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Spintronic signatures of Klein tunneling in topological insulators1

Yunkun Xie,∗ Yaohua Tan, and Avik W. Ghosh2

Charles L. Brown Department of Electrical and Computer Engineering,3

University of Virginia, Charlottesville, VA, 22904 USA.4

Klein tunneling, the perfect transmission of normally incident Dirac electrons across a potential
barrier, has been widely studied in graphene and explored to design switches, albeit indirectly. We
show an alternative way to directly measure Klein tunneling for spin-momentum locked electrons
crossing a PN junction along a three dimensional topological insulator surface. In these topological
insulator PN junctions (TIPNJs), the spin texture and momentum distribution of transmitted elec-
trons can be measured electrically using a ferromagnetic probe for varying gate voltages and angles
of current injection. Based on transport models across a TIPNJ, we show that the asymmetry in
the potentiometric signal between PP and PN junctions and its overall angular dependence serve
as a direct signature of Klein tunneling.

I. INTRODUCTION5

Klein tunneling - a consequence of quantum electrody-6

namics where relativistic particles pass through a high7

potential barrier unimpeded1 - is an intriguing phe-8

nomenon that has yet to be directly observed in experi-9

ments. Researches closest to testing the KT phenomenon10

are mostly conducted in graphene, with recent progress11

in the demonstration of anomalous broadened quantized12

states in a graphene quantum dot2 and negative index3
13

in graphene. It has also been invoked to engineer a gate14

tunable pseudogap in graphene at high mobility, making15

it potentially useful for both low power digital and high16

speed analog switches4–6. Exciting as it is, a direct mea-17

surement of Klein tunneling in graphene is very hard be-18

cause electron flow in graphene sums over all momenta19

equally and current measurements cannot differentiate20

those mixed electron momenta. To overcome this diffi-21

culty, recent progress in graphene focused on either col-22

limating electrons through a particular gate geometry7
23

or through a specially designed electron source8. Both24

methods narrow the electron momenta distribution but25

can potentially suffer from gate edge roughness or re-26

duced signal intensity due to electron absorption in the27

source structure. Here we propose an alternative ex-28

perimental setup to measure KT in a different system29

that doesn’t need complicated gate/source structure - 3D30

topological insulator (TI) surface. The TI surface, such31

as Bi2Se3, has a simple Dirac cone band structure9 rem-32

iniscent of graphene, except its branches are labeled by33

spins rather than pseudospins. This unique band struc-34

ture makes TI a potential candidate for spintronics appli-35

cations: Carriers along the surface have their spins locked36

with their linear momentum10, which can generate polar-37

ized spins with charge injection and apply a sizeable spin38

torque on a magnet11–13. Recently we suggested that a39

TIPNJ can be used as a gate tunable spin filter to am-40

plify charge to spin conversion at a magnetic source and41

increase spin polarization at the drain14. Such a tun-42

able torque can have potential applications in all spin43

logic15. Beyond applications, the TI surface state of-44

fers opportunities to study the fundamental physics of45

Dirac electrons such as Veselago focusing and Klein tun-46

neling. In this paper, we propose a new way to mea-47

sure KT in 3D TI surface. The core of our proposed48

idea relies on the measurement of electron spin potential49

on the TI surface through a spin selective ferromagnetic50

probe. Since momenta couple with spin on TI surface,51

the spin selective probe can also be momentum selec-52

tive. The method of potentiometric measurement with a53

ferromagnetic probe to detect the spin structure on TI54

surface has been well-established both theoretically16,17
55

and experimentally18–21. Here we model a potentiomet-56

ric measurement on a TIPNJ and demonstrate from de-57

tailed calculations that the angle and voltage dependent58

potentials measured at the probe bear direct signatures59

of Klein tunneling across the PN junction.60

Our paper is organized as follows: In section II, we61

first define the proposed experimental setup as well as62

theoretical model for TIPNJ and ferromagnetic probe.63

Then we derive the analytical equations followed by a64

brief summary of the numerical techniques. In section65

III we describe the simulation results for two different66

experimental setups. In section IV we discuss possible67

solutions to some realistic issues expected in the proposed68

experiments.69

II. MODELING METHODS70

Fig. 1(a) shows a schematic structure of the TI pn71

junction in a potentiometric measurement setup. The72

TI surface can be chemically doped into P or N-type,73

as demonstrated in multiple experiments22,23. The fig-74

ure shows a P-doped TI surface with a top gate on the75

source side that can swing it electrostatically to N-type.76

Recent experiment has already shown an innovative way77

to put atomically abrupt gate on TI to create in-plane78

pn Junction24. The rest of the P-type TI surface is ex-79

posed and a ferromagnetic probe is placed on top of the80

exposed surface to monitor the voltage at different gate81

bias and angular orientations (the orientation can be al-82

tered by using multiple contacts at relative angles, as we83

discuss later).84
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FIG. 1. (a) A basic setup for potentiometric measurement
on a topological insulator PN junction. (b) The electrostatic
potential profiles (abrupt and smooth) across TI PN junction.

The TI surface states can be described by the k · p85

Hamiltonian when the electron energy under considera-86

tion is close to the Dirac point10:87

H = vF ẑ · (σ × p) (1)

where ẑ is the normal vector of the surface and vF88

is the speed of electrons near the Dirac point. σ =89

(σx, σy, σz) are the Pauli matrices. It should be empha-90

sized that this parameterized surface Hamiltonian ignores91

any bulk leakage current that could control the strength92

of the measured voltage. In binary TI compounds such93

as BiSb, Bi2Se3, Bi2Te3, it can be challenging to sep-94

arate the surface contribution from the dominant bulk95

contribution25–27. One possible solution is to use ternary96

compounds like Bi2Te2Se with low carrier density in the97

bulk28. Minimizing the leakage current into the bulk of98

TI is still an active research topic that is outside the scope99

of this paper. Here we only discuss the pure surface states100

of 3D TI.101

The electrostatic potential across the TI PN junction102

is given by:103

V (x) = −qVp, exposed P side

= −qV ′g , gate side
(2)

where Ep = −qVp is the energy difference between the104

local electron chemical potential and the Dirac point105

(E = 0). V ′g is the effective potential on the source side106

of the TI surface under the gate voltage Vg as shown in107

Fig.1(a). For the simplicity of the discussion, we assume108

good electrostatic control of the gate on the TI surface109

(gate capacitance much larger than other capacitors in110

the system) that gives V ′g ≈ Vg. Two potential profiles111

are depicted in Fig. 1(b), one with an abrupt potential112

change at the junction interface while the other assumes113

a smooth transition. Later we will first derive the analyt-114

ical results for electron transmission in abrupt junctions115

and then extend it to smooth junctions, which is closer to116

a realistic profile2. For smooth junctions, the transition117

region between N and P is set to 50 nm wide and the FM118

probe is placed 80 nm from the junction interface.119

In the ballistic limit, the electrons only scatter near the120

PN junction interface. A weakly coupled ferromagnetic121

voltage probe can detect the local chemical potential of122

the non-equilibrium electrons with different spin orien-123

tations. To calculate the voltage measured by the FM124

probe, we treat it as a third contact (Büttiker probe) be-125

sides source and drain. From Landauer theory29,30, the126

exchange of electrons between the voltage probe and the127

TI surface follows the following equations:128

Iin = Tr [ΓFMG
n] = Tr [ΓFM (fsAs + fdAd)]

Iout = fpTr [ΓFMA] = fpTr [ΓFM (As +Ad)]
(3)

where Iin (Iout) is the incoming (outgoing) currents129

through the probe. ΓFM is the coupling between the FM130

probe and the TI surface. Gn is the correlation matrix131

while As(Ad) are the partial spectral functions populated132

by the source (drain). A = As + Ad is the total spec-133

tral function. fs, fd, fp are the Fermi-Dirac distribution134

functions of the source, drain and the floating probe re-135

spectively.136

The coupling between the FM probe and the TI surface137

depends on the magnetization of the FM probe m =138

(mx,my,mz) and electron spin σ of the TI surface:139

ΓFM(m) = γ0 (1 + PFMm · σ) (4)

where γ0 =
γp+γap

2 is the average coupling between the140

FM probe and the TI surface when the magnetization141

of the probe is in parallel or anti-parallel alignment with142

the surface electron spin. PFM = (γp − γap)/(γp + γap)143

is the ‘polarization’ of the FM probe, representing the144

sensitivity of the FM probe to the electron spins.145

The voltage signal measured by the FM probe is de-146

termined by its distribution function fp, which can be147

solved based on the condition that a voltage probe draws148

zero net current Iin = Iout:149

fp(m) =
(fs − fd) Tr [ΓFMAs]

Tr [ΓFMA]
+ fd

= λ(m)(fs − fd) + fd (5)

fp varies when the magnetization m points to different150

directions. We use the dimensionless parameter λ(m)151

to characterize the dependence of the voltage signal on152

the direction of the magnetization. At low-temperature153

and small bias, the Fermi-Dirac distribution reduces to a154

step function and chemical potential of the probe can be155

expressed as:156

µp(m) = λ(m)(µs − µd) + µd (6)

Experimentally instead of switching the magnetization157

of the FM probe we can drive current along two oppo-158

site directions (source to drain and vice-versa), then re-159

late the measured voltage difference µp(m)−µp(−m) to160

∆λ(m) = λ(m)−λ(−m) through the charge current and161
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the ballistic resistance of the junction:162

∆λ(m) =
µp(m)− µp(−m)

qIRB

RB =
h

q2T (Ef )
(7)

where RB is the gate voltage dependent ballistic resis-163

tance of the junction, calculated using the average trans-164

mission at the Fermi energy.165

We can further define a quantity p(m) for the mea-166

sured ‘polarization’ of the TI surface electrons along the167

magnetization direction m:168

p(m) =
λ(m)− λ(−m)

λ(m) + λ(−m)

=
µp(m)− µp(−m)

µp(m) + µp(−m)− 2µd
(8)

The physical interpretation of Eq. 8 becomes obvious169

when we substitute Eq. 4 into Eq. 8 and see that170

Tr [ΓFM(m)A] = Tr [ΓFM(−m)A] due to the time rever-171

sal symmetry of TI surface states. Eq. 8 reduces to:172

p(m) = PFM
Tr[(m · σ)γ0As]

Tr[γ0As]
(9)

when Eq. 9 is evaluated in the bias window, it indi-173

cates the spin polarization of the non-equilibrium elec-174

trons along direction m. Notice that PFM also appears in175

the equation to account for the sensitivity of FM probe.176

Our definition is compatible with the polarization defined177

in16 for homogeneous TI surface.178

A. Analytical formalisms179

For infinitely large TI surface with an abrupt PN junc-180

tion potential profile, the eigen-functions to Eq. 1 are181

given by:182

|ψ〉σ =
1√
2S

(
1

−sieiθ
)
eik·r (10)

s = sgn(Ek)

where sgn(Ek) = 1 is for the N type and sgn(Ek) = −1183

for the P type. S is the surface area. At the PN junction,184

the transmitted and scattered electrons are connected by:185

|ψ〉σ = |ψi〉σ + r|ψr〉σ
|ψ〉σ = t|ψt〉σ

(11)

where |ψi〉σ, |ψr〉σ, |ψt〉σ are the incoming, reflected and186

transmitted electron wave functions respectively (see Fig.187

2) and r/t is the reflection/transmission coefficient. Solv-188

ing Eq. 11 with wave function continuity condition at the189

junction r = 0, we get the transmission coefficient:190

for NP t = eiθi−e−iθt
e−iθi−eiθt (12)

for PP t = eiθi−eiθt
e−iθi−e−iθt (13)

It is convenient to replace θt with θt + π in the NP case191

so that the expressions for t are the same in both PP192

and NP cases. The incident and transmitted angles are193

connected through the conservation of ky across the junc-194

tion: (E− qVn) sin θi = (E− qVp) sin θt, we can calculate195

the transimission probability |t|2:196

|t|2 =
cos2 θi

cos2
(
θi+θt

2

) (14)

Smooth PN junction. The effect of a smooth PN junc-197

tion (as shown in Fig. 1(b)) is an additional exponential198

factor from the abrupt junction case (Eq.14). Here we199

borrow the result for the transmission coefficient |t|2smooth200

from the smooth graphene PN junction (see details in6):201

|t|2smooth =
cos2 θi

cos2
(
θi+θt

2

)e−π kikt
ki+kt

sin θi sin θtd

=
cos2 θi

cos2
(
θi+θt

2

)e−π ~vF
qV0

k2t sin
2 θtd

(15)

where d is the transition length between N region and P202

region. V0 = |Vp − Vn| is the potential difference from203

N region to P region. Notice that the exponential factor204

should only be added in cases with different types (such205

as PN, NP) across the junction . In other cases (such206

as PP’, NN’), the difference between abrupt and smooth207

junctions is negligible, which can be seen in our compar-208

ison between analytical and numerical results later.209

In the small bias window near Ef , the charge current210

is given by:211

I =
q

h
T (Ef )(µs − µd)

T (Ef ) =
qVpW

hvF

∫ π/2

−π/2
|t|2 cos θtdθt (16)

where T (Ef ) is the electron transmission across the junc-212

tion and W is the width of the TI surface. Knowing the213

FIG. 2. Incident, reflected and transmitted electrons waves
in a TI pn junction.

214

215

transmission coefficient allows us to calculate Tr [ΓFMAs]216
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(Eq. 3-6):217

Tr [ΓFMAs]

= W
∑

vx(kt)>0

[1 + PFMm · s(kt)t(kt)]δ(Ef − E(kt))

(17)

s(kt) is the spin orientation of the transmitted electron218

with wave vector kt. t(kt) is the transmission coeffecient219

given by Eq. 13. λ(m) in Eq. 6 can then be calculated:220

λ(m) =
Tr [ΓFMAs]

Tr [ΓFMA]

=

∑
vx(kt)>0[1 + PFMm · s(kt)t(kt)]δ(Ef − E(kt))∑

kt
[1 + PFMm · s(kt)]δ(Ef − E(kt))

=

∑
vx(kt)>0[1 + PFMm · s(kt)t(kt)]δ(Ef − E(kt))∑

kt
δ(Ef − E(kt))

(18)

The last step in Eq. 18 holds because each pair of states221

kt,−kt cancel each other due to the time reversal symme-222

try of TI surface Hamiltonian s(kt) = −s(−kt). Assume223

the ferromagnetic voltage probe has an in-plane magneti-224

zation (mx,my). Substitute the transmission coefficient225

into Eq. 18 and replace
∑

with S
4π2

∫
d2k. For the de-226

nominator, notice that it is just the density of states on227

the P side. Therefore λ(m) can be calculated:228

For PP:

λ(m) =

∣∣∣∣Ef − qVgEf − qVp

∣∣∣∣×∫ π/2

−π/2

cos2 θi (1 + PFMmx sin θt − PFMmy cos θt)

2π cos2
(
θi+θt

2

) dθt

(19)

For NP:

λ(m) =

∣∣∣∣Ef − qVgEf − qVp

∣∣∣∣×∫ π/2

−π/2

{
cos2 θi (1 + PFMmx sin θt − PFMmy cos θt)

2π cos2
(
θi+θt

2

)
· exp

[
(Ef − qVp)2πd
|Vg − Vp|q~vF

]}
dθt (20)

where θt = sin−1[(Ef − qVg)/(Ef − qVp) sin θi].229

B. Numerical approach230

In general cases, the ballistic electron/spin transport231

on the TI surface can be numerically modeled with the232

Non-Equilibrium Green’s Function (NEGF) method. An233

artificial term σz = γ~vFσz(k2x + k2y) is added to the234

surface Hamiltonian Eq.1 to avoid the fermion doubling235

problem as have been done in the previous studies14,16.236

The modified TI surface Hamiltonian is discretized on a237

square lattice by the finite difference method14:238

H =
∑
i

εc†i ci +
∑
i

(
txc
†
i,ici,i+1 + H.C.

)
+
∑
j

(tyc
†
j,jcj,j+1 + H.C.) (21)

ε = −4~vF
α

a
σz tx = ~vF

[
i

2a
σy +

α

a
σz
]

(22)

ty = ~vF
[
− i

2a
σx +

α

a
σz
]

(23)

where a is the square mesh size (a = 5 nm is chose for239

the simulations). α = γ/a is a fitting parameter and240

α = 1 describes the correct bandstructure near the Dirac241

cone14. Periodic boundary condition is assumed in the242

transverse direction to simulate infinitely wide TI surface.243

The retarded green’s function is given by:244

GR(E,k⊥) = (E+δ−H(k⊥)−Σs(E,k⊥)−Σd(E,k⊥))−1

(24)
where E is the energy and k⊥ is the transverse wavevec-245

tor. Σs,d are self-energies from the source and drain. The246

FM probe is assumed to be weakly coupled to the TI sur-247

face so the effect of Σp (assign a very small value) on elec-248

tron transport is neglected when calculating GR(E,k⊥).249

Then the spectral functions can be calculated numeri-250

cally through the NEGF formalism:251

As = GRΓsG
R†, Γs = i(Σs − Σ†s)

Ad = GRΓdG
R†, Γd = i(Σd − Σ†d) (25)

λ(m) is then calculated from the matrix forms of252

ΓFM, As, A.253

III. RESULTS254

A. Varying gate voltage: from PP to NP junction.255

The impact of a TIPNJ on surface electron transport256

is summarized schematically in Fig. 3(a). Consider a257

small source-drain bias near the Fermi energy, as shown258

in Fig. 1(b). As the gate voltage varies from Vg = Vp to259

Vg = −Vp, the TI switches from a homogeneous P-doped260

surface to an NP junction. Electrons see a potential bar-261

rier from the N region to the P region. In a normal262

semiconductor, such a barrier creates decaying electron263

waves in the P region and results in a vanishing current.264

For Dirac type TI surface, however, the junction acts265

like a collimator for electrons, filtering out electrons with266

large incident angles but preserving the normally incident267

modes that cannot back-scatter due to spin conservation.268

The resulting electron transmission for various gate volt-269

ages is plotted in Fig. 3(a). This behavior can trans-270

late to the gate voltage dependence of ∆λ(m) defined in271
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FIG. 3. (a) Schematic plot of the electron transmission
through the junction at different gate voltages. (b) Gate volt-
age dependence of ∆λ(−ŷ) = λ(−ŷ)−λ(ŷ) for various probe
sensitivities. (c) The measurable polarization of TI surface
electrons along ŷ direction. The circles are benchmark results
from NEGF simulations.

Eq. 7. Fig. 3(b) shows the gate voltage dependence of272

∆λ = λ(−ŷ)−λ(ŷ). ∆λ first goes down as we move from273

PP to PI (I: intrinsic), then goes up a bit and saturates274

in the NP region. The decrease of ∆λ(m) in the PP re-275276

gion is due to a mismatch of modes between the gate side277

and the probe side as the Fermi energy approaches the278

Dirac point (intrinsic doping) on the gate side. When279

Vg = 0 V the Fermi level on the gate side lies exactly280

on the Dirac point with zero density of states and thus281

∆λ(m) = 0. It is worth mentioning that the ‘zero’ is an282

idealized simplification. A rigorous calculation involves283

integration over the bias window which would result in a284

small but non-zero value.285

When the gate side is switched to the N region, the286

angular filtering effect shows up and results in a smaller287

value of ∆λ(m) compared to its symmetric point (with288

the same |Vg|) in the PP region. Since the normal inci-289

dent mode is not affected by the potential barrier, a small290

but near constant ∆λ(m) shows up in the NP region as291

Vg increases. This asymmetry between PP and NP region292

and the non-vanishing ∆λ(m) in the NP region separates293

the TI surface from other 2D systems such as graphene or294

Rashba systems where there is either ∆λ(m) = 0 in all re-295

gions due to spin degeneracy (graphene) or ∆λ(m) = 0 in296

the transmitted N region due to decaying waves in a po-297

tential barrier for massive tunneling electrons (Rashba).298

We can further demonstrate collimation in TIPNJ by299

plotting polarization p(−ŷ) as a function of the gate volt-300

FIG. 4. (a) Angular dependence of λ(m̂) for different gate
voltages. (b) Schematics of a tilted gate on TI surface. (c)
Compare the angular dependence of %(m) in PP and NP cases
(See Appendix A for the analysis of %(m)).

age, as shown in Fig. 3(c). Electrons moving along the301

x̂ direction carry −ŷ spin. Right across the NP junc-302

tion, filtered electrons have a narrower k distribution303

compared to the homogeneous PP case, and thus higher304

(close to 100%) spin polarization. In reality, this kind305

of measurement is limited by the sensitivity of the FM306

probe, but a clear and significant increase of polarization307

should be observable as we proceed from homogeneous308

PP case to NP doping with reasonable PFM values.309

B. Angular dependence of λ(m).310

Our discussion so far focused on measurement along311

two opposite directions (±ŷ), assumed to be orthogonal312

to the electron transport direction. For an arbitrary ori-313

entation of the magnetization m, λ(m) is a cosine func-314

tion of the relative angle between the magnetization m315

and the spin orientation of the non-equilibrium electrons.316

Fig. 4(a) shows the angular dependence of λ(m) with317

different gate voltages. From homogeneous PP to NP318

junction, apart from the change in the magnitude, λ(m)319

remains the same cosine function. This is because the320

FM probe cannot isolate individual modes but measures321

the sum over all transport modes. In our basic setup,322

the PN junction filters electrons with large incident an-323

gles but the transmitted modes are still symmetrically324

distributed with respect to x̂. Therefore the average mo-325

menta in the PP and NP junction only differ from each326

other by their magnitude. To experimentally observe the327

normal tunneling mode, we can put a tilted gate that is328

not orthogonal to the transport direction (see Fig. 4(b)).329

A tilted gate will not affect the results from the homoge-330

neous case but will collimate the electrons to a different331
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FIG. 5. Top. A possible experimental setup for diffusive
system. Bottom. A schematic chemical potential profile in a
diffusive system.

angle for NP, thereby creating a phase shift in the angu-332

lar dependence of λ(m). Since we only care about the333

phase of λ(m), we can define an angular function as:334

%(m) =
µp(m)− µp(−m)

qJPFM
(26)

which will scale ∆µp(m) by the charge current density335

J and make the PP and NP cases easier to compare, as336

shown in Fig. 4(c).337

IV. DISCUSSIONS338

A. Ballistic versus diffusive limit.339

Note that we formulated our equations Eq.3-8 assum-340

ing a ballistic channel where µp(m) can be directly re-341

lated to the chemical potentials from the source and342

drain. However, our analysis can be easily adopted to343

a diffusive system with a different interpretation. µs and344

µd in the previous discussions should be replaced by the345

local chemical potential µ↑ and µ↓ for spin up and spin346

down channels, as indicated in Fig. 5. All of our previous347

discussions are still valid given the following conditions:348

in a diffusive system, a momentum scattering event can349

disrupt the collimation effect of the NP junction. To be350

able to detect the Klein tunneling physics of the junction,351

the probe needs to be placed very close to the junction,352

preferably within the mean free path of the TI surface353

electrons (∼ 120 nm estimated in Bi2Te3
31). To place354

the probe in such short distance from the gate edge, it355

possibly requires either a very thin gate (< 100 nm) or356

specially etched shape (as shown in Fig. 5) to avoid357

crashing with the probe. From the discussion of p(m)358

earlier, we need information on µd (replace by µ↓) at the359

junction. One way to do this is to use a normal volt-360

age probe to map out the resistance from junction to the361

drain to extract the slope shown in Fig. 5, and then esti-362

mate the local electrochemical potential from the applied363

drain bias.364365

FIG. 6. One possible experimental measurement set-up. In-
trinsically P-doped topological insulator under a N type gate
near the source. The FM probe is placed on the exposed P
side.

B. Possible experimental set-up.366

Ideally we would like to rotate the magnetization of367

the ferromagnetic probe to map out the angle-dependent368

voltage signals. To our knowledge such a reorientation of369

an FM probe is challenging. Even fixing the magnetiza-370

tion of the FM probe orthogonal to the transport direc-371

tion is not straightforward. Instead, we propose placing372

two separate gates near the source and drain (Fig. 6),373

creating a symmetric system. Only one of the gates is374

used at a time to create an N region on one side. When375

the current direction is switched, we flip the gate po-376

larities on both sides and the entire system is mirrored.377

Another possibility is to put two probes (one FM, one378

normal) close to each other and measure the voltage dif-379

ference between them. It is not difficult to show that380

µp(m) − µp(−m) = 2(µp(m) − µnm) where µnm is the381

voltage measured at the non-magnetic probe.382

To summarize, we propose a straightforward poten-383

tiometric measurement on a TIPNJ with a FM voltage384

probe. We worked out quasi-analytical results for the385

voltage measurements which is also benchmarked with386

the numerical NEGF simulations. Our analysis predicts387

gate voltage dependent asymmetrical features - linear388

dependence of ∆λ in the PP regime and saturation in389

the NP regime. In a slightly different setup, the angular390

phase of the signal directly bear out signatures of Klein391

tunneling in the TI. We have also discussed non-idealities392

(probe polarization, momentum scattering) that may in-393

fluence quantitative details seen in the experiment.394
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Appendix A: Angular dependence for tilted junction405

Here we show that % in Eq. 26 has a phase shift in406

tilted NP junction compared to the homogeneous PP407

case. From Eq. 20 we have:408

µp(m)− µp(−m) = (λ(m)− λ(−m))(µs − µd)

where ∆λ(m) = λ(m) − λ(−m) can be calculated from409

Eq. 18:410

∆λ(m) =

∑
vx(kt)>0 2PFMm · s(kt)t(kt)δ(Ef − E(kt))∑

kt
δ(Ef − E(kt))

=
PFMm · S

π
(A1)

S =
∑

vx(kt)>0

s(kt)t(kt)

Instead of calculating the electron transmission in Eq. 16411

explicitly, we rewrite it as the summation of transmission412

over all forward propagating modes:413

T (Ef ) =
qVpW

hvF

∑
vx(kt)>0

x̂ · v̂tt(kt) =
qVpW

hvF
x̂ ·K

K =
∑

vx(kt)>0

v̂tt(kt) (A2)

where v̂t is the unit vector along the velocity of mode kt.414

It is easy to see S = K × ẑ due to the spin-momentum415

locking. Since J = q
WhT (Ef )(µs − µd), % in Eq.26 can416

be expressed as:417

%(m) =
µp(m)− µp(−m)

qJPFM
=

h2vF
πq3Vp

m · S
x̂ ·K

=
h2vF
πq3Vp

(z× m̂) ·K
x̂ ·K

(A3)

For a homogeneous PP junction, K ∝ x̂ and S ∝ −ŷ.418

Therefore %(m) ∝ − sin θm. For the NP case, only the419

normal mode can pass through the junction, which means420

K is normal to the junction. Therefore %(m) ∝ sin(θm−421

δg) where δg is the angle of the tilted gate.422
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