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We report the observation of a nonlinear elastoresistivity response for the prototypical under-
doped iron pnictide Ba(Fe0.975Co0.025)2As2. Our measurements reveal a large quadratic term in the
isotropic (A1g) electronic response that was produced by a purely shear (B2g) strain. The diver-
gence of this quantity upon cooling towards the structural phase transition reflects the temperature
dependence of the nematic susceptibility. This observation shows that nematic fluctuations play a
significant role in determining even the isotropic properties of this family of compounds.
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I. INTRODUCTION

Nonlinear responses of crystalline materials are de-
scribed by high rank tensors and can therefore provide
valuable information concerning subtle phase transitions
and broken symmetries. For example, previous nonlinear
measurements of tensor properties have revealed interest-
ing transitions in several strongly correlated materials1–3.
Here we demonstrate a new type of nonlinear transport
response, associated with changes in the conductivity of
a material in response to strain: nonlinear elastoresistiv-
ity. This technique allows us to not only look at broken
symmetries across a phase transition, but to character-
ize properties of the disordered state. We perform these
measurements for a representative underdoped Fe-based
superconductor, Ba(Fe0.975Co0.025)2As2, which has pre-
viously been shown to exhibit a large nematic susceptibil-
ity for temperatures above a tetragonal-to-orthorhombic
structural phase transition4–12. The most remarkable as-
pect of the current data is that they reveal a diverg-
ing nonlinear response in the isotropic elastoresistivity
in response to a perfectly antisymmetric (shear) strain.
This observation, which is intimately tied to the large
nematic susceptibility of the material studied, serves to
underscore the role played by nematic fluctuations in de-
termining even the isotropic properties of the Fe-based
superconductors.

Elastoresistivity relates changes in the resistivity
(∆ρ = ρ(ε)− ρ(ε = 0))13 to strains (ε) experienced by a
material;

(
∆ρ

ρ0
)α =

∑
ᾱ,ᾱ′,...

(mᾱ
α εᾱ +mᾱᾱ′

α εᾱ εᾱ′ + ...) (1)

where the α’s represent a complete, orthogonal basis
set for the system, εα is the component of the overall
strain along a given basis vector, and ρ0 is an appro-

priate normalization factor14; here, the in-plane resistiv-
ity of the tetragonal phase. A natural basis to work in
is the irreducible representations of the crystallographic
point group. In the absence of a magnetic field and
in the D4h point group (appropriate for the material
studied here), both strain and ∆ρ/ρ0 have six indepen-
dent components. Of these, four unique combinations
correspond to distinct representations: (∆ρ/ρ0)B1g

=
1
2 [(∆ρ/ρ0)xx−(∆ρ/ρ0)yy], (∆ρ/ρ0)B2g = (∆ρ/ρ0)xy, and
(∆ρ/ρ0)Eg = ((∆ρ/ρ0)xz, (∆ρ/ρ0)yz). Objects with B1g

and B2g symmetry are antisymmetric (odd) with respect
to a 90o rotation about the z-axis. There is also a two-
dimensional space of components belonging to the A1g

representation, the basis of which is not uniquely de-
fined by symmetry alone15. Objects with A1g symme-
try are symmetric (even) with respect to a 90o rota-
tion around the z-axis. In this paper we focus on one
(of the two) components with A1g symmetry reflecting
the in-plane changes in resistivity i.e. (∆ρ/ρ0)A1g

=
1
2 [(∆ρ/ρ0)xx + (∆ρ/ρ0)yy].

The linear elastoresistivity response is described by
a fourth rank tensor, which in the present basis corre-

sponds to mᾱ
α. As shown previously, m

B1g

B1g
and m

B2g

B2g

16

are proportional to the nematic susceptibility in the cor-
responding symmetry channels, χB1g

and χB2g
4,10–12,14.

To linear order, correctly decomposed symmetry chan-
nels cannot mix. For example, for a tetragonal mate-
rial, antisymmetric strain (εB1g

and εB2g
) cannot cause

a symmetric resistivity response, i.e. m
B1g

A1g
= m

B2g

A1g
= 0.

However, this is not true when considering the nonlinear
response. In the present work, we demonstrate the pres-
ence of a large and strongly temperature dependent non-
linear A1g elastoresistivity in response to antisymmetric

B2g strain (i.e. we show that m
B2g,B2g

A1g
� 1). We further

show that this behavior reflects the diverging nematic
susceptibility of the material.
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II. EXPERIMENTAL METHODS

Measuring the elastoresistance in the A1g symmetry
channel presents several technical challenges. In order
to precisely decompose the elastoresistance response into
the isotropic and antisymmetric components, the resistiv-
ity in two orthogonal directions must be measured simul-
taneously for identical strain conditions; otherwise, the
B2g elastoresistance (which for these materials is much
larger than the A1g elastoresistivity response) gets ad-
mixed. A second important consideration is that to con-
fidently extract the linear and quadratic A1g elastore-
sistance coefficients, the sample must be close to condi-
tions of neutral anisotropic strain (εx′x′ − εy′y′ ≈ 0; here
the primed coordinate frame refers to the normal strain
frame14). As we demonstrate, a modified Montgomery
technique is especially suitable for both purposes4. The
crystals are cut into thin square plates with the electri-
cal contacts made at the four corners, enabling measure-
ment of ρx′x′ and ρy′y′ simultaneously while the crystal
is held under a measured set of strain conditions. The
B2g neutral strain point is determined by the condition
of ρx′x′ = ρy′y′ , since for a crystal with tetragonal sym-
metry the in-plane resistivity is isotropic if there is zero
anisotropic strain.

In our experimental setup, we apply biaxial stress
to the samples by affixing them to a lead-zirconate-
titanate (PZT) stack (Part No.: PSt150/5x5/7 cryo 1,
from Piezomechanik GmbH). When positive voltage is
applied to the PZT stack, it expands along its poling
axis (the y′ axis) and contracts along the perpendicu-
lar axis (the x′ axis). For thin samples, the crystal de-
forms with the PZT stack. The ratio of the strain ex-
perienced by the sample along the y′ and x′ axes is dic-
tated by the in-plane Poisson ratio, νP , of the PZT stack
(εy′y′ = −νP εx′x′). This is a weakly temperature depen-
dent quantity, with an average value for our PZT stacks
of ∼ 2.3. Since the magnitude of strains along the x′ and
y′ directions are not equal, the strain can be decomposed
into two parts: a part that is even with respect to ro-
tation by 90o about the z-axis (in-plane A1g symmetry;
εA1g

= 1
2 (εx′x′ + εy′y′)), and an odd part (B1g/2g sym-

metry; εB1g/2g
= 1

2 (εx′x′ − εy′y′)). As shown in the inset
of Fig. 1, by aligning the samples square edges along
either the tetragonal [100] or tetragonal [110] direction,
we selectively cause the material to experience A1g+B1g

symmetry strain (pink) or A1g + B2g symmetry strain
(blue). Further details about the sample preparation,
experimental protocol, and characterization of the strain
transmission can be found in Appendices A and B.

III. RESULTS AND DISCUSSION

There is a qualitative difference in the strain-
dependence of the elastoresistivity between samples that
experience B1g and B2g symmetry strain. Fig. 1 shows
representative data for Ba(Fe0.975Co0.025)2As2 above the

FIG. 1. Representative data showing the resistivity response
to strain of Ba(Fe0.975Co0.025)2As2 at 116 K. The left-hand
column (a) shows data for a crystal oriented with the crystal
axes parallel to the normal strain frame (represented by the
schematic pink-colored crystal in the inset to panel (a)(i)),
such that the crystal experiences an admixture of A1g and
B1g symmetry strain. The right-hand column (b) shows data
for a crystal with the axes oriented at 45 degrees to the nor-
mal strain frame (shown schematically by the blue crystal
in the inset to panel (b)(i)), such that the crystal experi-
ences an admixture of A1g and B2g symmetry strain. The
top graph (i) in each column shows the resistive response
of the sample along the x′ and y′ axes due to the strain,
where the x′ and y′ axes are defined by the normal strain
frame (inset). The zero antisymmetric strain condition is
marked by a vertical line in panel (b). The middle graph
(ii) shows the antisymmetric response, given by the difference
1
2
[(∆ρ/ρ0)x′x′ − (∆ρ/ρ0)y′y′ ] = ( ∆ρ

ρ0
)B1g/B2g

. For both crys-

tal orientations, the antisymmetric response is linear (black
lines show linear fits). The bottom graph (iii) shows the
symmetric (A1g) response, given by the sum 1

2
[(∆ρ/ρ0)x′x′

+ (∆ρ/ρ0)y′y′ ] = ( ∆ρ
ρ0

)A1g . This response is found to be al-
ways linear for samples that experience A1g +B1g symmetry
strain (black line shows linear fit), while that of the samples
that experience A1g+B2g symmetry strain is clearly nonlinear
and is fit by a second order polynomial (black line).

structural phase transition. Multiple samples of both
orientations have been measured and are in good agree-
ment with the representative data shown here. The sam-
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ple that experiences B1g strain exhibits a linear change
in ρx′x′ and ρy′y′ under strain. Consequently, both the
antisymmetric response ((∆ρ/ρ0)B1g

) and the symmetric
response ((∆ρ/ρ0)A1g

) are also linear in strain. In con-
trast, the sample that experiences B2g strain exhibits a
clear nonlinearity in both ρx′x′ and ρy′y′ as the strain is
varied. The antisymmetric (B2g) response is perfectly
linear (black line in Fig. 1(b)(ii)) and comparatively
large, whereas the symmetric (A1g) response exhibits a
striking nonlinearity and is well fit by a quadratic func-
tion (black line in Fig. 1(b)(iii)). The minimum of the
quadratic function does not occur at the same strain as
the neutral B2g strain point (vertical line in Fig. 1(b)),
indicating the presence of a linear term in addition to the
quadratic coefficient.

The qualitative behavior shown in Fig. 1 is characteris-
tic of both crystal orientations for the range of measured
temperatures. Data of the elastoresistance response at
different temperatures are shown in Fig. 2 for the sam-
ple that was oriented to experience B2g symmetry strain.
For this crystal orientation, the antisymmetric response
is linear for all temperatures measured, with a slope that
grows larger as temperature decreases. Similarly, the
symmetric (A1g) response exhibits a strong temperature
dependence, with a clear increase in the coefficient of
the quadratic term as temperature is reduced towards
the structural transition. In contrast, the sample that
experiences B1g symmetry strain exhibits only a weak
temperature dependence in the linear response for both
symmetry channels, as shown in Fig 1(a), and never ex-
hibits any measurable nonlinearity.

We first consider the linear response to antisymmet-

ric strains, m
B1g

B1g
and m

B2g

B2g
, shown in Fig. 3(a). As

found previously12, m
B1g

B1g
is small and exhibits almost no

temperature dependence. In contrast, m
B2g

B2g
is large and

can be well fit by a Curie-Weiss temperature dependence
with a Weiss temperature Θ = 75.8 ± 0.6 K (adjusted
R-squared, R2

adj = 0.9995), bearing witness to the diver-

gent nematic susceptibility in this material4,10–12. The
coupled nematic/structural phase transition occurs at a
higher temperature Ts = 98 ± 2 K due to bilinear cou-
pling between the nematic order parameter and lattice
strain with the same symmetry10.

The linear response to A1g strain, m
A1g

A1g
, is small

and only weakly temperature-dependent (Figure 3(b))17.

Moreover, values of m
A1g

A1g
determined from both crystal

orientations agree (as they must, since by symmetry both
εA1g

and (∆ρ/ρ0)A1g
are invariant to rotations about the

z-axis), providing additional confidence that the B2g neu-
tral strain point has been accurately identified. For fur-
ther discussion of errors associated with identification of
the neutral strain point, see Appendix C.

From a symmetry perspective, non-linear contributions
to (∆ρ/ρ0)A1g are possible due to all three strains con-
sidered. To quadratic order,

FIG. 2. Temperature dependence of (a) the anti-
symmetric (B2g) elastoresistivity response, and (b) the
isotropic (A1g) elastoresistivity response, of a single crystal
of Ba(Fe0.975Co0.025)2As2 oriented with the crystal axes at
45 degrees to the normal strain frame (blue schematic in-
sets). The anisotropic response is always linear, whereas the
isotropic response shows a large quadratic component with
a minimum close to the B2g neutral strain point. Both re-
sponses exhibit a strong temperature dependence. Note that
the accessible strain range shifts with temperature, due in
part to differences in the thermal expansion of the PZT and
sample, and in part to the temperature dependence of the dy-
namic range of the PZT stack. For clarity, each fixed tempera-
ture strain sweep for theA1g response are offset by −7.5×10−4

per trace from the 100K sweep. The data showing the B2g

response are not offset.

(
∆ρ

ρ0
)A1g = m

A1g

A1g
εA1g +m

A1g,A1g

A1g
[εA1g ]2

+m
B1g,B1g

A1g
[εB1g ]2 +m

B2g,B2g

A1g
[εB2g ]2

(2)

Since the symmetric and antisymmetric strains are re-

lated via νP (i.e. εB1g/2g
= (1+νP )

(1−νP )εA1g
), the quadratic
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FIG. 3. Temperature dependence of the elastoresistance co-
efficients of Ba(Fe0.975Co0.025)2As2 for all symmetry chan-
nels measured. Blue circles show the response for a sam-
ple that experiences an admixture of A1g + B2g symme-
try strain (blue schematic insets), while pink triangles show
the response for a sample that experiences an admixture of
A1g + B1g symmetry strain (pink schematic insets). (a) The

linear response to anisotropic strain, m
B2g

B2g
(left axis) and

m
B1g

B1g
(right axis). m

B2g

B2g
can be well fit by a Curie-Weiss

functional form (black line; see main text). (b) The linear re-

sponse to isotropic strain, m
A1g

A1g
. For crystals that experience

A1g + B1g symmetry strain (pink), m
A1g

A1g
is extracted from

a linear fit; for crystals that experience A1g +B2g symmetry
strain (blue), the data are extracted from the linear term of a
second order polynomial fit. (c) The weighted quadratic coef-

ficients, (( 1−νP
1+νP

)2m
A1g,A1g

A1g
+m

B2g,B2g

A1g
) (blue data, left axis)

and (( 1−νP
1+νP

)2m
A1g,A1g

A1g
+m

B1g,B1g

A1g
) (pink data, right axis) de-

scribing the isotropic response to (A1g+B2g) and (A1g+B1g)
symmetry strains, respectively, extracted from the 2nd or-
der polynomial fit of the isotropic response as a function of
anisotropic strain. The only measurably non-zero non-linear

coefficient is m
B2g,B2g

A1g
, the isotropic response to B2g symme-

try anisotropic strain. The temperature-dependence of this
coefficient can be well fit by a

(T−Θ)2
+ b
T−Θ

+c (black line; see

main text), with Θ taken from the Curie Weiss fit to m
B2g

B2g
.

Error bars represent 95% confidence intervals from statistical
fits. If an error bar is not shown, the uncertainty of the fit is
contained within the size of the data point.

coefficient of (∆ρ/ρ0)A1g
as a function of εB1g/2g

is given

by the weighted sum of coefficients m
B1g,B1g/B2g,B2g

A1g
+

( 1−νP
1+νP

)2m
A1g,A1g

A1g
for A1g + B1g/2g symmetry strains,

respectively. The temperature dependence of these
weighted sums, obtained from quadratic fits to the data
shown in Fig. 2(b) with appropriate transformation of
the strain axis, are plotted in Fig. 3(c). Evidently,

m
A1g,A1g

A1g
and m

B1g,B1g

A1g
(the weighted sum of which is

shown by the pink data) are vanishingly small. Hence,
the striking non-linear response seen in Fig. 2(b) derives

solely from m
B2g,B2g

A1g
; that is, the non-linear symmetric

response derives solely from purely antisymmetric (B2g)
strain.

The Curie-Weiss temperature dependence of m
B2g

B2g
di-

rectly attests to the presence of an electronic degree of
freedom (the nematic order parameter φB2g

) that is sep-
arate from, though bi-linearly coupled to, anisotropic

strain εB2g : φB2g = χB2gεB2g ∝ m
B2g

B2g
εB2g . From the

same perspective, in addition to a bare contribution
to (∆ρ/ρ0)A1g

that is directly proportional to [εB2g]
2,

there should be additional induced terms proportional
to φB2g

εB2g
and [φB2g

]2. All these terms are allowed by
symmetry, and since φB2g

= χB2g
εB2g

, the latter two con-
tributions should be increasingly strong with decreasing
temperature, so that:

m
B2g,B2g

A1g
≈ a

(T −Θ)2
+

b

T −Θ
+ c (3)

where a, b, and c are coefficients to be determined. The
Weiss temperature Θ, which is independently determined

from the temperature dependence of m
B2g

B2g
, is not a fit

parameter. The black line in Fig. 3(c) shows the best
fit to this functional form, with

√
a = 4± 1× 103 K and

b = 7±1×105 K; both terms are important and necessary
to fully fit the response (see Appendix D for more details
on the fitting). This fit is in excellent agreement with the
data (R2

adj = 0.99655) and confirms our understanding
of the contributing symmetry terms and the underlying
physics. The quality of fit also implies that the propor-
tionality constant relating χB2g

and the elastoresistivity
coefficients have negligible temperature dependence over
the fit range.

Finally, we note that m
B2g,B2g

A1g
is positive. This implies

that the average resistance is expected to be larger in the
anisotropic nematic phase than an extrapolation of the
in-plane resistivity determined from the isotropic tetrago-
nal state. Since this is a second order effect, we expect the
resistivity increase to scale as the square of the on-setting
nematic order parameter, i.e. to have a T-linear temper-
ature dependence, for temperatures close to Ts. This
is consistent with the observation18 that the resistivity
of twinned Ba(Fe0.975Co0.025)2As2 samples linearly in-
creases upon cooling through the structural transition19.
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IV. SUMMARY

In summary, we have shown a diverging nonlinear A1g

elastoresistivity response to B2g symmetry strain. The
most remarkable aspect of this measurement is not that

m
B2g,B2g

A1g
6= 0, since this is allowed by symmetry, but

how large this quantity is. Indeed, close to the structural
transition the nonlinear response of (∆ρ/ρ0)A1g to εB2g is
an order of magnitude larger than the linear response to
εA1g for the range of strain considered here. Furthermore
the temperature dependence of this coefficient directly re-
veals that the effect is driven by the large nematic suscep-
tibility of the material, meaning that even the isotropic
properties of the Fe-based superconductors (in this case
(∆ρ/ρ0)A1g

) are strongly affected by the nematic char-
acter of the material. These observations demonstrate a
new means to witness the divergent nematic susceptibil-
ity in these materials based on the measurement of the
isotropic response to anisotropic strain. They also pro-
vide a new point of comparison for microscopic models
of the transport properties of Fe-based superconductors.

ACKNOWLEDGMENTS

J.C.P. and A.T.H. are supported by a NSF Gradu-
ate Research Fellowship (grant DGE-114747). J.C.P. is
also supported by a Gabilan Stanford Graduate Fellow-
ship. J.-H. C. acknowledges the support from the State of
Washington funded Clean Energy Institute. This work
was supported by the Department of Energy, Office of
Basic Energy Sciences, under contract no. DE-AC02-
76SF00515.

Appendix A: Further Details of Sample Preparation
and Experimental Protocol

Single crystals of Ba(Fe0.975Co0.025)2As2 were grown
using the FeAs self flux technique as described
elsewhere18. The crystals were cleaved into thin plates
and cut into approximately square rectilinear tablets
with typical side lengths of 400-750 µm and thicknesses
of 10-30 µm. The B2g sample shown in the main text
has dimensions 30 µm × 730 µm × 700 µm and the B1g

sample has dimensions 10 µm × 540 µm × 530 µm. The
modified Montgomery method assumes square isotropic
equivalent samples, however deviations from square, up
to roughly side length ratios of 4:1, introduce errors sig-
nificantly smaller than the errors from Taylor series trun-
cations (∼ 4%) used in the method20. The roughly
square geometry does ensure equal strain relaxation in
both the x′ and y′ directions. The samples are contacted
on the corners of their top surface by gold wires affixed
with an air-dry silver epoxy (Dupont 4929N) on sput-
tered gold pads. The samples are glued to a PZT stack
(Part No.: PSt150/5x5/7 cryo 1, from Piezomechanik
GmbH) with either Devcon 5-minute epoxy or Master

FIG. 4. Left) Photograph of a representative
Ba(Fe0.975Co0.025)2As2 sample prepared for an elastore-
sistance measurement using the modified Montgomery
method. The sample is cut into a square, affixed with
electrical contacts, and glued onto the PZT stack. This
sample is aligned with its crystallographic axes rotated 45
degrees with respect to the normal strain frame. Right)
Schematic diagram showing the PZT stack prepared for
an elastoresistance measurement, seen from the side. The
sample is glued to the top face of the PZT. Strain is measured
via a strain gauge glued to the back of the PZT stack.

Bond EP21TCHT-1. A photograph of a typical sam-
ple and a diagram of the PZT setup can be seen in Fig.
4. Stress was applied to the sample by step wise cy-
cling the voltage from -150 V to 150 V (below 150 K)
and -50 V to 150 V (above 150 K) on the PZT stack
at a fixed temperature. Three to four voltage sweeps
were performed at each temperature, with typical volt-
age ramp rates between 8-15 V/s. Using the modified
Montgomery method4,20, ρx′x′ and ρy′y′ were measured
simultaneously at each voltage step.

The strain of the PZT stack is measured by a strain
gauge (Part No.: WK-06-062TT-350 from VPG) glued to
the back of the PZT stack. Typically only one direction
of strain is measured and the orthogonal strain is calcu-
lated using the measured Poisson ratio of the PZT stack
(εy′y′ = −νP εx′x′)12. For measurements done here we
assume perfect strain transmission through the glue and
sample such that the strain experienced by the sample is
the same as the strain of the PZT stack. Imperfect strain
transmission would scale the resistive response in all sym-
metry channels, but would neither change our symmetry
decomposition nor affect our main conclusions. This is
discussed in detail in Appendix B.

Both the glue and the PZT stack have differing coeffi-
cients of thermal expansion, neither of which are matched
to the pnictide sample. In addition, the glue will contract
as it dries during the mounting of the sample which can
introduce uncontrolled strains. All of these factors con-
tribute to a temperature dependence of the voltage re-
quired to have the sample experience zero antisymmetric
strain. There does not appear to be a common trend
between samples in the evolution of this neutral point as
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a function of temperature. For example, the evolution
is often non-monotonic and net changes are evenly split
between shifts to positive voltages and negative voltages
amongst the six samples measured. This indicates that
this effect is not solely due to differential thermal con-
tractions of the sample on PZT, implying that the epoxy
plays a significant role in determine the bias strain expe-
rienced by the sample when zero volts are applied to the
PZT stack.

Appendix B: Strain Transmission

The strain transmission through the crystal will de-
pend on geometric factors; for example, the thicker the
crystal is compared with the in-plane dimensions, the
more the strain will relax along the z-axis of the crys-
tal. In order to quantify the strain transmission we
compare a strain gauge mounted on top of a large un-
doped BaFe2As2 sample prepared as described in Ap-
pendix A and a strain gauge glued directly to the back
of the PZT stack. For this experiment we measure
the range of strain along the y′ direction for the sam-

ple mounted strain gauge (∆εSampy′y′ ) and for the PZT

mounted strain gauge (∆εPZTy′y′ ) for fixed temperature

voltage sweeps. The range of strain along the x′ di-
rection is estimated based on the Poisson ratio of the
PZT stack. From this we can calculate the range of anti-
symmetric strain experienced by the sample strain gauge

(∆εSampB2g
= 1

2 (∆εSampx′x′ −∆εSampy′y′ )) and PZT strain gauge

(∆εPZTB2g
= 1

2 (∆εPZTx′x′ − ∆εPZTy′y′ )). The temperature de-

pendence of the ratio ∆εSampB2g
/∆εPZTB2g

is shown in Fig.

5(a), a ratio of one implies perfect strain transmission
through the sample. At 270K there is a sharp increase
in strain transmission which we attribute to a freezing
transition of the glue. Below 250K the strain transmis-
sion is ≥ 80% and has only a weak temperature depen-
dence. This temperature dependence is small compared
with the temperature dependence of the elastoresistance

response which is demonstrated in Fig. 5(b) where m
B2g

B2g

is calculated twice, once using the measured strain of the
strain gauge mounted on the sample and once using the
measured strain of the strain gauge mounted on the PZT
stack. The two calculations are in good agreement below
250K.

The majority of samples are too small to accommodate
a strain gauge on their surface. To quantify the strain
transmission as a function of sample size, three undoped
BaFe2As2 samples: small (280 µm × 300 µm × 20 µm),
medium (760 µm × 750 µm × 40 µm), and large (3140
µm × 3330 µm × 50 µm, this sample is large enough
to have a strain gauge on its surface and is the sample
measured for the data shown in Fig. 5) were measured.

The extracted m
B2g

B2g
responses are shown in Fig. 6(a).

In these calculations of m
B2g

B2g
, strain was measured by a

strain gauge glued to the back of the PZT stack and the

strain was assumed to be fully transmitted, i.e. the sam-
ple experiences the same strain as the PZT stack. The
large and medium samples have the same temperature
dependence and magnitude of response, indicating that
both samples have similar strain transmission (≥ 80%).
While the magnitude of the response of the small sample
is significantly reduced, likely due to an overestimation of
the strain experienced by the sample. This implies that
for the small sample either the crytal is positioned on
the PZT stack such that it experiences a smaller strain
or that there is a strain gradient along the z crystallo-

FIG. 5. Strain transmission through a large (3140 µm × 3330
µm × 50 µm) BaFe2As2 crystal under A1g + B2g symmetry

strains. A strain gauge is glued on top of the sample (∆εSampy′y′ )
and a second strain gauge is affixed directly to the back of the
PZT stack (∆εPZTy′y′ ). For this particular test, ∆εx′x′ is esti-
mated based on the measured Poisson ratio of the PZT, al-
lowing for the estimation of the antisymmetric strains ∆εPZTB2g

and ∆εSampB2g
; 1

2
(∆εPZTx′x′ − ∆εPZTy′y′ ) and 1

2
(∆εSampx′x′ − ∆εSampy′y′ )

respectively. (a) The temperature dependence of the ratio
of the range of antisymmetric strain experienced by the two
strain gauges during fixed temperature voltage sweeps. Below
250K the strain transmission through the samples is ≥ 80%
and only has a weak temperature dependence. (b) The ex-

tracted m
B2g

B2g
elastoresistivity response calculated from both

strain gauges. The two traces are in good agreement below
250K, indicating that the temperature dependence of the re-
sponse is dominated by the intrinsic temperature dependence
of the electronic sample properties over the temperature de-
pendence of the strain transmission.
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FIG. 6. Comparison of sample size on the linear anisotropic

elastoresistivity response, m
B2g

B2g
and strain transmission in

BaFe2As2. Three sample sizes are studied: small (280 µm
× 300 µm × 20 µm), medium (3760 µm × 750 µm × 40
µm), and large (3140 µm × 3330 µm × 50 µm). The strain
at the surface of the large sample has been measured to be
≥ 80% below 250K (Fig. 5). For the data shown here the
strain is measured by a strain gauge glued directly to the PZT
stack and strain is assumed to be fully transmitted from the

PZT to the sample. The top plot (a) shows m
B2g

B2g
data for all

three samples. The elastoresistivity responses of the medium
and large samples have the same magnitude and temperature
dependence suggesting they are in a regime of similar strain
transmission (≥ 80%). The small sample has a significantly
smaller response. This is attributed to imperfect strain trans-
mission in the smallest sample, resulting in the overestimation
of the strain experienced by the sample. The bottom plot (b)
shows the normalized elastoresistivity response for the small
and large sample. The two curves exhibit the same temper-
ature dependence, indicating that imperfect strain transmis-
sion results in a temperature independent scaling of the re-
sponse.

graphic axis and that the sample experiences an Eg shear

strain (εx′z′ , εy′z′). By normalizing the m
B2g

B2g
response at

the structural transition, TS = 135K, the temperature
dependence of the small and large samples can be com-
pared. This is shown in Fig. 6(b). The two normal-
ized responses are in good agreement below 250K, which
demonstrates that imperfect strain transmission results

in only a simple scaling of the magnitude of the elastore-
sistance response.

This allows us to use the magnitude of the m
B2g

B2g
re-

sponse as an approximate measure of strain transmission,
with the assumption that samples with in-plane dimen-
sions ∼750 µm or larger have ≥ 80% strain transmission.
For samples oriented to experience B1g strain estimat-
ing the overall strain transmission is more challenging.
Rough estimates can be made based off of their relative
size compared to samples that experience B2g strain. The
B2g sample shown in the main text (30 µm × 730 µm
× 700 µm) has ≥ 80% strain transmission while the B1g

sample (10 µm × 540 µm × 530 µm) has ≥ 60 − 80%
strain transmission.

Appendix C: Errors in Extracting the Linear and
Quadratic Response from ρA1g Arising from

Uncertainty in Identifying the Neutral Strain Point

As shown in the main text, the main finding of the
current work is that for the strain ranges we employ the
elastoresistance of Ba(Fe0.975Co0.025)2As2 is linear with

the exception of a large nonlinear m
B2g,B2g

A1g
term. How-

ever, due to differences in the thermal expansion of the
PZT, sample, and the glue holding the sample in place
and the volume contraction of the glue as it dries when
the sample is attached to the PZT stack, the sample once
mounted and cooled may experience external strains even
when no voltage is applied to the PZT stack. The neutral
B2g and A1g strain points may even be offset from each
other. Since the PZT applies a fixed ratio of symmet-
ric and antisymmetric strains, if there is an offset in the
neutral points at best we can tune through one neutral
point at a time (i.e. εA1g

= 0 or εB2g
= 0).

We can identify the neutral antisymmetric strain point
above the tetragonal to orthorhombic structural transi-
tion (98K) because, for a tetragonal material at the neu-
tral antisymmetric strain point, ρxx = ρyy. The modified
Montgomery method is well suited to identify the an-
tisymmetric strain neutral point since it simultaneously
measures ρx′x′ and ρy′y′ under identical strain conditions
in a single sample. This is one advantage of the modified
Montgomery method over the previously used differen-
tial technique12. It is more challenging to identify the
symmetric strain neutral point and it is not done in this
work. Below is a detailed calculation of the effects of the
misidentification of strain offsets on the calculated elas-
toresistivity tensor components. For simplicity we look at
an offset in εx′x′ which still allows for tuning to the neu-
tral point of both A1g and B1g/2g symmetry strains, but
the results hold even if the neutral points are separated.
The main conclusions are that, for this material, the cor-
rect identification of the antisymmetric neutral point is

required to accurately estimate m
A1g

A1g
for samples that ex-

perience A1g and B2g symmetry strain, however neither

m
B1g/2g

B1g/2g
nor m

B1g/2g,B1g/2g

A1g
are dependent on the identifi-
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cation of the neutral point. All results are robust to the
determination of the symmetric strain neutral point.

We start with the simple case of the linear antisym-
metric response, assuming no offset between the neutral
A1g and B1g/2g strain points and that εA1g

, εB1g/2g
, and

εx′x′ are all measured relative to the neutral point where
εA1g = εB1g/2g

= εx′x′ = 0. Then the change in antisym-
metric resistivity to εx′x′ is described by,

(∆ρ/ρ0)B1g/2g
= m

B1g/2g

B1g/2g
εB1g/2g

= m
B1g/2g

B1g/2g
(
1 + νP

2
)εx′x′

(C1)

If the neutral strain point is misidentified by an amount
∆εx′x′ such that εtruex′x′ = εmeasx′x′ + ∆εx′x′ then there will
be an offset in both the symmetric and antisymmetric
neutral points (i.e. ∆εA1g

= 1−νP
2 ∆εx′x′ and ∆εB2g =

1+νP
2 ∆εx′x′). Then the antisymmetric response becomes,

(∆ρ/ρ0)B1g/2g
= m

B1g/2g

B1g/2g
(
1 + νP

2
)(εmeasx′x′ +∆εx′x′) (C2)

The linear antisymmetric elastoresistivity coefficient is
extracted from the slope of the linear fit of (∆ρ/ρ0)B1g/2g

vs 1+νP
2 εmeasx′x′ (εmeasB1g/2g

). In this case the extracted slope

is the true elastoresistivity coefficient, m
B1g/2g

B1g/2g
, indepen-

dent of the error in the identification of the strain neutral
point ∆εx′x′ .

For the isotropic resistivity response, we again start by
assuming no offset between the neutral symmetric and
antisymmetric strain points and that all strains are mea-
sured relative to the neutral point where εA1g

= εB1g/2g
=

εx′x′ = 0. For simplicity we will perform these calcula-
tions for a sample that experiences A1g and B2g symme-
try strain (the same calculation can be done for a sample
that experiencesA1g andB1g symmetry strains by simply
replacing all references to B2g with B1g). The isotropic
resistivity response is then described by,

(∆ρ/ρ0)A1g
=m

A1g

A1g
εA1g

+m
A1g,A1g

A1g
[εA1g

]2

+m
B2g,B2g

A1g
[εB2g ]2

= m
A1g

A1g
(
1− νP

2
)εx′x′ +m

A1g,A1g

A1g
[(

1− νP
2

)εx′x′ ]2

+m
B2g,B2g

A1g
[(

1 + νP
2

)εx′x′ ]2

(C3)

Now we introduce a misidentification of the neutral strain
point by an amount ∆εx′x′ (εtruex′x′ = εmeasx′x′ + ∆εx′x′). The
isotropic resistivity response then becomes,

(∆ρ/ρ0)A1g
=((

1− νP
1 + νP

)2m
A1g,A1g

A1g
+m

B2g,B2g

A1g
)

× [
1 + νP

2
εmeasx′x′ ]2

+ (m
A1g

A1g
+m

A1g,A1g

A1g
(1− νP )∆εx′x′

+m
B2g,B2g

A1g

(1 + νP )2

1− νP
∆εx′x′)

1− νP
2

εmeasx′x′

+m
A1g

A1g

1− νP
2

∆εx′x′

+m
A1g,A1g

A1g
[(

1− νP
2

)∆εx′x′ ]2

+m
B2g,B2g

A1g
[(

1 + νP
2

)∆εx′x′ ]2

(C4)

For this material the only non-negligible quadratic re-

sponse is m
B2g,B2g

A1g
(m

B1g,B1g

A1g
≈ m

A1g,A1g

A1g
≈ 0). This

further simplifies the equation,

(∆ρ/ρ0)A1g ≈ m
B2g,B2g

A1g
[
1 + νP

2
εmeasx′x′ ]2

+ (m
A1g

A1g
+m

B2g,B2g

A1g

(1 + νP )2

1− νP
∆εx′x′)

× 1− νP
2

εmeasx′x′

+m
A1g

A1g

1− νP
2

∆εx′x′

+m
B2g,B2g

A1g
[(

1 + νP
2

)∆εx′x′ ]2

(C5)

Fits to the linear (∆ρ
ρ0

)A1g
response vs 1−νP

2 εmeasx′x′ (εmeasA1g
)

incorrectly identify the slope, the effective measured

m
A1g

A1g
, as m

A1g

A1g
+ (1+νP )2

1−νP m
B2g,B2g

A1g
∆εx′x′ = m

A1g

A1g
+

2( 1+νP
1−νP )m

B2g,B2g

A1g
∆εB2g , so to accurately measure this

quantity the neutral B2g strain point must be correctly
identified. If a similar procedure is followed for a sample
experiencing A1g and B1g symmetry strain there is no

error introduced to the measured m
A1g

A1g
for misidentifi-

cation of the neutral strain point or for offsets between
the B1g and A1g neutral points since there is no contri-
bution from the quadratic response. Thus estimates of

m
A1g

A1g
extracted from samples that experience A1g and

B1g symmetry strains are robust. Fits to the quadratic

(∆ρ
ρ0

)A1g
response vs [ 1+νP

2 εmeasx′x′ ]2 ([εmeasB2g
]2) correctly ex-

tract the quadratic coefficient, m
B2g,B2g

A1g
, independent of

the neutral strain.
Two experimental observations confirm that we can

correctly identify the neutral B2g strain point. First

the estimates of m
A1g

A1g
(shown in Fig. 3(b) of the main

text) are the same for crystals oriented such that they
exhibit A1g + B2g and A1g + B1g strains. Secondly,
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misidentification of the B2g neutral point would admix

some amount of m
B2g,B2g

A1g
into the nominal measurement

of m
A1g

A1g
, which would introduce a strong temperature

dependence– this is not observed.

Appendix D: Fitting m
B2g

B2g
and m

B2g,B2g

A1g

The linear antisymmetric response to B2g symme-

try strain, m
B2g

B2g
, is extracted from a first order fit of

(∆ρ
ρ0

)B2g
versus εB2g

. The temperature dependence of

m
B2g

B2g
can then be fit to a Curie-Weiss functional form,

m
B2g

B2g
= λ

a0
( 1
T−Θ ) +m

B2g

B2g,0
. The antisymmetric response

deviates from a true Curie-Weiss behavior at high tem-
peratures where the epoxy softens and at low tempera-
tures due to the structural transition and disorder4. The
optimal temperature range to extract the best Curie-
Weiss fit is chosen following the procedure outline in
reference4, except that the reduced χ2 error was min-
imized as opposed to the standard deviation. For the
sample shown in the main text the best fit temperature
range was found to be 104K-181K. Extracted fit param-

eters are λ
a0

= −2980 ± 71 K, Θ = 75.8 ± 0.6 K, and

m
B2g

B2g,0
= 17.3± 0.7 with R2

Adj = 0.9995.

The nonlinear symmetric response to antisymmetric

B2g strain, m
B2g,B2g

A1g
, was extracted from the quadratic

coefficient of a second order fit of (∆ρ
ρ0

)A1g
versus εB2g

using the same temperature range, 104K-181K. As de-
scribed in the main text, by symmetry the temperature

dependence of m
B2g,B2g

A1g
is allowed to include the terms

a
(T−Θ)2 + b

T−Θ +c. The Weiss temperature, Θ, is fixed to

be 75.8K from the Curie-Weiss fit of m
B2g

B2g
. The fitted co-

efficients are a = (2.0±0.2)×107 K2, b = (7.4±1)×105 K,
and c = (−6.7± 0.9)× 103 with R2

Adj = 0.99655. We can
compare the magnitude of the contributions from individ-
ual terms in the fit. Close to the Weiss temperature (i.e.
as T − Θ → 0), we expect the quadratic term ( a

(T−Θ)2 )

to dominate; however, at high temperatures the Curie-
Weiss term ( b

T−Θ ) is largest. The cross over point is
roughly 23K above the Weiss temperature, so for the ac-
cessible range of temperatures considered here (i.e. above
Ts = 98K) the Curie-Weiss term is equal in magnitude or
larger than the a

(T−Θ)2 component. It is not significantly

larger over the whole temperature range and both terms
are necessary to fully fit the response.
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7 A. E. Böhmer, P. Burger, F. Hardy, T. Wolf, P. Schweiss,
R. Fromknecht, M. Reinecker, W. Schranz, and C. Mein-
gast, Phys. Rev. Lett. 112, 047001 (2014).

8 Y. Gallais, R. M. Fernandes, I. Paul, L. Chauvière, Y.-X.
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