spin models, to prohibit the double occupation, PP

wave function is supplemented by the Gutzwiller factor
P∞
G =

∏

i(1 − ni↑ni↓). This form of reference function
|φref〉 = P∞

G |φpair〉 is able to represent resonating valence
bond (RVB) wave functions [55, 56].

C. RBM+PP wave function

In this paper, we will study the combined wave func-
tion RBM+PP (Fig. 1(b)) with F(x) = N (x) and
|φref〉 = |φpair〉 (itinerant fermions) or P∞

G |φpair〉 (spins)
in Eq. (1). We remark that the RBM+PP wave func-
tion is similar to that used in the mVMC method [9],
except that the mVMC method uses an empirical form
of F(x) instead of more flexible and unbiased neural-
network factor N (x). Specifically, in the mVMC method,
F(x) is given by F(x) = 〈x|PGPJ|x〉 with Gutzwiller
PG (controlling double occupancy) [51] and Jastrow PJ

(for long-ranged charge-charge correlation) [50] factors.
In Appendix A, we show that the neural-network factor
N (x) is indeed more flexible than the empirical factors
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(a) P-RBM

visible layer

hidden layer

(b) RBM+PP

visible layer

hidden layer

WikWik

fσσ
ij

FIG. 1. Schematic illustration of (a) P-RBM and (b)
RBM+PP to represent many-body wave function. Physical
variables in the visible layer couple to artificial neurons in the
hidden layer through Wik interactions in Eq. (2). Whereas no
entanglement among physical variables exists in the absence
of the hidden layer in P-RBM, RBM+PP provides direct en-

tanglement via fσσ′

ij parameters in Eq. (3). For visibility, only

a small portion of connections by Wik and fσσ′

ij are shown.

by showing that N (x) can represent both the Gutzwiller
and Jastrow factors. The N (x) factor can also represent
many-body (more than two-body) correlations [57] at the
same time.
Various symmetries can be imposed on the wave func-

tion to improve accuracy and reduce computational
cost [58]. In this study, as in Ref. [49], we im-
pose translational symmetry in the variational param-
eters {ai,Wik, bk} in the RBM. In the antiferromag-
netic Heisenberg and half-filled Hubbard models, because
∑

i σi = 0 holds in the ground state, the translationally-
invariant bias term ai = a becomes irrelevant. There-
fore, we neglect it. Furthermore, as the ground states
of the Hamiltonians considered have total spin S =
0 and momentum K = 0, we apply the projections
onto these subspaces, respectively LS=0 and LK=0, to
|φpair〉 or P∞

G |φpair〉 to improve accuracy. If we ap-
ply both LS=0 and LK=0, the reference state becomes
|φref〉 = LK=0LS=0|φpair〉 for itinerant fermions and
|φref〉 = LK=0LS=0P∞

G |φpair〉 for spins.

D. Machine learning of variational parameters

The form of the wavefunction in Eq. (1) allows cal-
culating physical quantities, and derivatives with respect
to variational parameters to be approximated efficiently
using Markov chain Monte Carlo sampling over the prob-
ability distribution p(x) = 〈Ψ|x〉〈x|Ψ〉/〈Ψ|Ψ〉. We use a
machine learning method (called stochastic reconfigura-
tion in Ref. [8] and natural gradient in Refs. [59, 60]) to
optimize the variational parameters in the wave function
with respect to the energy. The computational cost of the

optimization scales as O(N3
site) for RBM+PP, compared

to O(αN2
site) for P-RBM [49]. Thus, the improved accu-

racy of RBM+PP over P-RBM comes at some additional
computational cost. Details and comparisons of the vari-
ational wave functions we introduced in this section are
listed in Appendix B.

III. MODELS

We apply the RBM+PP scheme to calculate the
ground states of 2D S = 1

2 antiferromagnetic (AFM)
Heisenberg and 2D Hubbard models on the square lat-
tice. Their Hamiltonians are defined as follows:

HHeisenberg = J
∑

(i,j)

Si · Sj (J > 0), (4)

HHubbard = −t
∑

(i,j)σ

c†iσcjσ + U
∑

i

ni↑ni↓. (5)

The sum over sites i, j is restricted to nearest-neighbor
pairs. We take the exchange constant J and hopping
t as an energy unit in each case. The onsite repulsion
U controls the strength of correlation in the Hubbard
model.
In our calculations, fully periodic boundary conditions

are imposed for the Heisenberg model, while periodic
(in x-direction) and anti-periodic (in y-direction) (P-AP)
boundary conditions are imposed for the Hubbard model.
Further details of the computation conditions are avail-
able in Appendix C.

IV. RESULTS

A. Heisenberg model

Figure 2 shows the RBM+PP ground-state energy
for 8 × 8 2D Heisenberg model compared to quantum
Monte Carlo calculations using the stochastic series ex-
pansion (SSE-QMC) at sufficiently low temperature T of
1/T = 64 [61], which gives practically exact ground state
energy. For comparison, the mVMC results [9] and the
P-RBM wave function employed in Ref. [49] are shown.
Here, mVMC is equivalent to α = 0 of RBM+PP. This is
because the Gutzwiller factor PG is fixed to freeze charge
degrees of freedom and Jastrow factor PJ becomes irrel-
evant in the absence of charge degrees of freedom.
As discussed in Refs. [64, 65], the resonating valence

bond (RVB) wave function is known to provide a highly
accurate description of the 2D Heisenberg model. The
relative error in the result of the mVMC function, which
can represent the RVB wave function, is indeed less than
0.2 percent. We see that the non-empirical P-RBM wave
function is also powerful, giving a comparable accuracy
to the mVMC results. The RBM+PP wave functions,
which take advantages of the above two, substantially
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FIG. 2. RBM+PP results for energy of 2D AFM Heisen-
berg model defined on 8 × 8 square lattice with fully pe-
riodic boundary condition. (a) Relative error of energy to
SSE-QMC energy (E/J = −0.673487(4)) [61] as a function of
1/α (α: hidden variable density). △ (▽) symbol: RBM+PP
|Ψ〉 = NLK=0LS=0P∞

G |φpair〉 (|Ψ〉 = NLS=0P∞
G |φpair〉). ©

symbol: P-RBM |Ψ〉 = N|φproduct〉. α = 0 (solid horizon-
tal lines) corresponds to the mVMC results (red: |Ψ〉 =
LK=0LS=0P∞

G |φpair〉, green: |Ψ〉 = LS=0P∞
G |φpair〉). Two

arrows (from top to bottom) indicate the result of entangled-
plaquette states (EPS) [62] and variational QMC to evaluate
the projected entangled pair states (PEPS) for virtual bond
dimensions of 16 [63]. (b) Variance ∆var extrapolation of en-
ergy. The cross (×) on the ordinate shows the SSE-QMC
energy. The data points plotted in this variance range are
α = 0, 2, 4, 8, 16, 32 (from right to left) for red △ symbols,
α = 2, 4, 8, 16, 32 for green ▽ symbols, and α = 8, 16, 32 for
blue © symbols, respectively. Linear fit and extrapolation to
∆var → 0 is shown as sold lines. All the data points in this
range except α = 0 data in red are used in the fit. Error bars
show standard errors of Monte Carlo measurements of energy
(and also variance in case of (b)) for the optimized variational
wave function.

improve the accuracy of independent mVMC and P-RBM
schemes.
It is interesting to note that each of the three curves

in Fig. 2 corresponds to the results with the very same
form of correlation factor N (x) but with different refer-
ence wave functions |φref〉. The lowest energy is obtained
when |φref〉 = LK=0LS=0P∞

G |φpair〉 followed by |φref〉 =
LS=0P∞

G |φpair〉, with the product state |φref〉 = |φproduct〉
having the highest energy. Therefore, improving refer-
ence function helps the RBM to learn the ground state
more efficiently.
In Fig. 2(b), we plot the total energy as a function

of its variance ∆var=
(

〈H2〉−〈H〉2
)

/〈H〉2. The variance
is zero in the case of an exact ground state (or more
generally, an exact eigenstate of Hamiltonian). By the
linear fit of the energy as a function of the variance and
extrapolating to ∆var = 0, we can obtain a more accurate
estimate of the ground state energy [8, 14, 66–68]. The
variance extrapolation works better for the RBM+PP
than the P-RBM wave function because the variance is

TABLE I. P-RBM and RBM+PP results for spin struc-
ture factor S(π, π) in 2D Heisenberg model. For compari-
son, S(π, π)/Nsite = 0.05986(3) in mVMC and 0.059280(3) in
SSE-QMC [61] results.

wave function
S(π, π)/Nsite × 102

α = 2 α = 8 α = 32
N|φproduct〉 6.017(2) 5.955(2) 5.946(2)

NLK=0LS=0P∞
G |φpair〉 5.969(2) 5.956(2) 5.944(2)

already small. The accuracy of the extrapolated energy
for RBM+PP wave functions with spin and momentum
quantum projections NLK=0LS=0P∞

G |φpair〉 (red line in
Fig. 2(b)) reaches an order of 10−5 (0.001 percent) in the
relative error, which is comparable to the size of error
bars of SSE-QMC calculations [61].
RBM+PP can also be used to accurately calculate

other physical quantities, besides the energy. For in-
stance, we also measure spin structure factor S(q) =

1
3Nsite

∑

i,j

∑

α=x,y,z〈S
α
i S

α
j 〉e

iq·(ri−rj). The result for

S(qpeak) = S(π, π) is shown in Table I, indicating high
accuracy of the correlation functions by the RBM+PP.

B. Hubbard model

Figures. 3(a) and 3(b) show the RBM+PP result for
the ground state energy of 8 × 8 Hubbard model at half
filling for U/t = 4 and 8, respectively. The relative error
to the auxiliary-field quantum Monte Carlo (AF-QMC),
which gives practically the exact results within the er-
ror bars, is plotted. For comparison, the mVMC results
using Gutzwiller-Jastrow correlation factors and the F-
RBM results are shown as well.
In both cases (U/t = 4 and U/t = 8), the F-RBM

has an error of several percent. The RBM+PP method,
in which the variational parameters in both the N and
|φpair〉 are optimized, achieves significantly higher accu-
racy. We see the same trend as the Heisenberg model;
namely, the accuracy is improved by choosing a better
reference wave function |φref〉.
The RBM+PP wave function also surpasses the accu-

racy of the mVMC wave function, which indicates su-
periority of more unbiased neural-network factor N (x)
to the empirical Gutzwiller-Jastrow factors P(x) =
〈x|PGPJ|x〉. We expect that the advantage of a self-
optimized neural network will be more substantial for
more complicated Hamiltonians than the single-band
Hubbard model. In more complex Hamiltonians, more
flexible forms for correlation factors are likely to be neces-
sary. Another advantage of the RBM+PP to the mVMC
methods is that the accuracy improves as U increases
(see Appendix D and Fig. 4), while the mVMC results
show the opposite trend [9].
At U/t = 4 (Fig. 3(a)), the best RBM+PP accuracy

is comparable to the accuracy of TNVMC (tensor net-
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FIG. 3. RBM+PP result for energy of 2D Hubbard model at
half filling with (a) U/t = 4 and (b) U/t = 8 on 8× 8 square
lattice with P-AP boundary condition. Relative error of the
RBM+PP energy to the AF-QMC energy (E/t = −0.8642(2)
and −0.5259(3) for U/t = 4 and U/t = 8, respectively)
[69] as a function of 1/α (α: hidden variable density) is
shown. △ (▽) symbol: RBM+PP |Ψ〉 = NLK=0|φpair〉
(|Ψ〉 = N|φpair〉). © symbol: F-RBM |Ψ〉 = N|φFermi-sea〉.
Solid horizontal red (green) lines: results of mVMC functions
|Ψ〉 = PGPJL

K=0|φpair〉 (|Ψ〉 = PGPJ|φpair〉). The arrow in
(a) indicates the TNVMC result [70]. Error bars show stan-
dard errors of Monte Carlo measurements of energy for the
optimized variational wave function.

TABLE II. RBM+PP (NLK=0|φpair〉) results for spin struc-
ture factor S(π, π) computed for 2D Hubbard model at half
filling. For comparison, mVMC (PGPJL

K=0|φpair〉) and AF-
QMC [71] results are also listed.

S(π, π)/Nsite × 102

α = 2 α = 8 α = 32 mVMC AF-QMC
U/t=4 3.078(5) 3.057(5) 3.021(5) 3.107(4) 2.92(2)
U/t=8 5.233(9) 5.206(9) 5.20(1) 5.30(1) 5.0(1)

work combined with mVMC), where the relative error is
∼ 0.25 percent as obtained at available maximum ten-
sor bond dimension D = 16, which is the computation-
ally practical upper limit [70]. In the TNVMC method,
the mVMC wave function is supplemented by the ten-
sor network enabling one of the most accurate schemes
among existing numerical methods [70]. Compared to
the TNVMC method, the RBM+PP has an advantage,
because it can be applied flexibly and easily to any kind
of lattice and does not require an involved contraction
procedure [13] in contrast to the TNVMC method.

The spin structure factor S(π, π) is listed in Table II.
At both U/t = 4 and U/t = 8, with increasing α, the
value becomes closer to the exact AF-QMC value.

V. DISCUSSION

While the physical properties of the RBM have only
recently started being discussed in condensed matter
physics [72–80], more general discussion of representabil-
ity can be traced back to earlier studies [81–83], which
show that the RBM is able to describe any smooth func-
tion, if arbitrarily large α is allowed. In the present
2D Heisenberg model, a gauge transformation can make
probability amplitude of the exact ground-state wave
function |ΨGS〉 positive (〈x|ΨGS〉 > 0 for all x). There-
fore, the exact ground state can be represented by real-
variable RBM with infinite α. Accordingly, the relative
error should go to zero as 1/α → 0. Indeed, in Fig. 2(a),
it looks that the RBM+PP energy curves (red and green)
start bending toward 0 as 1/α decreases. It is likely that
a better reference state makes 〈x|ΨGS〉/〈x|φref〉 (to be
represented by N (x)) smoother and helps to reach faster
convergence at small α.
For fermionic problems, nodal structure of wave func-

tions is crucial [84], which is beyond the representability
of the real-variable RBM giving positive N (x) [79]. In
the RBM+PP, |φpair〉 is expected to accurately repro-
duce the nodal structure. Then, 〈x|ΨGS〉/〈x|φpair〉 may
become smooth enough so that with moderate α, N (x)
can represent a quick convergence to the exact value at
α → ∞. However, rigorously speaking, the nodal struc-
ture of |φpair〉 is likely to be different from the exact one
even when the variational parameters contained in |φpair〉
are ideally optimized. Therefore, introduction of complex
variational parameters in the RBM part may be useful
to adjust the nodes to the exact positions beyond the
framework of the Pfaffian wave function. Although it is
an interesting open question whether the energy curve as
a function of 1/α in the Hubbard model (Fig. 3) goes to
0 as 1/α → 0, in practical computations, the optimiza-
tion at larger α becomes more and more difficult, which
might hamper the expected convergence.

VI. SUMMARY AND PERSPECTIVES

In this work, we have proposed a new variational
ansatz for studying the ground states of many-body in-
teracting quantum systems. Our variational wave func-
tion, which we call RBM+PP, combines the RBM based
on the ANN and the mVMC methods. We have shown
that, in both 2D Heisenberg and Hubbard models, the
RBM+PP results show a dramatic improvement of ac-
curacy over simple neural network wave functions (the
P-RBM and F-RBM wave functions). We also see the su-
periority of the RBM+PP to the mVMC method. Since
the RBM+PP method can be flexibly applied not only to
bosonic (or spin) systems but also to fermionic problems,
the RBM+PP method offers a wide range of applications
with high accuracy and a reasonable computational cost.
As a future perspective, it would be interesting to go

beyond the RBM structure and introduce second hidden
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layer (deep Boltzmann machine (DBM)). DBM is argued
to have more efficient representation of certain many-
body wave-functions than RBM [75]. In DBM, the spin
variables of the neurons distributed in more than one
hidden layer cannot be traced out analytically, thus we
need to introduce additional Monte Carlo samplings for
hidden spins.
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Appendix A: Ability of RBM to represent

Gutzwiller and Jastrow factors

The Gutzwiller factor PG = exp(−gni↑ni↓) at site i
can be recast as (except for trivial constant factor and
one-body potential)

PG = exp
(

−
g

4
σ2iσ2i−1

)

(A1)

where (σ2i, σ2i−1) = (2ni↑−1, 2ni↓−1) are physical vari-
ables in the visible layer defined in Sec. II A. This in-
teraction between physical variables can be mediated by
adding one hidden neuron h as (except for trivial con-
stant factor)

PG =
∑

h=±1

exp(W1σ2ih+W2σ2i−1h)

= 2 cosh(W1σ2i +W2σ2i−1) (A2)

with W1 =
1
2arcosh (exp (|g|/2)) and W2 =−sgn g ×W1.

This form is consistent with the neural-network factor N
defined in Eq. (2). In the very same way, we can show
that the neural-network correlation factor N can repre-
sent the Jastrow factor PJ = exp(− 1

2

∑

i,j(i6=j) vijninj).

Appendix B: List of variational wave functions

employed in simulations

Tables III and IV summarize the forms of the wave
functions employed in the present study for solving the
Heisenberg and Hubbard models, respectively.

Appendix C: Details of calculation conditions

1. Stabilization factor

In the present study, the parameters are optimized
by the stochastic reconfiguration (SR) method [8]. The
same optimization scheme is called natural gradient in
Refs. [59, 60]. This optimization is equivalent to the
imaginary-time evolution e−τH|Ψ〉 of the wave func-
tion |Ψ〉 to reach the ground state for sufficiently large
imaginary time τ in the truncated Hilbert space which
is spanned by the variational wave function. In the
SR optimization, the variational parameters γm (m =
1, 2, . . . , Nv) at the p-th iteration are updated as

γ(p+1)
m = γ(p)

m +∆γ(p)
m , (C1)

where the difference in the update ∆γ
(p)
m is given by

Nv
∑

n=1

S(p)
mn∆γ(p)

n = −∆τ g(p)m . (C2)

with a small imaginary time step ∆τ . Here, S is a posi-
tive definite matrix given by

Smn = 〈∂γm
Ψ̄|∂γn

Ψ̄〉 (C3)

with a normalized variational wave function |Ψ̄〉 =

|Ψ〉/
√

〈Ψ|Ψ〉 and |∂γm
Ψ̄〉 = ∂

∂γm
|Ψ̄〉. The g vector is

the gradient of energy with respect to the γ parameters:

gm =
∂E

∂γm
=

∂

∂γm
〈Ψ̄|H|Ψ̄〉 (C4)

To stabilize the optimization, we introduce the stabi-
lization factor to the diagonal elements of the S matrix
as

S(p)
mm → S(p)

mm(1 + ǫ
(p)
1 ) + ǫ

(p)
2 max

m

{

S(p)
mm

}

. (C5)

Here, ǫ1 scales the diagonal elements and ǫ2 gives a con-
stant shift to the S matrix. Although ǫ2 strongly stabilize
the optimization, it sometimes makes convergence slower,

so we typically put a small number to ǫ2: ǫ
(p=0)
2 ∼ 10−3

and we gradually decrease to ǫ∞2 ∼ 10−7-10−6 through
the first several hundred iterations of optimization. As
for ǫ1, we found that smaller ǫ1 (∼ 10−5-10−4) factor for
neural-network-related variational parameters {bk, Wik}
sometimes helps to lower the energy. Meanwhile, we also
found that a small ǫ1 (. 10−3) makes the optimization

of f↑↓
ij parameters in the pair-product (geminal) wave
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TABLE III. List of wave functions used in the analysis of the 8 × 8 Heisenberg model (Nsite = 64). To describe the singlet

state, the σ and σ′ spins in the fσσ′

ij parameters in the PP wave function are always set to be a pair of ↑ and ↓ spins. We

impose 2×2 sublattice structure in f↑↓
ij parameters in the PP (geminal) wave function. In this case, the number of independent

f↑↓
ij parameters becomes 2 × 2 × Nsite = 4Nsite, and the other f↑↓

ij parameters are determined by using spatial translation
operations. The RBM part ({bk, Wik}) is taken to be fully translationally invariant (1×1 sublattice structure) [49]. When the

double occupancy is completely prohibited by the Gutzwiller factor P∞
G =

∏

i(1 − ni↑ni↓), the onsite f↑↓
ii parameters become

completely irrelevant, i.e., the wave function and the energy do not depend on f↑↓
ii at all. Thus the number of f↑↓

ij parameters
in the table are reduced from 4Nsite to 4(Nsite−1).

method wave function symbol in Fig. 2 variational parameters # of variational parameters

P-RBM N|φproduct〉 open circle (blue) {bk, Wik} α(Nsite+1) = 65α

RBM+PP NLS=0P∞
G |φpair〉 down-pointing triangle (green) {bk, Wik, f↑↓

ij } α(Nsite+1)+4(Nsite−1) = 65α+252

RBM+PP NLK=0LS=0P∞
G |φpair〉 up-pointing triangle (red) {bk, Wik, f↑↓

ij } α(Nsite+1)+4(Nsite−1) = 65α+252

mVMC LS=0P∞
G |φpair〉 green solid horizontal line {f↑↓

ij } 4(Nsite−1) = 252

mVMC LK=0LS=0P∞
G |φpair〉 red solid horizontal line {f↑↓

ij } 4(Nsite−1) = 252

TABLE IV. List of wave functions used in the analysis of the 8× 8 Hubbard model (Nsite = 64). As in the case of Heisenberg

model, the σ and σ′ spins in the fσσ′

ij parameters are set to be always anti-parallel. In the mVMC method, we use Gutzwiller

PG and Jastrow PJ factors, whose forms are PG = exp

(

−
∑

i

gini↑ni↓

)

and PJ = exp



−
1

2

∑

i,j(i6=j)

vijninj



, respectively. All

the gi, vij , and f↑↓
ij parameters are taken to be independent (8× 8 or full sublattice structure). On the other hand, the RBM

part is taken to be translationally invariant (1 × 1 sublattice structure) [49] to save computational cost. We have confirmed
that, in the 4 × 4 Hubbard model, taking full sublattice structure in the RBM part does not help much to lower the energy
compared to 1 × 1 sublattice case, although it drastically increases the number of variational parameters and hence increases
the computational cost.

method wave function symbol in Fig. 3 variational parameters # of variational parameters

F-RBM N|φFermi-sea〉 open circle (blue) {bk, Wik} α(2Nsite+1) = 129α

RBM+PP N|φpair〉 down-pointing triangle (green) {bk, Wik, f↑↓
ij } α(2Nsite+1)+64Nsite = 129α+ 4096

RBM+PP NLK=0|φpair〉 up-pointing triangle (red) {bk, Wik, f↑↓
ij } α(2Nsite+1)+64Nsite = 129α+ 4096

mVMC PGPJ|φpair〉 green solid horizontal line {gi, vij , f↑↓
ij } Nsite+32(Nsite−1)+64Nsite = 6176

mVMC PGPJL
K=0|φpair〉 red solid horizontal line {gi, vij , f↑↓

ij } Nsite+32(Nsite−1)+64Nsite = 6176

function unstable. To overcome this problem, we use

parameter dependent ǫ1 factor, namely, ǫ
(p)
1 ({f↑↓

ij }) =

ǫ
(p)
1 ({bk, Wik}) + ∆ǫ1 with ∆ǫ1 ∼ 10−2. With this con-

dition, we typically use ǫ
(p=0)
1 ({bk, Wik}) ∼ 10−2-102

and gradually decrease it to ǫ∞1 ({bk, Wik}) ∼ 10−5-10−4

in the first several hundred iterations of the optimization.
As for the initial {bk, Wik} parameters, we use small

random numbers. We run several calculations with dif-
ferent seeds for generating random numbers and adopt
the wave function that has the lowest energy.

2. Particle-hole transformation of Hubbard model

When we analyze many-body Hamiltonians by theoret-
ical or numerical solvers, we can utilize transformations

of the Hamiltonians to find a representation suitable for
the solver in hand [86]. In the conventional variational
Monte Carlo method, many-body interacting models de-
fined in the real-space basis such as the Hubbard model
is analyzed as they are, because the empirical form of
the correlation factors is also defined in the real-space
basis. On the other hand, in cases where we employ
machine learning technique, because the neural network
will find a way to lower the energy even when the form
of the Hamiltonian is complicated, we could think of the
“best” transformation of the Hamiltonian such that the
neural network can lower the energy with small number
of parameters.

Though it would not be the best of the best, we find
that performing a staggered particle-hole transformation

(ci↓ → (−1)ic†i↓ and c†i↓ → (−1)ici↓) and mapping onto
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FIG. 4. U dependence of RBM+PP (NLK=0|φpair〉 with
α = 32) energy of 2D Hubbard model defined on 8× 8 square
lattice with P-AP boundary condition. Relative error of the
RBM+PP energy to that obtained by the AF-QMC [69, 71] is
shown. For comparison, at t/U = 0, we show the RBM+PP
(NLK=0LS=0P∞

G |φpair〉 with α = 32) result for the 8 × 8
Heisenberg model. Error bars show standard errors of Monte
Carlo measurements of energy for the optimized variational
wave function.

the attractive Hubbard model help the RBM+PP wave
function to lower the energy of the Hubbard model. This
transformation is also helpful for mVMC calculations to
get a better energy [87]. Thus, we have solved the Hub-
bard model with this transformation. Finding a bet-
ter transformation (by again employing machine learning
technique) is an interesting future problem.

Appendix D: U dependence of energy in RBM+PP

Figure 4 shows the U dependence of RBM+PP
(NLK=0|φpair〉 with α = 32) energy of the 2D 8×8 Hub-
bard model. The result shows that the error decreases
with increasing U/t.
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