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The optical conductivity of a metal near a quantum critical point (QCP) is expected to depend
on frequency not only via the scattering time but also via the effective mass, which acquires a
singular frequency dependence near a QCP. On the other hand, the quasiparticle residue Z, no
matter how singular, does not appear in the conductivity as the latter probes quasiparticles rather
than bare electrons. In local theories of QCPs, however, the ratio of band and renormalized masses,
m∗/mb, coincides with 1/Z, and it is not straightforward to separate the two quantities. In this
work, we use a direct diagrammatic approach and compute the optical conductivity, σ′(Ω), near
two-dimensional (2D) nematic and spin-density wave (SDW) QCPs, using the local approximation
in which Z = mb/m

∗. If renormalization of current vertices is not taken into account, σ′(Ω) is
expressed via Z = mb/m

∗ and the transport scattering rate γtr as σ′(Ω) ∝ Z2γtr/Ω
2. For a nematic

QCP (γtr ∝ Ω4/3 and Z ∝ Ω1/3), this formula suggests that σ′(Ω) would tend to a constant at
Ω → 0. We explicitly demonstrate that the actual behavior of σ′(Ω) is different due to strong
renormalization of the current vertices, which cancels out a factor of Z2. As a result, σ′(Ω) diverges

as 1/Ω2/3, as earlier works conjectured. In the SDW case, we consider two contributions to the
conductivity: from hot spots and from “lukewarm” regions of the Fermi surface. The hot-spot
contribution is not affected by vertex renormalization, but it is subleading to the lukewarm one.
For the latter, we argue that a factor of Z2 is again cancelled by vertex corrections. As a result,
σ′(Ω) at a SDW QCP scales as 1/Ω down to the lowest frequencies, up to possible multiplicative
logarithmic factors.

I. INTRODUCTION

Understanding the behavior of fermions near a
quantum-critical point (QCP) remains one of the most
challenging problems in the physics of strongly correlated
materials. In dimensions D = 3 and below, scattering by
gapless excitations of the order-parameter field destroys
fermionic coherence either near particular hot spots, if
critical fluctuations are soft at a finite momentum q, or
around the entire Fermi surface (FS), if fluctuations are
soft at q = 0. An example of a finite-q QCP is a transition
into a spin-density-wave (SDW) state, while an example
of a q = 0 QCP is a Pomeranchuk-type transition into a
nematic state. In both cases, the frequency derivative of
the fermionic self-energy, ∂Σ(k, ω)/∂ω is large and sin-
gular near a QCP, and the real and imaginary parts of
Σ(k, ω) are of the same order. This violates the Lan-
dau criterion of a Fermi liquid (FL) and gives rise to a
non-Fermi liquid (NFL) behavior.

Because critical behavior generally emerges at inter-
mediate coupling, there is no obvious small parameter
to control a perturbation theory. Furthermore, because
soft order-parameter fluctuations are collective excita-
tions of fermions, the fermionic self-energy has to be com-
puted self-consistently with the bosonic one (the Landau
damping term) as both originate from the same inter-
actions between fermions and their collective modes. In
D = 2, considered in this work, the one-loop fermionic
self-energy due to scattering by critical bosons depends
predominantly on the frequency rather than on the mo-
mentum and is given by Σ(ω) ∝ ω2/3 at a nematic QCP

and Σ(ω) ∝ ω1/2 at a SDW QCP. In the latter case, this
form holds near the hot spots (points on the FS sepa-
rated by the nesting vector), in regions whose width by
itself scales as

√
ω. Higher-order terms in the loop expan-

sion give rise to additional logarithms near both types of
QCP.1–4 How these logarithms modify the self-energy is
not fully understood yet. We will not dwell on this is-
sue here and use the one-loop forms of the self-energy in
what follows.

The analysis of optical conductivity near a QCP brings
in another level of complications. First, the conductivity
contains a transport scattering time which, in general,
differs from the single-particle scattering time (given by
1/2Σ′′) due to constraints imposed by momentum conser-
vation. Second, the frequency scaling of the conductivity
may be affected by the frequency dependence of the effec-
tive mass m∗(Ω) near a QCP. Phenomenologically, these
two effects are often described by the “extended Drude
formula”, which has been widely used to analyze the op-
tical data on the normal state of high-Tc cuprates and
other strongly correlated systems.5 The most commonly
used version of this formula is

σ′(Ω) =
Ω2
p

4π

γtr(Ω)(
Ωm∗

mb

)2

+ γ2
tr(Ω)

, (1)

where σ′(Ω) = Reσ(Ω), Ωp is a coefficient which depends
on the bandstructure parameters and coincides with the
plasma frequency in D = 3, γtr(Ω) is the transport scat-
tering rate, m∗ is the renormalized effective mass which
may depend on Ω, and mb is the band mass. This for-
mula is motivated by the memory-matrix formalism6 and
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is often viewed as a generalization of the usual Drude for-
mula to the regime where mass renormalization is strong.
In the presence of disorder and/or umklapp scattering
at finite temperature, γtr approaches a finite limit at
Ω → 0. Equation (1) then describes a Drude peak of
width ∝ (mb/m

∗)γtr(Ω = 0) and amplitude ∝ mb/m
∗.

At T = 0 and in the absence of disorder γtr(Ω) vanishes
at Ω = 0 and scales as some power of Ω at small Ω. In
the cases considered in this paper, γtr(Ω) is smaller than
Ω or comparable to Ω at low frequencies, even if Σ′′ is
larger than Ω. Eq. (1) can then be approximated by

σ′(Ω > 0) =
Ω2
p

4π

(mb

m∗

)2 γtr(Ω)

Ω2
. (2)

The restriction to Ω > 0 is essential here because if
γtr(Ω)/Ω either vanishes at Ω→ 0 or remains a constant,
there exists an additional contribution to the conductiv-
ity, σ′ex ∝ δ(Ω). Noticing that Eq. (1) follows from Kubo
formula

σ′(Ω) = −Im
K(Ω)

Ω + iδ
(3)

with a model form for the current-current correlator

K(Ω) =
Ω2
p

4π

Ω

Ωm∗

mb
+ iγtr

, (4)

we find

σ′ex =
Ω2
p

4

(mb

m∗

)
δ(Ω). (5)

Note that K(Ω) in Eq. (3) contains both the gradient
and diamagnetic terms. Each of these terms is infinite
for an infinite bandwidth but their sum is finite. Once
these two contributions are combined, one can keep only
the gradient term and obtain the current-current corre-
lator as a fully dressed particle-hole bubble with current
vertices on both sides. The low-energy contribution to
K(Ω) is obtained by linearizing the fermionic dispersion,
εk, near the Fermi energy and integrating the product of
the fermionic Green’s functions in the bubble over εk in
infinite limits first and then over the frequency.

The problem with Eq. (2) [and thus Eq. (5)] is that
it is entirely phenomenological. At first glance it looks
consistent with the expression for K(Ω) in a local mi-
croscopic theory (in which the self-energy depends on
the frequency but not on the momentum), if one eval-
uates the particle-hole bubble using the Green’s func-
tions of dressed fermions. In such a theory, however,
the mb/m

∗ factor, multiplying Ω in Eq. (1), is undis-
tinguishable from the quasiparticle residue Z; namely,

mb/m
∗ = Z = (1 + ∂Σ′/∂ω)

−1
. In this case, the ex-

tended Drude formula at T = 0 and in the absence of
disorder can be equally expressed as

σ′(Ω > 0) =
Ω2
p

4π
Z2 γtr(Ω)

Ω2
, σ′ex =

Ω2
p

4
Zδ(Ω) (6)

However, Z cannot be present in the expression for the
conductivity because the latter is a gauge invariant quan-
tity and, as such, cannot contain a factor which measures
the overlap between bare electrons and quasiparticles.7,8

This observation questions the validity of the extended
Drude formula and calls for a detailed microscopic calcu-
lation of the conductivity.

In this paper, we analyze the validity of Eqs. (1-6) for
two types of QCP: a nematic one and a SDW one, both
in 2D. We argue that, in general, the extended Drude
formula is incomplete and has to be modified by includ-
ing renormalization of the current vertices, which is not
captured by a simple replacing of the single-particle scat-
tering time by the transport one. We show that near
a 2D nematic QCP renormalization of the current ver-
tices is singular, and its inclusion changes the frequency
scaling of the optical conductivity, compared to that pre-
dicted by Eq. (1). Namely, the factors of Z2 and Z in
the expressions for σ′(Ω > 0) and σ′ex in Eq. (6) are can-
celed by renormalized current vertices. The correct ex-
tended Drude formula for the nematic case is then given
by Eq. (6) without the m∗/mb factors:

σ′(Ω > 0) =
Ω2
p

4π

γtr(Ω)

Ω2
, σ′ex =

Ω2
p

4
δ(Ω), (7)

up to non-singular corrections.

That the extended Drude formula is problematic near
a 2D nematic QCP can be readily seen by comparing
the conductivity predicted by Eq. (1) with the result
obtained by a two-loop perturbation theory in fermion-
boson coupling9 and by dimensional regularization.10 As
we said before, Σ(ω) ∝ ω2/3 and m∗/mb = Z−1 ∝ ω−1/3

at a 2D nematic QCP. The transport scattering rate γtr is
obtained by multiplying a single-particle scattering rate
(Σ
′′ ∝ ω2/3) by a “transport factor” 1− cos θ ∼ θ2 ∝ q2

‖,

where q‖ is a typical momentum transfer along the FS,

which scales as ω1/3. Hence γtr ∝ ω4/3. Substituting this
result along with Z ∝ ω1/3 into Eq. (6) at ω = Ω, we
find that σ′(Ω)→ const at Ω→ 0. On the other hand, it
was found in Refs. 9 and 10 that σ′(Ω) ∝ 1/Ω2/3, which
obviously contradicts Eq. (6) but agrees with Eq. (7).
However, our calculation goes beyond the two-loop order
considered in Ref. 9 in that we compute the conductivity
using fully renormalized Green’s functions and summing
up infinite series of vertex renormalizations. Equation
(7) also shows that the δ−function contribution to con-
ductivity (σ′ex) does not vanish at a QCP. This agrees
with the earlier result that residual resistivity remains
finite in the hydrodynamic regime at a QCP.11 It is also
consistent with the classic result by Holstein,12,13 who
that showed the renormalized Drude weight contains the
“transport” mass which, in contrast to the total mass,
is insensitive to small momentum transfers. Although
Holstein’s result was obtained for electron-phonon inter-
action, it can be generalized to any electron-boson inter-
action in a non-Galilean-invariant system and thus also
applies to a nematic QCP.
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We note in passing that Eq. (1) with γtr = 2Σ′′(Ω)
can be viewed as the result of the Kubo formula in the
D → ∞ limit, in which vertex corrections are absent.14

However, there is no contradiction with the results de-
scribed above, because the Z-factor for a nematic QCP in
D-dimensions behaves as 1/Z− 1 ∝ ω(D−3)/3, i.e, Z → 1
as ω → 0 already for D > 3. Therefore, there is no addi-
tional singular Ω-dependence of the conductivity coming
from the Z-factor in the large-D limit.

We also consider a SDW criticality and analyze the
contribution to the conductivity from fermions both near
hot spots and in “lukewarm” regions,15,16 which lie in be-
tween hot and cold parts of the FS. For hot fermions we
find that, in contrast to the nematic case, there is no can-
cellation between the factors mb/m

∗ = Z and current
vertices. This implies that the correct result is repro-
duced by the extended Drude formula in Eq. (2), which
does takes mass renormalization into account. For luke-
warm fermions, however, we find that there is again a
cancellation between the factors of mb/m

∗ = Z and cur-
rent vertices, which implies that the extended Drude for-
mula should be viewed as Eq. (1) without the m∗/mb

factor multiplying the frequency. The leading contribu-
tion to conductivity near a SDW QCP was found15,16

to come from fermions in lukewarm regions even with-
out taking renormalization of the current vertices into
account. The inclusion of vertex renormalization makes
this contribution even larger, particularly at smaller fre-
quencies. Specifically, we find that σ′(Ω) scales as 1/Ω
at large Ω rather than as 1/Ω1/3 as it had been thought
previously.15,16

The rest of the paper is organized as follows. In Sec. II
we consider a nematic QCP. In Sec. II A we formulate the
diagrammatic approach to the optical conductivity based
on the idea of energy-scale separation. In Sec. II B we
calculate the optical conductivity in the FL region near
to but away from a nematic QCP. In Sec. II C we extend
the analysis right to the QCP. In Sec. III we consider a
SDW QCP. Contribution to the optical conductivity from
hot and lukewarm fermions are discussed in Secs. III A
and III B, correspondingly.

II. NEMATIC QUANTUM CRITICAL POINT

A. General reasoning

We consider a system of fermions on a 2D lattice near
a T = 0 Pomeranchuk-type transition into a state which
breaks lattice rotational symmetry. [Alternatively, one
can consider a ferromagnetic QCP, provided that the con-
tinuous quantum phase transition is stabilized by lower-
ing the spin symmetry from O(3) to Z2,17 or else a model
of fermions coupled to U(1) gauge field.9] We assume, as
in earlier studies, that near the transition the effective
electron-electron interaction is mediated by the dynami-

cal susceptibility of the order-parameter field

χ(q,Ωm) =
χ0

q2 +M2 + γ|Ωm|/q
, (8)

where M is the inverse correlation length of order-
parameter fluctuations (bosonic mass). We assume that
the fermion-boson coupling is gf(k), where g is a con-
stant roughly of order Hubbard U , k± q/2 are mo-
menta of fermions that couple to a boson with momen-
tum q, and f(k) is the form-factor associated with the
rotational symmetry of the order-parameter field. The
effective coupling, which appears in the formulas be-
low for the fermionic self-energy and conductivity, is
ḡ(k) = g2f2(k)χ0. The factor f(k) will not play any
significant role in our analysis and, to simplify the pre-
sentation, we neglect the k dependence of ḡ.

We begin by listing the known facts about the system
behavior near a nematic QCP. The notations are sim-
plified by assuming that the Fermi system is isotropic,
which is what we will do in what follows. Anisotropy can
be readily restored but it will not be necessary. First, the
Landau damping term in the bosonic propagator comes
from the same fermion-boson interaction, and the pref-
actor γ of this term scales as γ ∼ ḡkF /v

2
F , where kF

and vF are the Fermi momentum and velocity, corre-
spondingly. Second, sufficiently close to the QCP, i.e.,
for M2 � mḡ,18 the fermionic self-energy depends much
stronger on the frequency than on the momentum and
has the form

Σ(ωm) = iλωmfΣ

(
|ωm|
ωFL

)
. (9)

Here,

λ =
ḡ

4πvFM
(10)

is the dimensionless coupling constant,

ωFL = M3/γ ∼ M

kF

(MvF )2

ḡ
(11)

is the energy scale separating the FL and NFL regimes
(ω � ωFL corresponds to a FL and vice versa), and fΣ(x)
interpolates between the limits of fΣ(x� 1) = 1 +O(x)
and fΣ(x � 1) ∝ x−1/3. In the FL regime, Σ(ωm) ≈
iλωm + isgnωmaω

2
m, where a ∼ λ/ωFL. The correspond-

ing real-frequency Green’s function is given by

G(k, ω) = [ω/Z − εk + iΣ′′(ω)]
−1
, (12)

where Z = 1/(1 + λ) and Σ′′(Ω) = aω2.
Next, we next turn to the conductivity. Because the

interaction is peaked at q = 0 (i.e., it is long-ranged in the
coordinate space), umklapp scattering is suppressed.19,20

Therefore, the dc conductivity can be rendered finite
only by impurities or non-critical channels of the inter-
action. However, for fermions on a lattice σ′(Ω) is finite
even if only normal, i.e., momentum-conserving, electron-
electron scattering is present.21,22 Furthermore, if the FS
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contains inflection points, as we assume to hold in our
case, the conductivity due to normal scattering is not re-
duced compared to what one would get if normal and
umklapp scatterings were comparable.19,20,23–26

The most straightforward way to obtain σ′(Ω) is to
use the Kubo formula, which relates σ′(Ω) to the the
current-current correlation function at q = 0, K(Ω):

σ′(Ω) = −Im
K(Ω)

Ω + iδ

= −K
′′

Ω
+ πK ′(0)δ(Ω)

≡ σ′(Ω > 0) + σ′ex, (13)

where σ′ex denotes the δ-function part. In the dia-
grammatic representation, the current-current correlator
K(Ω) is a fully dressed particle-hole bubble with current
vertices on both sides For free fermions, K = K ′, with
K ′(0) = Ω2

p/4π. The four diagrams which contribute to
conductivity to the leading order in ḡ are shown in Fig. 1.

We will be referring to diagrams a-b as to Maki-
Thompson (MT) diagrams, and to diagrams c-d as to
Aslamazov-Larkin (AL) ones. The contribution from the
AL diagrams to K(Ω) is actually of the same order as
from the MT ones, despite the fact that it formally con-
tains an extra factor of ḡ.12,22,27–29 The reason is that
the MT contribution to K ′′(Ω) comes from the dynami-
cal part of the bosonic propagator – the Landau damping
term. The latter appears in the bosonic propagator due
to coupling to fermions and contains ḡ in the prefactor.
This adds extra ḡ to the MT contribution to K ′′(Ω) and
makes it of the same order as the AL one.

For a Galilean-invariant system, momentum conserva-
tion implies current conservation and thus vanishing of
σ′(Ω > 0). The sum rule for conductivity

∫∞
0
σ′(Ω) =

Ω2
p/8 then implies that the δ−function contribution to

the conductivity is not renormalized by interactions and
remains the same as for free fermions: σ′ex = (Ω2

p/4)δ(Ω).
Consequently, the MT and AL contributions to K(Ω)
cancel each other.22,27–29

For fermions on a lattice (our case) momentum conser-
vation does not imply current conservation and σ′(Ω > 0)
does not have to vanish. For a convex and simply con-
nected FS in 2D it is still important to keep both the
MT and AL contributions to σ′(Ω), because the leading
(constant) term in the conductivity cancels out and only
subleading term survives, leading to σ′(Ω) ∝ Ω2 (Refs.
19, 22, 24, 25, 30, and 31). We consider a generic FS
which does not belong to any of these types, e.g., a con-
cave FS. In this situation, the leading term in the conduc-
tivity does not cancel out. This in turn implies that the
MT and AL contributions are of the same order, but not
necessary close to each other. To obtain the frequency
dependence of K(Ω), it is then sufficient to consider only
one of these two contributions and do so in the isotropic
approximation for the Fermi surface. The actual result
will differ by a factor of order one, which reflects the ac-
tual shape of the Fermi surface. In what follows, we will

focus on the MT diagrams (diagrams a and b in Fig. 1).

a	 b	

c	 d	

Figure 1. Maki-Thompson (a-b) and Aslamazov-Larkin (c-d)
diagrams for the conductivity. The mirror image of diagram a
is not shown. This solid lines denote bare Green’s functions.

A detailed evaluation of these diagrams is discussed in
Sec. II B. In the FL region at finite distance from a QCP
we have

σ′(Ω > 0) =
Ω2
p

4π

γtr(Ω)

Ω2
, σ′ex =

Ω2
p

4(1 + λtr)
δ(Ω), (14)

where γtr(Ω) is the transport scattering rate and λtr is
the “transport mass renormalization constant”. Both λtr

and γtr(Ω) are smaller by a factor of M/kF � 1 than
the corresponding single-particle quantities, defined via
the self-energy as Σ(Ω) = λΩ + iγ(Ω), where λ is given
by Eq. (9) and γ(Ω) ∼ λΩ2/ωFL ∼ Ω2/M4. Namely,
λtr ∼ λ(M/kF ) ∼ ḡ/EF , while γtr(Ω) ∼ (M/kF )2γ(Ω) ∼
Ω2/M2. Technically, the factors of (M/kF ) in λtr and
(M/kF )2 in γtr appear because the two MT diagrams
partially compensate each other. Physically, the small-
ness of γtr(Ω) compared to γ(Ω) reflects the fact that
small-angle scattering is inefficient for momentum relax-
ation. Substituting γtr into Eq. (14), we find that the
conductivity σ′(Ω > 0) does not depend on the frequency
and scales with M as

σ′(Ω) ∝M−2. (15)

This is a familiar “FL foot”: a plateau in the frequency
dependence of the optical conductivity of a FL.21,32

We now want to approach the region where M is
small enough such that the fermion-boson coupling λ ∝
(ḡ/EF )kF /M is not small, even if ḡ/EF � 1. Here,
higher-order diagrams for the current-current correlator
cannot be neglected. The fully renormalized K(Ω) is
given by diagrams a and b in Fig. 2. These diagrams
contain fully dressed fermionic Green’s functions and a
fully dressed four-leg vertex.

Because the real part of the self-energy Σ′(Ω) = λΩ
becomes large at small M , whereas Σ′′(Ω) ∝ Ω2 still re-
mains small compared to Ω, a naive way to go beyond the
lowest order for K ′′(Ω) would be to include Σ′(Ω) = λΩ
into the Green’s functions in diagrams a and b in Fig. 1,
expand the diagram a to first order in the imaginary part
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of the self-energy, and replace the full four-leg vertex by
the bare one. This is the same as still expressing K ′′(Ω)
by diagrams a and b but replacing Ω by Ω(1 + λ) = Ω/Z
in each Green’s function. Instead of Eq. (15), we would
then get:

σ′(Ω > 0) =
Ω2
p

4π

Z2γtr(Ω)

Ω2
∝ Z2

M2
,

σ′ex =
Ω2
p

4

Z

1 + Zλtr
δ(Ω) . (16)

If this result could be extended to a strong-coupling limit
λ � 1, where Z ≈ 1/λ ∝ M � 1, we would arrive at
the conductivity σ′(Ω > 0) that is independent of M in
the limit of M → 0. Since M drops out, we would then
conclude that the conductivity at a finite Ω remains to
be constant even right at the QCP, where M = 0. We
would also conclude that the δ-functional term in the
conductivity vanishes at M → 0. However, it is obvious
that the method described in the preceding paragraph is
not consistent even with systematic expansion in ḡ in the
weak-coupling limit, where λ � 1 and Z ≈ 1. Indeed,
recalling that γtr ∝ ḡ and Z = 1 + O(ḡ), we see that
dependence of σ′(Ω > 0) in Eq. (16) on the coupling
constant is

σ′(Ω > 0) ∝ ḡ

[1 +O(ḡ)]2
∼ ḡ +O(ḡ2) + . . . (17)

Taking into account the effect of mass renormalization
(the denominator in the equation above) amounts to
finding a second-order correction to the conductivity in
the coupling constant. This means that all second-order
vertex corrections also need to be collected, but we ac-
counted only for those which are obtained by inserting
self-energy corrections into diagram b in Fig. 1.

Collecting corrections to the current vertex is simpli-
fied in our case of a long-range interaction, because the
current vertex Γ̄ for an incoming fermion with momen-
tum k is related to the density vertex, Γ, simply by
Γ̄ = vkΓ, up to small corrections (here, vk = ∂kεk).
If the momentum carried by the wavy line in diagram
d in Fig. 2 is q, then the left current vertex in this di-
agram is replaced by vkΓ and the right one by vk+qΓ
with k = kF .33 On other hand, the current vertices in di-
agram b give v2

kΓ2. The combination v2
k−vk ·vk+q gives

the transport factor, which we discussed above, and now
the problem reduces to finding the renormalized charge
vertex Γ.

The strength of the renormalization of Γ depends on
the ratio of the external momentum and frequency. We
are interested in the regime where the external mo-
mentum is zero, while the external frequency (Ω) is fi-
nite. [The opposite limit is discussed in Appendix A.]
In this regime, the density vertex satisfies the Ward
identity following from the particle number conservation:
Γ(Ω) = 1 + [Σ(Ω + ω)− Σ(ω)] /ω. Using Σ(ω) = λω, we
immediately obtain Γ = 1 + λ = 1/Z.

Nevertheless, inserting vertex corrections into the for-
mula for conductivity is still a tricky issue because dia-
gram b in Fig. 1, which we already included into Eq. (14),

is also a vertex correction. This contribution and the
ones that renormalize the vertex in accord with the Ward
identity can be separated if one assumes that they come
from different energy scales (larger energy scales for ver-
tex renormalization). The idea of energy scale separa-
tion in a FL (which is similar to the underlying idea of
renormalization group) was put forward by Eliashberg in
the context of dc conductivity34 and has been used to
calculate various correlation functions of both clean35–38

and dirty39 FLs. In real-time formulation, this method
amounts to representing a diagram for any given cor-
relation function by a sequence of irreducible vertices
separated by pairs of low-energy retarded (R) and ad-
vanced (A) Green’s functions given by Eq. (12) (“RA
sections”).39 Because the method neglects diagrams with
crossed irreducible vertices, it is equivalent to a kinetic
equation for a FL, which takes into account the resid-
ual interaction between quasiparticles via an appropriate
collision integral.34

Let’s assume momentarily that the separation-of-scales
method works near a nematic QCP, i.e., that one
can indeed separate the contribution from ”low-energy”
fermions, which yields K(Ω) as in Eq. (16), and the con-
tribution from ”high-energy” fermions, which accounts
for the renormalization of the current vertex, The low-
energy scale is the external frequency Ω, the high-energy
scale in a FL region is ωFL given by Eq. (11), hence the
separation-of-scales method works for Ω� ωFL. For defi-
niteness we apply the separation-of-scales method to K ′′.
The method implies that the exact current-current cor-
relation function K(Ω), represented by an infinite set of
terms with self-energy and vertex corrections with skele-
ton structure of diagrams a and b in Fig. 2, can be
approximated by two subsets of diagrams. In the first
set, one selects a single cross-section containing a pair of
low-energy Green’s functions given by Eq. (12). All other
elements of the diagram to the left and right of this cross-
section are assumed to contain fermions with energies of
order ωFL or higher. These elements are combined into
two renormalized side vertices, as shown in Fig. 2c. To
get the contribution to K ′′(Ω) from this diagram, one
needs to expand the low-energy Green’s functions to first
order in Σ′′. In the second subset, one selects a cross-
section composed of four low-energy Green’s function
with G(k, ω) ≈ (ω/Z − εk)−1, intersected by the interac-
tion line, and again lumps the rest of the diagram into
the left and right dressed vertices, as shown in Fig. 2d.
As a result one gets the diagrams for K ′′(Ω) of the same
structure of as in Fig. 1 a and b, but with renormalized
side vertices.34 The sum of the central parts of diagrams
c and d in Fig. 2 yields Eq. (14), while the renormalized
side vertices give two factors of Γ. The full answer then
becomes

σ′(Ω > 0) =
Ω2
p

4π

Z2Γ2γtr(Ω)

Ω2
∝ Z2Γ2

M2
=

1

M2
. (18)

In the last equation we used Γ = 1/Z. This is the same
result as obtained in the weak-coupling limit [Eq. (15)]:
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the conductivity tends to a finite value proportional to
1/M2 at low frequencies. At M → 0, σ′(Ω) formally
diverges, but near a critical point FL regime extends
only up to Ω ∼ ωFL ∝ M3. At higher frequencies, one
can use standard scaling arguments and replace M by
Ω1/3. This yields σ′(Ω) ∝ 1/Ω2/3, in agreement with
the results obtained perturbatively9 and via dimensional
regularization.10

a	 b	

c	 d	

Figure 2. Separation of energy scales for the current-current
correlator. The sum of skeleton diagrams a and b represents
an exact current-current correlation function. Each skeleton
diagram represents an infinite set of terms in perturbation
theory. Exact Green’s functions are denoted by thick lines,
the solid square represents the full 4-leg vertex. The sum of
diagrams c and d gives the leading order term in the expan-
sion of K′′(Ω) in γtr(Ω)/Ω. The diagram c consists of two
low-energy Green’s functions given by Eq. (12) (thin lines)
and two dressed current vertices (solid semi-circles), which
include all high-energy renormalizations. The contribution
to K′′(Ω) from this diagram is obtained by expanding the
low-energy Green’s functions to leading order in Σ′′(Ω). Dia-
gram d consists of four low-energy Green’s functions, the bare
boson-mediated four-fermion interaction (wavy line), and two
dressed vertices. Together, diagrams c and d give the same
result as diagrams a and b in Fig. 1, but with an extra factor
of Γ2 from the dressed vertices.

+	 +	…	

=	
		(0,Ωm)

			(kF ,0)

			(kF ,Ωm)

+	

			(kF ,0)

			(kF ,Ωm)

		(0,Ωm)
			(q,Ω'm)

			(kF +q,Ω'm)

			(kF +q,Ω'm+Ωm)

Figure 3. Vertex renormalization for a nematic QCP. Thick
solid lines denote exact Green’s functions. The wavy line is
the susceptibility from Eq. (8).

The issue that we address in this paper is whether it is
indeed possible to separate two types of contributions to
the optical conductivity: the one which determines the
transport scattering rate γtr and the one which accounts
for renormalization of the current vertices. We argue that
this is a non-trivial issue even in the FL regime, where we
do have two different scales: Ω and ωFL. We show that
the contributions from diagrams a and b in Fig. 1, which
add up to γtr, come from internal frequencies of order Ω,
and this holds regardless of whether one integrates first
over the internal frequency or over the fermionic disper-
sion εk. The issue of vertex renormalization is more sub-
tle. The renormalized current vertex (which, we remind,
in our case is the same as the density vertex multiplied by
the Fermi velocity) is obtained by summing up the ladder
series shown in Fig. 3. Non-ladder diagrams are smaller
at each given other. The building block (B) of the ladder
series is the convolution of two fermionic propagators and
one bosonic propagator; symbolically, B =

∫
GGχ. The

double integral over the internal frequency and fermionic
dispersion is convergent, hence the result does not depend
on the order of integration. Yet, characteristic internal
energies, encountered when integrating in different order,
differ. The fastest way to evaluate the B is to integrate
over εk first. Then the integral is determined by the poles
of the fermionic propagators (see Sec. II B 2 below). This
calculation gives B = λ/(1 + λ). The ladder series of
B blocks is geometric, so the full result for the vertex
is Γ = 1/(1 − B) = 1 + λ, in agreement with the Ward
identity.

The problem with applying this approach to the con-
ductivity is that typical internal frequencies and typical
εk in B are of order Ω, i.e., comparable to the character-
istic frequency that determine γtr. In this situation, one
cannot separate a computation of vertex corrections from
that of γtr. This poses a real problem because at large
λ the building block of the ladder series B = λ/(1 + λ)
is approximately equal to unity, and the sum of such
terms converges for any finite λ only because the numer-
ical prefactors of all terms are equal to unity as well,
i.e., the series is geometric. If one cannot separate the
energy scales, then each term in the ladder series gets
multiplied by a factor of order Z2γtr/Ω from the inter-
nal part of the diagram, but the numerical coefficients
now do not necessary correspond to a geometric series,
and the new series is not guaranteed to converge for any
λ <∞. It is also not guaranteed that the answer will con-
tain Γ2, i.e., that each side vertex in the current-current
correlator gets renormalized by 1 + λ. The situation is
even worse in the NFL regime, i.e., for Ω � ωFL, where

Σ′ ∼ Σ′′ ∼ ω1/3
0 ω2/3. The energy

ω0 = ḡ2/vF kF (19)

separates the perturbative regime, where ω � ω0 and
hence |Σ| � ω, from the non-perturbative one, where
ω � ω0 and hence |Σ| � ω. In the non-perturbative
region, i.e., for external Ω � ω0, each term in the lad-
der series for the vertex is a number of order one, and
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the series is not geometric. The solution of the inte-
gral equation for the vertex shows that ladder series is
summed into40 Γ(Ω) ≈ (ω0/Ω)1/3 ≈ 1/Z(Ω), in agree-
ment with the Ward identity. However, this relation
holds due to specific ratios of O(1) terms at consecu-
tive orders. Once one combines vertex renormalization
at a given order with the part of the diagram that gives
Z2γtr/Ω, the ratios of terms at consecutive orders change,
and there is no guarantee that the sum of ladder series
will be of order 1/Ω1/3. In addition, without a separation
of scales there is no argument for why the diagrams for
the current-current correlator should contain two renor-
malized current vertices rather than one.

We show in Sec. II B that the separation of scales is ac-
tually possible in the FL regime but, to apply this method
in a consistent manner, one should evaluate the building
block for the vertex correction in a different order: by in-
tegrating first over the fermionic frequency and then over
εk. This way, the integral over frequency comes from the
branch cut in the bosonic propagator. In the Matsub-
ara representation, this branch cut is associated with a
non-analytic, |Ωm| frequency dependence of the Landau
damping term. In this computational scheme, typical in-
ternal ω and εk in B =

∫
GGχ are of order ωFL rather

than Ω. Then the separation of scales is possible as long
as Ω � ωFL. As a consequence, the conductivity σ′(Ω)
has the form of Eq. (18). In the NFL regime, the sepa-
ration of scales is not, strictly speaking, possible. Still,
in Sec. II C we will argue that the 1/M2 dependence of
σ′(Ω) at M 6= 0 translates into σ′(Ω) ∝ Ω−2/3 in the
NFL regime.

We note in passing that there exists another energy
scale in the NFL regime: ω0 defined in Eq. (19). How-

ever, we will show below that there is no contribution to
the vertex correction from this scale, no matter in what
order the integrals in B are evaluated.

In the analysis below we discuss the calculation of real
and imaginary parts of K(Ω) separately, beginning with
K ′′(Ω).

B. Fermi-liquid regime
near a nematic quantum critical point

1. Central parts of diagrams for the current-current
correlation function

We first analyze diagrams a and b in Fig. 1 and show
that they are determined by low-energy fermions, with
frequencies of order of Ω, regardless of the order in which
the integrals over internal frequencies and fermionic dis-
persions are evaluated. For definiteness and for future
comparison with the calculation of the renormalized ver-
tex, we integrate over frequency first and then over εk.

We expect diagrams a and b to produce the FL result
σ′(Ω) ∝ Z2γtr(Ω)/Ω2 = const. According to Eq. (13),
the Ω-independent σ′(Ω) implies that K ′′(Ω) ∝ Ω. The
linear-in-Ω part of K(Ω) can be calculated directly on
the Matsubara axis; we only have to subtract the static
part of the effective interaction [Eq. (8)], because static
interaction does not give rise to damping of quasiparticles
and thus does not yield K ′′. The combined contribution
to K(Ωm) from diagrams a and b reads

K(Ωm) = e2

∫
d2q

(2π)2

∫
dΩ′m
2π

∫
d2k

(2π)2

∫
dωm
2π

(
vk+q/2 − vk−q/2

)2
χdyn(q,Ω′m)[

i(ωm+Ω′m/2)
Z − εk+q/2

] [
i(ωm−Ω′m/2)

Z − εk−q/2
] [

iΩ′m
Z − εk+q/2 + εk−q/2

]
× 1
i(Ω′m+Ωm)

Z − εk+q/2 + εk−q/2
, (20)

where χdyn(q,Ω′m) = χ(q,Ω′m) − χ(q, 0). The factor of
(vk+q/2 − vk−q/2)2 ∝ q2 appears when we sum up di-
agrams a and b. Physically, it accounts for the dif-
ference between the transport and single-particle scat-

tering rates. Since typical q � kF , we approximate
εk+q/2 − εk−q/2 by vF q cos θ, and integrate the product
of the first two factors in Eq. (20) first over ωm and then
over εk. This gives

K(Ωm) ∝ Z
∫
dqq4

∫
dΩ′m

∫
dθ

2π

cos θ[
iΩ′m
Z − vF q cos θ

]2 [
i(Ω′m+Ωm)

Z − vF q cos θ
] χdyn(q,Ω′m) (21)

We assume and then verify that typical internal frequen-
cies Ω′m are of order Ωm and typical q are of order M .

For Ω′m ∼ Ωm � vF q ∼ vFM , the angular integral in
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Eq. (21) is reduced to∫
dθ

2π
· · · = Z

(ΩmvF q)
2 (|Ω′m| − |Ω′m + Ωm|+ sgnΩ′mΩm) .

(22)

In the same limit, χdyn(q,Ω′m) ≈ −χ0γ|Ω′m|/q(q2+M2)2.
Substituting this into Eq. (21), we obtain

K(Ωm) ∝ Z2

∫
dqq

(q2 +M2)2
(23)

×
∫
dΩ′m
Ω2
m

|Ω′m| (|Ω′m| − |Ω′m + Ωm|+ sgnΩ′mΩm) .

As expected, the integral over q is determined by q ∼M
and gives a factor of 1/M2. The frequency integral, on
the other hand, is confined to the region 0 ≤ |Ω′m| ≤ |Ωm|
and gives a factor of Ωm. Continuing analytically from
Ωm to real Ω, we obtain

K ′′(Ω) ∝ Z2Ω

M2
. (24)

Alternatively, one can compute the integrals in
Eq. (20) in a different way, but splitting q into the com-
ponents tangential (q||) and normal (q⊥) to the FS. Inte-
grating over ωm, k, and q||, we obtain

K(Ωm) ∝ Z

M2

∫
dq⊥q⊥ (25)

×
∫
dΩ
′

m

|Ω′m|[
iΩ′m
Z − vF q⊥

]2 [
i(Ω′m+Ωm)

Z − vF q⊥
] .

For a given sign of q⊥, we now integrate over that half-
plane of complex Ω

′

m which does not contain poles, and
choose the contour to avoid the branch cut along the
imaginary axis, where |Ω′m| = ±iz. Combining then the
contributions from positive and negative q⊥ and rescaling
q⊥ = xΩm, z = yΩm, we reduce the double integral in
Eq. (25) to

K(Ωm) ∝ Z2

M2
Ωm

∫ ∞
0

dx

∫ ∞
0

dy
xy

(x+ y)3 [(x+ y)2 + 1]

=
πZ2Ωm
12M2

. (26)

Continuing analytically to real frequencies, we reproduce
Eq. (24).

Equation (24) is the expected FL result: K ′′(Ω) ∝
Z2γtr/Ω, where γtr ∼ Ω2/M2, i.e., γtr(Ω) ∝ M2Σ′′(Ω).
For our purpose, the key element of this result is that
the integrals over the internal εk and Ω′m come from the
regions confined by the external frequency Ω.

We now check what are typical internal εk and Ω′m in
the vertex correction diagrams.

2. Vertex renormalizaton

The diagrammatic series for the charge vertex Γ at
zero external momentum and finite external frequency
Ωm is shown in Fig. 3. The fermionic Green’s func-
tions in this series are the full ones: G(k, ωm) =

[iωm + Σ(ωm)− εk]
−1

. We remind that this form re-
duces to

G(k, ωm) = [iωm(1 + λ)− εk]
−1

(27)

for ωm � ωFL. As in the previous section, we assume
that T = 0, in which case bosonic and fermionic Matsub-
ara frequencies are continuous variables. For simplicity,
we set the frequency of an incoming fermion to be zero
(then the frequency of an outgoing fermion is Ωm), and
set the fermionic momentum (which is the same for in-
coming and outgoing fermions) to be kF ≡ kFk/k. The
series reads

Γ = 1 + Γ1 + ..., (28)

where

Γ1 = g2

∫
dΩ′m
2π

∫
d2q

(2π)2
G(k′,Ω′m)G(k′,Ω′m + Ωm)

×χ(q,Ω′m) (29)

and k′ = kF+q. We remind that g2 is related to ḡ, which
we used earlier, by ḡ = g2χ0. As before, the bosonic
momentum q can be decomposed into the components
perpendicular and tangential to the FS, q⊥ and q||, corre-
spondingly. With this decomposition, the fermionic dis-
persion in the Green’s functions entering Eq. (29) can be
approximated as εk′ = vF q⊥.

We assume and then verify that typical q⊥ in the inte-
gral in Eq. (29) are much smaller than typical q||. Using
this assumption, we neglect q⊥ in χ(q,Ω′m). Integration
over q|| is then elementary and gives an effective local
susceptibility

χL(Ω′m) =

∫
dq||

2π
χ(q||,Ω

′
m) =

χ0

2M
fL

(
|Ω′m|
ωFL

)
, (30)

where fL(x� 1) = 1 +O(x) and fL(x� 1) ∝ x−1/3.
The double integral over Ω′m and εk′ = vF q⊥ is conver-

gent in the ultraviolet, and thus the order of integration
should not matter. At the same time, the structure of the
integrand is not symmetric with respect to Ω′m and εk′ ,
and characteristic values of Ω′m and εk′ , which contribute
mostly to the integral, are not necessary the same.

Because the integral over Ω′m formally extends into
the regions where the low-energy form of the Green’s
function, Eq. (27), is not valid, it is tempting to inte-
grate in Eq. (29) over εk′ first. The integral over εk′
is non-zero only if the poles of Green’s functions are lo-
cated in the opposite half-planes of εk′ , which implies
that the internal frequencies are confined to the interval
−Ωm ≤ Ω′m < 0 for Ωm > 0 and to a similar interval for
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Ωm < 0. Using this form, we obtain in the FL regime
(Ωm � ωFL):

Γ1 =
λ

1 + λ
. (31)

Evaluating higher-order diagrams in the same way, we
find that they form a geometric series 1 + Γ1 + Γ2

1 + .. =
1/(1− Γ1). Then the full vertex is

Γ =
1

1− Γ1
=

1

1− λ
1+λ

= 1 + λ. (32)

This in agreement with the Ward identity Γ(Ω) = 1 +
∂Σ(ωm)/∂(iωm).

We see, however, that in this computational procedure
the internal frequencies Ω′m are of the same order as the
external one (Ωm), and typical εk′ are of order of (1 +
λ)Ωm. As we said in the previous section, this creates
an ambiguity when the diagrammatic series for vertex
renormalization are combined with the central parts of
diagrams c and d in Fig. 2, as these parts and vertex
corrections come from the same energy interval.

We now show that if the order of integrations over Ω′m
and εk′ in Eq. (29) is interchanged, the result remains the
same, but typical Ω′m are now of order of ωFL rather than
of Ωm. For Ωm � ωFL, this provides a justification for
the separation of scales, which is required for the validity
of Eq. (18).

Integration in Eq. (29) over frequency is rather compli-
cated due to the presence of self-energies in the Green’s
functions. These self-energies cannot be replaced by ei-
ther FL or NFL forms because, as will see, at least part
of the result comes from the crossover region between
the two forms. The integrand in Eq. (29), viewed as
a function of Ω′m, has poles from the Green’s functions
and branch cuts from both the bosonic propagator and
self-energy. For a given sign of εk′ , the poles of the two
Green’s functions are in the same half-plane of Ω′m, even
if external Ωm is non-zero. The branch cuts emerge be-
cause χ(q,Ω′m) has a non-analytic, |Ω′m| dependence on
the frequency. In χ(q,Ω′m), viewed as a function of com-
plex Ω′m, the branch cut is along the imaginary frequency
axis (for ωm = iz + δ, |ωm| = izsgnδ), and it runs along
both positive and negative parts of the imaginary axis. A
convenient way to compute Γ1 is then to split the integral
over εk′ into two integrals over positive and negative εk′ .
For each sign of εk′ , we close the integration contour in
that half-plane which does not contain poles and choose
the branch cut to be in the same half-plane. In this way,
only the integral along the branch cut contributes to the
final result.

A closer look at the integral over the branch cut shows
that it is controlled by energy scales that are much larger
than Ωm and therefore can be evaluated at Ωm = 0. One
such scale is ωFL, defined in Eq. (11), and another one is
ω0, defined in Eq. (19). Note that ω0 ∼ ωFLλ

3 � ωFL.
The contributions from ωm ∼ ωFL and from ωm ∼ ω0 can
be computed independently from each other and yield

Γ1 = Γ1,ω0
+ Γ1,ωFL

. After some involved algebra, we
find

Γ1,ω0
=

2

3π

∫ ∞
0

dx

x2/3 + x4/3 +
√

3x
=

2

3
,

Γ1,ωFL = C − 1

λ+ 1
, (33)

where C is independent of λ. This term was obtained
numerically because an analytic form of Σ(ωm) at finite
M and arbitrary ωm is not known. However, numerical
evaluation of C is straightforward, and we found that
C = 1/3 to high numerical accuracy. The two contribu-
tions to Γ1 then add up to

Γ1 =
λ

1 + λ
. (34)

This is the same result as before, but now Γ1 comes from
energies which are much higher than Ωm.

Taken at face value, Eq. (33) implies that Γ1 comes
partially from Ω′m ∼ ωFL and partially from Ω′m ∼ ω0.
On a more closer look, however, we found that there is
a peculiar cancellation between Γ1,ω0

and a portion of
Γ1,ωFL

. Namely, Γ1,ωFL
can be split into two contribu-

tions – one is obtained by approximating the fermionic
self-energy by Σ(Ω′m) = iλΩ′m, and another is obtained
by subtracting iλΩ′m from Σ(Ω′m). In both terms, typ-
ical internal frequencies are of order ωFL, and the two
expressions are of the same order because at Ω′m ∼ ωFL,
Σ(Ω′m) differs from iλΩ′m by terms of comparable mag-
nitude. Evaluating the two parts of Γ1,ω0

separately, we

find that the first one gives λ
1+λ , while the second gives

− 2
3 and cancels out Γ1,ω0 . This indicates that the contri-

bution to Γ1 can be viewed as coming entirely from the
range Ω′m ∼ ωFL. Still, what is essential for our purposes
is that characteristic Ω′m ∼ ωFL in the vertex correction
diagrams is larger than characteristic Ω′m ∼ Ωm in the
internal parts of diagrams c and d in Fig. 2. We re-iterate
that this separation of scales only holds if we integrate
over fermionic frequency first and then over fermionic
dispersion.

The difference between characteristic Ω′m and εk in the
vertex correction diagram in the FL regime also holds if
one calculates vertex corrections in the opposite, static
limit, when the external momentum Q is non-zero, while
the external frequency Ωm is zero. We discuss this issue
in Appendix A.

3. Final result for the conductivity in the Fermi-liquid
regime

The separation between characteristic energies in those
parts of the current-current correlator, which determine
γtr, and those, which determine vertex corrections, jus-
tifies the decomposition of the full correlator, given by
diagrams a and b in Fig. 2, into the sum of diagrams c
and d. The internal parts and side vertices in diagrams
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c and d are computed independently of each other. The
final result for the conductivity in the FL regime is then
rigorously established to be

σ′(Ω > 0) ∝ (ΓZ)2

M2
∼ 1

M2
∼ 1

ω
2/3
FL

. (35)

C. Nematic quantum critical point

At the QCP, ωFL = 0, and the separation of energy
scales does not hold. Still, Eq. (35) does allow one to
determine σ(Ω) even at the QCP under an additional
assumption that ωFL is the only energy scale near a
nematic QCP. This assumption is consistent with per-
turbative calculations. Combining this assumption with
Eq. (35), we conjecture that the conductivity behaves as

σ′(Ω) ∝ ω
−2/3
FL f(Ω/ωFL), with f(0) = 1. Another con-

straint on function f(x) is imposed by the requirement
that ωFL should not enter the result in the quantum-
critical regime, where Ω � ωFL. This is only possible
if f(x) ∝ x−2/3 for x → ∞. This in turn implies that
σ′(Ω) ∝ Ω−2/3 at the QCP, in agreement with Refs. 9
and 10.

The scaling argument can also be cast into the
renormalization-group language, if we formally introduce
a lower cutoff in the bosonic momentum along the FS
at some q1 ∼ (γω1)1/3, where ω1 is larger than Ω but
smaller than ω0. This cutoff effectively re-introduces
the mass into the bosonic propagator at the QCP. As
the result, the fermionic self-energy Σ(ω) and local sus-
ceptibility χL(Ω) become scaling functions of ω/ω1 and
Ω/ω1, and display a FL behavior at ω,Ω� ω1. Accord-

ingly, the conductivity scales as σ′(Ω) ∝ ω−2/3
1 . One can

then make ω1 progressively smaller and get progressively

larger conductivity. The scaling σ′(Ω) ∝ ω
−2/3
1 holds as

long as ω1 � Ω. At Ω <∼ ω1, scaling with ω1 is replaced

by that with Ω, which yields again σ′(Ω) ∝ Ω−2/3.
One can also argue for the cancellation of Z(Ω) at the

QCP using a somewhat different reasoning, similar to
that used in the analysis of a charge susceptibility of a
non-conserved order parameter.41 This reasoning is based
on the observations that i) the combined contribution
to conductivity from MT diagrams with self-energy and
vertex correction insertions (diagrams a and b in Fig. 1)
contains the factor (vk+q − vk)2 ∝ q2, see Eq. (20); ii)
the dependence on q comes from the vertex-correction
MT diagram with velocities at the opposite corners eval-
uated at momenta that differ by q; and (iii) higher terms
in the expansion in q2 are irrelevant. Consider now a
diagram of arbitrary order, with multiple ladder-type
vertex-correction insertions. This diagram contains a set
of cross-sections, each consisting of two fermionic Green’s
functions and one bosonic propagator, and has two cur-
rent vertices. Let’s start with the cross-section, say, far
to the left, which contains a current vertex, two Green’s
functions, and one bosonic propagator with momentum

q1. The momenta in the Green’s functions are k+q1. For
|k| ≈ kF and |q1| � kF , the current vertex Γk+q1

can
be approximated as Γk+q1

= A(k + q1). Integrating the
product of Γ, two fermionic propagators, and one bosonic
propagator over the fermionic dispersion and frequency,
we obtain the result in the form

BΓk + C

∫
dθkq1

q1(k · q1), (36)

where θkq1
is the angle between k and q1. The BΓk term

is obtained by approximating Γk+q1 by Γk and pulling
it out of the integral, in the second term we expanded
in q1. If we keep the second term in (36), we already
have a factor of order q2

1 , and then in all other cross-
sections, starting from the one far to the right we can
keep only Γk terms, i.e., when integrating each subse-
quent cross-section over its bosonic momentum, we pull
the current vertex out of integral. The full result will then
be C

∫
dθkq1

A(kq1)2(1 + B + ....). The sum 1 + B + ...
gives exactly the same result as if we used a density
vertex instead of a current vertex. For the density ver-
tex, the Ward identity requires that 1 + B + ... ≡ 1/Z.
If, on the contrary, we keep the first term in (36), we
can proceed to the integration in the next cross-section,
and, apart from the overall factor of B, the result for
the integral will be the same as before, i.e., we will get
B
(
BΓk + C

∫
dθkq2

q2(k · q2)
)
. Again, we can either

keep the second term, in which case in all other cross-
sections we can pull the current form factor out of in-
tegrals over bosonic momenta, or keep the first term, in
which case we move to next cross-section, until we choose
the one in which we take a q2 term. A little experimen-
tation shows that, to order q2, the result will be the same
as for the sum of diagrams a and b in Fig. 1), but with
an extra factor 1/Z2. This extra 1/Z2 factor cancels out
the overall Z2 factor in the diagram with one vertex cor-
rection, and then σ′(Ω) ∝ (ΓZ)2/Ω2/3 ∼ 1/Ω2/3. This
is consistent with the result which we obtained by ap-
proaching QCP form a FL regime.

D. Real part of the current-current correlator

For completeness, we briefly discuss interaction-
dependent renormalization of the real part of current-
current correlator K ′(0). The leading correction to free-
fermion result K ′(0) = Ω2

p/4π is given by Eq. (20), in
which we still need to keep the dynamical part of boson
propagator. [The static part χst(q, 0) = χ0/(q

2 + M2)
does not contribute to K ′′(Ω) and, hence does not gen-
erate a non-zero σ′(Ω > 0). By sum rule, the δ−function
term in the conductivity then must remain the same
as for free fermions.] One can easily check that the
correction to K ′(0) scales as λtr ∼ ḡ/EF rather than
λ ∼ (ḡ/EF )(kF /M). This implies that K ′(0) remains
finite at M = 0, i.e., the conductivity at a QCP still has
a δ-function peak. Moreover, at small ḡ/EF this peak
gives the largest contribution to the total spectral weight
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of the conductivity and alone nearly satisfies the optical
sum rule.

III. SPIN-DENSITY-WAVE
QUANTUM CRITICAL POINT

The correlation function of antiferromagnetic fluctua-
tions near a SDW QCP,

χ(q,Ωm) =
χ0

(q− qπ)2 +M2 + γ|Ωm|
, (37)

is peaked at the nesting momentum qπ which connects
hot spots on the Fermi surface. For a 2D square lattice,
q = (π, π) (the lattice constant is set to unity). Two
out of eight hot spots are shown by red circles in Fig. 4,
panels a and b. In what follows, we will consider the
contributions to the optical conductivity both from “hot
fermions”, located near the hot spots, and from “luke-
warm fermions”,15,16 occupying the regions between the
hot spots and cold parts of the FS (the cold and luke-
warm regions are depicted as blue and orange areas, cor-
respondingly, in Fig. 4 a and b).

a)	 	1

	1

	1

	1

b)	

1

1(1)

c)	

+	

1

1(1)

K K +Q

P

P −Q

K

d)	

Figure 4. a and b: A Fermi surface of a 2D metal near a
SDW QCP. Red circles: hot spots; blue areas: cold regions;
orange areas: lukewarm regions. Arrows indicate a composite
scattering process which involves lukewarm fermions either
from the same (a) or diametrically opposite (b) regions. c:
Composite scattering vertex. The initial states on the bottom
can belong either to lukewarm regions 1 or 1̄. d: Two-loop
composite self-energy.

A. Conductivity of hot fermions

The main interaction mechanism for hot fermions is
SDW scattering by momentum qπ, mediated by the ef-
fective interaction in Eq. (37). To one-loop order, this
interaction leads to a singular behavior of the self-energy
at the hot spots (k = khs), where Σ(khs, ω) ∝ ω1/2.

Away from the hot spots, this singular behavior holds
in a range of |k − khs| whose width by itself scales as√
ω. This additional factor of

√
ω can be incorporated

into the transport scattering rate and, beyond that, does
not affect our consideration. For scattering peaked at the
nesting momentum, the velocities at two hot spots con-
nected by qπ, vk and vk+qπ , have equal magnitudes but
generally differ in direction. On one hand, this implies
that the factor (vk−vk+qπ )2 in the transport scattering
rate does not introduce additional smallness, i.e., γtr and
FS-averaged Σ′′(ω) are of the same order. On the other
hand, renormalizations of the current vertices at the ini-
tial and final points of a SDW scattering process (k and
k + qπ, correspondingly) are mixed in the perturbation
theory.

+	 +	…	

=	

	k

+	

	k

	k

	qπ

		Γ
i
k

	k

		v
i
k

	k

	k

		
vik+qπ

	k+qπ

	k+qπ

	k	k+qπ

	k

		v
i
k

	k
	k+qπ 	k

Figure 5. Diagrammatic series for the current vertex near
a SDW QCP. k is chosen at a hot spot and k + qπ is at
another hot spot, connected to the first one by the nesting
momentum, qπ = (π, π). The superscript i denotes the ith

Cartesian component of the corresponding vector. The series
for the vertex at k + qπ is obtained from that shown in the
figure by relabeling k ↔ k + qπ.

To get an insight into this mixing, we consider again
the FL regime, where the self-energy near a hot spot is
described by Σ(ωm) = iλωm, and vertex renormalization
is described by a geometric series of ladder diagrams. The
series for the ith Cartesian component of Γ̄k is shown
in Fig. 5; the series for Γ̄k+qπ is obtained by relabeling
k↔ k + qπ. Performing the same calculations as for the
nematic case, we obtain

Γ̄ik =
vik + λ

1+λv
i
k+qπ

1−
(

λ
1+λ

)2 ,

Γ̄ik+qπ =
vik+qπ

+ λ
1+λv

i
k

1−
(

λ
1+λ

)2 . (38)

Each of the vertices in Eq. (38) diverges at criticality,
where λ → ∞. However, one can readily verify that for
the SDW case the sum of diagrams c and d in Fig. 2 is
equal to diagram c with side vertices Γ̄ik − Γ̄ik+qπ

. From
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Eq. (38) we see that this difference is finite at λ→∞:

Γ̄ik − Γ̄ik+qπ =
vik − vik+qπ

1 + λ
1+λ

≈ 1

2

(
vik − vik+qπ

)
. (39)

Therefore the effective current vertex, which appears in
the expression for the conductivity, does not undergo
singular renormalization. As a result, the fermionic Z-
factor does not cancel out from the conductivity, and we
have σ′(Ω) ∝ Z2γtr/Ω

2. In the FL regime, Z ∝ M and
Σ′′(Ω) ∝ Ω2/M3. The role γtr is played by the FS av-
erage of Σ′′, which differs from Σ′′ by the angular width
of the hot spot. This width by itself scales as M ; thus
γtr ∝ Ω2/M2. Collecting all the factors together, we find
that σ′(Ω) tends to an M -independent value at Ω → 0.

At the QCP, Z ∝
√

Ω, γtr ∝
√

Ω ×
√

Ω = Ω, and σ′(Ω)
again remains constant at Ω→ 0.42

The results presented above imply that the extended
Drude formula [Eq. (1)] correctly describes the hot-
fermion conductivity. Higher-order self-energy and ver-
tex corrections do contain additional factors of ln Ω, and
a series of such terms may give rise to a singular behavior
of the hot-fermion conductivity. Still, Eq. (1) is expected
to be valid except, possibly, at very low frequencies.

B. Conductivity of lukewarm fermions

Previous studies15,16,22 found that the hot-spot con-
tribution to the conductivity is not the dominant one at
low frequencies, when there is a clear distinction between
hot and cold regions of the Fermi surface (at high enough
frequencies, the full Fermi surface becomes “hot”1). The
dominant contribution to the optical conductivity actu-
ally comes from lukewarm regions, located in between
hot and cold regions on the Fermi surface. Fermions in
the lukewarm regions (orange areas in Fig. 4, a and b)
form a FL state even if the system is right at the SDW
criticality. However, this is a strongly renormalized FL
with a Z-factor which varies from zero at the hot spot
to Z ≈ 1 in the cold region. In the bulk of the luke-
warm region, the Z-factor scales linearly with the dis-
tance along the FS measured from the nearest hot spot:
Z ∼ k||vF /ḡ � 1. The most relevant interaction process

for lukewarm fermions is composite scattering,15 which
consists of two consequent events of scattering by qπ.
Because a lukewarm fermion is not at the hot spot, the
first scattering event by qπ takes it to an off-shell state
away from the FS, and the second event brings it back
to near where it started. In principle, fermions of all
the eight hot spots can be involved in composite scat-
tering, but the the corresponding two-loop self-energy
(Fig. 4d) is logarithmically enhanced in two cases: if the
lukewarm fermions belong to same region (“forward scat-
tering”, shown in Fig. 4a) or diametrically opposite re-
gions (“2kF -scattering”, shown in Fig. 4b). The corre-
sponding scattering vertices are shown in Fig. 4c. For
lukewarm fermions at distances p|| and k|| from the cor-

responding hot spot(s), the composite vertex with mo-
mentum transfer q and frequency transfer ω is of order
Γc ∼ (ḡ/k||p||) ln (Λ/max{ω, vF q}).

The most singular contribution to the optical con-
ductivity occurs at two-loop order in composite scatter-
ing. Depending on the energy the system of lukewarm
fermions is probed at, it behaves either as a 1D or 2D
system. For the optical conductivity, the energy scale
separating the two regimes is Ω12 ∼ ḡ2/EF .

For Ω > Ω12, the energy cost of displacing a lukewarm
fermion tangentially to the FS is small, which means
that the curvature of the Fermi surface can be neglected,
and we are in the 1D regime. The corresponding self-
energy exhibits a linear scaling with frequency Σ′′ ∝ Ω,
which is characteristic for 1D.43 The main contribution
to σ′(Ω) in this regime comes from the boundary be-
tween the lukewarm and cold regions of the FS, where
Z ∼ 1 (Refs. 15, 16, and 22). In this case, Eq. (6) with
γtr ∼ Σ′′ ∝ Ω predicts that

σ′(Ω) ∝ 1/Ω. (40)

For Ω < Ω12, the FS curvature cannot be neglected,
and we are in the 2D regime. The main contribution to
σ′(Ω) comes from the region of k|| ∝ Ω1/3 (Refs. 15, 16,

and 22), where the Z-factor is small: Z ∝ k|| ∝ Ω1/3 � 1.
Therefore, the question whether renormalization of the
Z-factor affects σ′(Ω) is again relevant.

The two-loop self-energy in the 2D regime is of the FL
type Σ′′(Ω) ∝ (Ω2/k4

||) ln3(Ω12/Ω) (the factor of 1/k4
||

comes from the product of two composite vertices in
Fig. 4d). The corresponding MT diagrams for the con-
ductivity are shown in Fig. 6. (As before, we neglect the
AL diagrams which would only modify the result by a
factor of order one because our system is on a lattice.)
The current vertices in these diagrams are formed by one-
loop qπ scattering, which is still the main process leading
to renormalization of the Z-factor. However, although
the composite vertices (hatched blocks) are constructed
from two qπ scattering processes, they effectively scatter
fermions only by small angles. In Fig. 6, we depicted a
particular 2kF composite scattering processes, in which
the two incoming fermions belong to diametrically oppo-
site lukewarm regions (1 and 1̄). The current vertices in
both diagrams a and b belong to the same lukewarm re-
gion (1). In diagram a, the left and right current vertices
are evaluated at the same momentum. In diagram b, the
momenta in the left and right current vertices differ by a
small momentum transfer through the composite vertex.
In this sense, the situation is now similar to the nematic
QCP but partial cancellation between diagrams a and b
affects only the logarithmic factors in the self-energy.16,22

As a result, γtr(Ω) ∼ Σ′′(Ω)/ ln3(Ω12/Ω) ∝ Ω2/k4
||. If

renormalization of the current vertices is neglected, the
conductivity is obtained from Eq. (6) by replacing Z and
γtr(Ω) by their values at given k|| and averaging over
k||. The lower limit of the momentum integration is

k|| ∼ Ω1/3, while the upper limit can be set to infin-
ity due to a rapid convergence of the integral. Then we
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would obtain σ′(Ω) ∝
∫∞

Ω1/3 dk||Z
2γtr(Ω)/Ω2 ∝ 1/Ω1/3.

This is the result reported in Refs. 15, 16, and 22.
We now follow the analysis of a nematic QCP and

take renormalization of the current vertices into account.
Each of the current vertices diverges at criticality as spec-
ified by Eq. (38), i.e., Γ̄ik ∝ λ ∼ 1/Z ∝ 1/k||. Conse-
quently, the result for the conductivity is changed to

σ′(Ω) ∝ 1

Ω2

∫ ∞
Ω1/3

dk||
(
Γ̄ikZ

)2
γtr(Ω) ∝ 1

Ω
. (41)

The key part of the this result is a cancellation between

1 1

1
11

1

1 1

11
1

1

1

1

1
1

1 1

a) b)

Figure 6. Maki-Thompson diagrams for the conductivity of
lukewarm fermions (the mirror image of diagram b is not
shown.) Hatched boxes represent composite scattering ver-
tices shown in Fig. 4c. Current vertices are renormalized by
qπ scattering as shown in Fig. 5. Labels 1 and 1̄ correspond
to the lukewarm regions in Fig. 4, a and b.

the Z-factor and Γ̄ik which, as for the nematic case, leads
to a breakdown of the extended Drude formula [Eq. (1)].
As the consequence, the 1/Ω scaling of σ′(Ω) extends
from the 1D regime [Eq. (40)] down to the lowest frequen-
cies. This scaling form is likely to contain also powers of
1/ ln Ω to make the spectral weight

∫
dΩσ′(Ω) conver-

gent. However, logarithmical terms in σ′(Ω) are beyond
the accuracy of our analysis.

Comparing the hot-spot and lukewarm contributions
to the conductivity, we see that the latter is much larger,
both in the 2D and 1D regimes. Eventually, the full
Fermi surface becomes hot,1 but this happens only at
high enough frequencies. Therefore, σ′(Ω) at a SDW
QCP scales as 1/Ω. We note in passing that such scaling
is consistent with the marginal-FL phenomenology44 and
observed scaling of σ′(Ω) in the high-Tc cuprates.45

IV. CONCLUSIONS

The question of how renormalization of the electron
effective mass affects the conductivity has a long his-
tory, which goes back to the seminal papers by Langer
on the residual resistivity of a FL46 and by Langreth and
Kadanoff on polaronic transport.47 Nowadays, this ques-
tion has acquired particular importance in the context of
correlated electron systems near quantum phase transi-
tions, where the renormalized mass is expected to depend
on the temperature or frequency, thus potentially affect-
ing the corresponding dependences of the conductivity. A

phenomenological way to account for these extra depen-
dences is via the “extended Drude formula”5 of the type
given by Eq. (1), which contains the renormalized (and
thus Ω- and T -dependent) mass. However, the poten-
tial problem with the application of the extended Drude
formula to local QC theories, in which Σ(k, ω) ≈ Σ(ω) is
that this formula can be equally expressed via the ratio of
the band mass to the effective mass mb/m

∗, or via quasi-
particle residue Z = mb/m

∗. The quasiparticle residue
Z, however, must cancel out in the expression for con-
ductivity because the latter is a gauge invariant quantity
and, as such, cannot contain a factor which measures the
overlap between bare and renormalized quasiparticles

In this paper, we studied the optical conductivity
within two specific models of quantum criticality of the
nematic and spin-density-wave types. In both cases, the
critical theory is local, and m∗/mb is same as the inverse
quasiparticle Z factor. We found that in the nematic case
the ratio (mb/m

∗)2 in the extended Drude formula should
be viewed as Z2, and the latter cancels out by renormal-
ization of current vertices. This is consistent with earlier
works.9,10 The resultant conductivity, σ′(Ω) ∝ Ω−2/3 is
consistent with the Drude formula which contains a bare
rather than renormalized mass. We also found that the
δ−function term in the conductivity σ′ex ∝ δ(Ω) does
not vanish at a QCP. This agrees with Ref.11. At small
ḡ/EF σex gives the largest contribution to the conductiv-
ity sum rule. The spin-density-wave case happens to be
more subtle. There are two contributions to the conduc-
tivity from two qualitatively different regions of the Fermi
surface: hot spots, connected by the nesting vector, and
lukewarm regions, occupying the space in between hot
and cold parts of the Fermi surface. We found no cance-
lation between (mb/m

∗)2 = Z2 and the renormalization
of the current vertex for the hot-fermion contribution. In
this situation, the correct result for the conductivity is re-
produced by the Drude formula, which should be viewed
as containing mb/m

∗ rather than Z. On the other hand,
this cancellation does occur for the lukewarm-fermion
contribution, which is the dominant one near a SDW
QCP. For the latter, the extended Drude formula should
be viewed as with Z rather than (mb/m

∗)2, and Z2 is
canceled out by vertex corrections. The resultant con-
ductivity at a SDW QCP is then σ′(Ω) ∝ 1/Ω.

In view of these results, we believe that the short an-
swer to the question ”bare vs renormalized mass” is ”it
depends on the situation considered”. For example, the
dc conductivity of electrons coupled to optical phonons
contains the bare mass in the adiabatic regime, when the
electron energy is higher than the phonon one, and the
renormalized mass in the anti-adiabatic regime,47 when
the electron energy is lower than the phonon one. The
three cases that we considered here provide three more
examples which demonstrate the absence of the univer-
sal answer to the question about the type of the effective
mass entering the conductivity. Indeed, whether the con-
ductivity of a quantum-critical system contains the bare
or renormalized mass turns out to depend not only on
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the type of criticality (q = 0 vs finite q QCP), but also
on particular scattering processes considered for a given
type. Overall, one implication of our study is that the
extended Drude formula need to be treated with a great
caution.

One more reason for exercising caution is that Eq. (1)
is not the only form of the extended Drude formula. An-
other version of this formula can be derived from the
kinetic equation for a FL:48,49

σ′(Ω) =
Ω2
p

4π

mb

m∗
γ̃tr(Ω)(

Ωmb
m∗

)2
+ γ̃2

tr(Ω)
. (42)

In this version, the frequency in the denominator is di-
vided by the renormalized mass, which is opposite to what
Eqs. (1) says.50 Note, however, the transport scatter-
ing rate in Eq. (42) is introduced phenomenologically
and cannot be a priori associated with the fermionic
self-energy, even if a transport correction is accounted
for. As pointed out in Ref. 9, Eq. (42) can be made
consistent with the result σ′(Ω) ∝ Ω−2/3 for a ne-
matic QCP by redefining the transport scattering rate
as γ∗tr = γ̃tr(m

∗/mb) and assuming that it is γ∗tr rather
than γ̃tr that scales as Ω4/3 at criticality. Such a redefini-
tion changes Eq. (42) to σ′(Ω) = Ω2

pγ
∗
tr/
[
4π
(
Ω2 + γ∗2tr

)]
which does not contain the renormalized mass.
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Appendix A: Vertex corrections at finite external
momentum and zero external frequency

For completeness, we analyze in this Appendix vertex
renormalization in the situation when the the incoming
frequency is set to zero while keeping the external mo-
mentum Q finite but small (Ω/Q→ 0). In this limit, the
Ward identity relates the current vertex to the fermionic
self-energy via51

Γ̄Q = 1−∇kΣ(k, ω = 0). (A1)

In an isotropic system, one can write Σ(k, ω) = Σ(εk, ω)
and Γ̄Q = vkΛ, where Λ depends only on the magnitude
of k. Furthermore, if we restrict ourselves to nematic
criticality, where typical momentum transfers are small,

Λ coincides with the density vertex in the Ω/Q→ 0 limit,
which we will denote by ΓQ. Then Eq. (A1) is reduced
to

ΓQ = 1− ∂Σ(εk, ωm)

∂εk

∣∣∣
ω=0,εk→0

. (A2)

1. Eliashberg approximation

In the main text, we used an approximate scheme to
compute the self-energy Σ(k, ω) for k = kF . Namely, we
factorized the 2D internal momentum kF + q into com-
ponents tangential and normal to the FS and kept the
dependence on q⊥ only in the Green’s function, in which
εkF+q = vF q⊥, and neglected q⊥ in the bosonic propaga-
tor, leaving it as a function of q‖ only. The reasoning was
that characteristic q⊥ are much smaller than characteris-
tic q‖ both at a QCP in the FL region near a QCP. This
approximation is similar to the Eliashberg approximation
used analysis of electron-phonon interaction. Within this
approximation, Σ(εk, ωm = 0) is independent of εk. Ac-
cording to Eq. (A2), the vertex is then not renormalized,
i.e., ΓQ = 1.

The absence of renormalization of ΓQ becomes imme-
diately evident if we evaluate the building block of the
ladder series by integrating over the fermionic dispersion
first. The building block of the series is similar to that
in Eq. (29), except for now the external frequency is zero
and the external momentum is finite. The first-order cor-
rection to the vertex is given by

ΓQ1 = g2

∫
dΩ′m
2π

∫
d2q

(2π)2
G(kF + q,Ω′m)G(kF + q + Q,Ω′m)

×χ(q,Ω′m). (A3)

The Green’s functions are the full ones: G(k,Ω′m) =

[iΩ′m + Σ(Ω′m)− εk]
−1

. The fermionic dispersions are
εkF+q = vF q⊥ and εkF+q+Q = vF (q⊥ +Q⊥), and we
approximate χ(q,Ω′m) by χ(q‖,Ω

′
m). The poles in the

Green’s function are located in the same half-plane of
complex q⊥, hence the integral over q⊥ vanishes.

The same result can be obtained by integrating over

Ω′m first. Now ΓQ1 has two contributions. One comes
from the poles in the Green’s functions and another from
the branch cut in the bosonic propagator. The pole con-
tribution is non-zero if q⊥ and q⊥ + Q⊥ have different
signs, i.e., if −Q⊥ < q⊥ < 0 (for Q⊥ > 0). When the
limit of Q→ 0 is taken, the width of this interval shrinks
to zero, hence the poles are located at vanishingly small
Ω′m. For such Ω′m, the self-energy can be approximated
by iλΩ′m, i.e., the Green’s function can be approximated

by G(k,Ω′m) = [iΩ′m(1 + λ)− εk]
−1

. At the same time,
χ(q‖,Ω

′
m) can be approximated by χ(q‖, 0). Evaluating

the integral over Ω′m and then two independent integrals
over q⊥ and q‖, we find

ΓQ1,poles = − λ

1 + λ
. (A4)
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The contribution from the branch cut does not depend
on the order of limits Ωm → 0 and Q → 0, and is given
by Eq. (34):

ΓQ1,br-cut =
λ

1 + λ
(A5)

Adding Eqs. (A4) and (A5), we find that ΓQ1 vanishes,
as we also found by integrating over the dispersion first.
Higher-order vertex corrections can be computed in the
same way, and also vanish. As a result, within Eliashberg
approximation, the ladder series reproduce the Ward
identity ΓQ = 1.

A comment is in order here. At first glance, the van-

ishing of the sum of ΓQ1,poles and ΓQ1,br-cut implies that
vertex corrections are not needed for a diagrammatic
derivation of the FL results for the uniform static charge
and spin susceptibilities χc,s = 2NF (m∗/m)/(1+F c,s0 ) =
2NF (1 + F c1 )/(1 + F c,s0 ), where F c,sl are Landau param-
eters in the charge (c) and spin (s) channels. Diagram-
matically, χc,s are given by a fully renormalized polariza-
tion bubble with zero external frequency and small but
finite Q, and the vertices in such a bubble seem to be ΓQ.
However, in a diagrammatic calculation one explores the
separation of scales and absorbs all contributions coming
from finite internal frequencies and momenta into Lan-
dau parameters, which play a role of irreducible vertices
in diagram Fig. 2d and its extensions to higher orders
(see Refs. 38 and 39). These parameters are then used
as inputs for the computations of the contribution com-
ing from infinitesimally small internal momenta and fre-

quencies. Within this approach, ΓQbr-cut contributes to

the Landau parameters, while ΓQ1,poles contributes the to
middle sections of the diagrams, formed by low-energy

fermions. Because ΓQ1,br-cut is the same as the vertex cor-
rection for the opposite case, when Q = 0 and Ωm is
small but finite, this contribution is in fact a part of ΓΩ

1 ,

and the series of ΓQ1,br-cut, taken alone, are summed up

into ΓΩ = 1 + λ = Z−1. The product of two dressed
fermion-boson vertices and factors of Z2m∗/m from two
low-energy Green’s functions then combine to produce
F 1
c . In the same manner, series of renormalizations of

the 4-fermion interaction, all coming from internal ener-
gies of order M and therefore insensitive to the interplay
between external Ωm and Q, combine with the Z2m∗/m
factors to produce F 0

c,s in the denominator of the Landau
formula for the uniform susceptibility.

2. Beyond the Eliashberg approximation

The calculation gets more involved if one goes be-
yond the Eliashberg approximation and keep q⊥ in the
bosonic susceptibility. Then the self-energy Σ(εk, ωm)
acquires a εk term and its ωm term gets a correction:
Σ(εk, ωm) = iλωm + A(iω − εk). In contrast to the ωm
term, whose prefactor diverges at criticality, the prefac-
tor A is O(1) even right at the QCP. (More precisely,
A acquires a logarithmic dependence on εk starting at
three loop order,3 but we will not dwell into this here.)

Accordingly, when we compute ΓQ1 by integrating over εk
first, we now find that this term is non-zero due to the
pole in χ(q,Ω′m) viewed as a function of q⊥. The vertex

correction ΓQ1 is O(1), but, unlike the λ/(1+λ) correction
to the vertex in the Q/Ωm → 0 limit, is not close to one.
Accordingly, the series of vertex corrections are expected
to sum up into ΓQ = O(1), as the Ward identity implies.
It has not been checked, however, that summing only the
ladder series of vertex corrections reproduces the Ward
identity diagrammatically.

Note in this regard that ΓQ1 can be made small if we
formally extend the theory to N fermionic flavors and

take the limit N � 1. Then ΓQ1 = O(1/N) and one
does not need to extend the calculation of ΓQ beyond

ΓQ1 to reproduce the Ward identity. The large-N ex-
pansion is also known to break at three-loop at higher
order,52 so it does not actually help much from from the
rigorous point of view. For practical purposes, however,
multi-loop contributions to Σ(εk, ωm = 0) and to ΓQ are
rather small numerically, so to a good accuracy one can

approximate ΓQ by 1 + ΓQ1 and Σ(εk, 0) by the one-loop

result Σ(εk, 0) = −A1εk. To this order, ΓQ1 = A1, i.e.,
the Ward identity is reproduced.

For completeness, we also look at vertex renormaliza-
tion at Q = 0 and Ωm → 0 beyond the Eliashberg ap-
proximation. Using Σ(εk, ωm) = iωmλ + A(iωm − εk)
yields Σ(εk = 0, ωm) = iωm (λ+A). One-loop vertex
renormalization is ΓΩ

1 = λ/(1 + λ+A) +A. At the next

order, ΓΩ
2 = [λ/(1 + λ+A)]

2
+ Aλ/(1 + λ + A). This

suggests that the full series reduce to

ΓΩ =
1 +A

1− λ
1+λ+A

= 1 + λ+A. (A6)

This is consistent with the Ward identity ΓΩ = 1 +
∂Σ(εk = 0, ωm)/∂(iωm) = 1 + λ+A.
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