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Majorana fermions can be realized as quasiparticles in topological superconductors, with potential
applications in topological quantum computing. Recently, lattices of magnetic adatoms deposited
on the surface of s-wave superconductors – Shiba lattices – have been proposed as a new platform for
topological superconductivity. These systems possess the great advantage that they are accessible
via scanning-probe techniques, and thus enable the local manipulation and detection of Majorana
modes. Using a non-equilibrium Green’s function technique we demonstrate that the topological
Majorana edge modes of nanoscopic Shiba islands display universal electronic and transport prop-
erties. Most remarkably, these Majorana modes possess a quantized charge conductance that is
proportional to the topological Chern number, C, and carry a supercurrent whose chirality reflects
the sign of C. These results establish nanoscopic Shiba islands as promising components in future
topology-based devices.

I. INTRODUCTION

Originally proposed as elementary particles with the
peculiar property of being their own antiparticles [1], Ma-
jorana fermions have been argued to exist in several
condensed-matter settings: in certain fractional quantum
Hall states [2], in superfluid He-3 [3, 4], in fractionalized
spin liquids [5], in chiral superconductors [6, 7], and in
hybrid superconducting structures [8–13]. Besides be-
ing of fundamental interest as exotic particles, Majorana
fermions hold great potential for realizing fault-tolerant
topological quantum bits due to their non-Abelian braid-
ing statistics [2, 14–16]. Realizing this potential, however,
necessitates the ability to create, detect, and manipulate
single Majorana fermions in nanoscopic topological su-
perconductors.

First steps towards achieving this goal have been taken
through the creation of Shiba chains – chains of magnetic
Fe atoms – on the surface of Pb, an s-wave superconduc-
tor with strong Rashba spin-orbit interaction [11–13, 17].
These chains were shown to realize one-dimensional topo-
logical superconductivity, with Majorana zero modes be-
ing localized at the chain ends [11–13]. Such surface sys-
tems can be investigated via scanning tunneling spec-
troscopy (STS), providing not only spectroscopic but also
spatially resolved insight into the nature of Majorana
modes. Most recently, the concept of Shiba chains was
theoretically generalized to Shiba lattices [18–21] – two-
dimensional lattices of magnetic adatoms placed on an s-
wave superconductor – as a new platform for chiral super-
conductivity with dispersing Majorana edge modes. Such
systems are characterized by a non-zero Chern number C,
similar to the integer quantum Hall effect, and display a

universal thermal Hall conductivity κxy/T = C π
2k2B
3h [22].

Whether the Majorana edge modes in Shiba lattices also
exhibit universal charge transport properties, in analogy

to the quantized charge Hall conductivity σxy = e2

h C
in quantum Hall systems [23], that would allow one to
uniquely identify them, is presently unclear [3, 22].

Motivated by the recent progress in the nanoscale
design of artificial magnetic structures [24–26] and the
relevance of nanosocpic topological superconductors for
quantum computing, we investigate the electronic prop-
erties of Shiba islands, i.e., nanoscale islands of magnetic
atoms placed on the surface of an s-wave superconductor.
We identify key characteristic features of chiral Majorana
modes localized along the edges of Shiba islands that can
be probed via STS; these features provide direct insight
into the topologically invariant Chern number of the sys-
tem, allowing us to unambiguously distinguish topolog-
ically trivial from non-trivial phases. In particular, we
find that (i) the differential tunneling conductance as-
sociated with the flow of charge from the STS tip into
Majorana modes is quantized (apart from small finite-
size effects) and proportional to |C|, and (ii) Majorana
modes are equally spaced in energy, and carry a supercur-
rent whose chirality reflects the sign of the Chern number
sgn(C). Moreover, we demonstrate that zero-energy Ma-
jorana modes – crucial ingredients for topological braid-
ing operations – can be created by threading a π-flux
through the island. These results represent crucial steps
towards realizing topological quantum bits and designing
complex topological phases.

II. SHIBA-ISLAND MODEL

To investigate the spectroscopic and transport proper-
ties of topological superconductors, we consider a finite
two-dimensional island of magnetic adatoms deposited
on the surface of an s-wave superconductor, as schemati-
cally shown in Fig. 1(a). We take the magnetic moments
of the adatoms to be aligned ferromagnetically, and de-
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FIG. 1: (a) Sketch of a Shiba island with STS tip. The LDOS is shown for µ = −4t (C = −1) in (b,d), for µ = −2t (C = 0)
in (e), and for µ = 0 (C = +2) in (c,f). Panels (d-f) display the energy-resolved spectra at the location marked by arrows in
(b,c); equally spaced in-gap states are clearly visible in the topological phases in (d) and (f). Panels (b,c) show the spatial
weight distribution (color-coded) of the low-energy in-gap states marked by arrows in (d,f); the insets display the corresponding
normal-state Fermi surfaces. Parameters here and below are (α,∆s, J) = (0.2, 0.3, 0.5)t.

scribe them as classical moments, as spin-flip processes
leading to Kondo screening are suppressed in a super-
conducting host. The system is then described by the
Hamiltonian H = HSC + Htip [18] [assuming a square-
lattice structure, as realized e.g. in Pb(100)] with

HSC =− t
∑
〈rr′〉,σ

(
c†r,σcr′,σ + H.c.

)
− µ

∑
r,σ

c†r,σcr,σ

+ iα
∑

r,σ,σ′

(
c†r,σσ

2
σσ′cr+x̂,σ′ − c†r,σσ1

σσ′cr+ŷ,σ′ + H.c.
)

+ J
∑

R,σ,σ′

c†R,σσ
3
σσ′cR,σ′ + ∆s

∑
r

(
c†r,↑c

†
r,↓ + H.c.

)
−ttip

∑
σ

(
c†r,σdσ + H.c.

)
, (1)

where c†r,σ creates an electron at lattice site r with spin

σ, and σi are the spin Pauli matrices. −t and ∆s are the
hopping and pairing amplitudes of the superconductor,
µ is the chemical potential, α denotes the Rashba spin-
orbit coupling arising from the breaking of the inversion
symmetry at the surface [11], J is the magnetic exchange
coupling, ttip is the amplitude for electron tunneling from
the STS tip into the system, and Htip describes the elec-
tronic structure of the tip [see App. A]. Finally, {R}
denotes the sites of the magnetic Shiba island, and we
consider only the two-dimensional surface of the super-
conductor. For a Shiba lattice, i.e., when the surface is
fully covered by magnetic adatoms [18], the system de-
scribed by Eq. (1) possesses three topologically distinct
phases with Chern numbers C = −1, 0, and +2. One can

tune between these phases by varying the chemical po-

tential, with phase transitions at µ
(1)
c,± = ±

√
J2 −∆2 and

µ
(2)
c,± = ±4t∓

√
J2 −∆2. Provided the superconductor is

sufficiently thin, such tuning of µ can be achieved via gat-
ing [27]. We employ the non-equilibrium Keldysh Green’s
function formalism [see App. A for details] to compute
the local density of states (LDOS), the differential con-
ductance, and charge currents in the Shiba islands.

III. EDGE STATES

We begin by considering a Shiba island of radius
R = 15a0, and choose a set of parameters, (α,∆s, J) =
(0.2, 0.3, 0.5)t to ensure that the superconducting co-
herence length [28], ξ ≈ 6a0 is smaller than R. In
Fig. 1 (d,e,f), we plot the LDOS at the edge of the is-
land for values of µ corresponding to the three different
phases. The bulk-boundary correspondence [29] implies
that the island possesses low-energy edge states in the
topological phases with C = +2,−1 [see Figs. 1 (d) and
(f)], which are absent in the C = 0 phase [Fig. 1 (e)]. Due
to the finite size of the island, the topological edge modes
are discrete levels, equally spaced in energy inside the su-
perconducting gap. Each red peak in Fig. 1 (f) consists of
two peaks - a feature which cannot be resolved due to the
broadening of the peaks. This two-fold degeneracy cor-
responds to two chiral edge modes as expected for C = 2.
The spatially resolved LDOS of these low-energy modes
reveals that most of their spectral weight is confined to
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FIG. 2: Differential conductance G = dI/dV vs. chemical
potential µ for the finite Shiba lattice (red) and the Shiba
island (black), measured in a low-energy window, see text.
G not only distinguishes between the different phases but is

even quantized to a remarkable accuracy as G = 2e2

h
|C|. Here,

ttip = 0.02t. Inset: real-space Chern number normalized by
coverage, C̃, demonstrating the topological character of the
finite-size system, see App. D for details.

the edge of the island [see Fig. 1(b,c)], thus confirming
that these modes are indeed the putative edge modes as-
sociated with the topological phases. The distribution of
the edge modes’ spectral weight along the island’s edge
depends strongly on the shape of the underlying Fermi
surface in the normal state: for a circular Fermi surface
[C = −1, µ = −4t, inset of Fig. 1(b)] the weight distri-
bution is approximately uniform along the edge, while
it is highly anisotropic for a nearly nested Fermi surface
[C = 2, µ = 0, inset of Fig. 1(c)]. With decreasing ξ
(see App. B), the topological modes become more closely
confined to the edges of the island, and their spectral
weight in the interior of the island decreases. Similar
edge states are also found in irregularly shaped islands
(see Sec. VIII), as their existence only relies on the topo-
logical character of the system’s ground state, and not
its particular geometry.

IV. TUNNELING CONDUCTANCE

To further explore the properties of the topological
edge modes, we consider the differential tunneling con-
ductance associated with the flow of charges between
an STS tip and a site r in the sample. As the main
difference between the topological non-trivial and triv-
ial phases lies in the presence of topological low-energy
edge modes in the former, and their absence in the lat-
ter, we plot in Fig. 2 the maximum differential conduc-
tance G = max∆V [dI(r)/dV ] in a narrow voltage range,
∆V , around zero voltage (see App. C). In the topologi-
cal phases, ∆V contains only a single edge mode (being
two-fold degenerate in the C = 2 phase), with G thus
characterizing its conductance.

For a finite-sized Shiba lattice (see App. C, Fig. 8), we

find the conductance of the topological edge modes to be
quantized (within 0.1%) and given byG = |C| 2e2/h, with
deviations from this quantized value becoming larger as

one approaches the phase boundaries at µ
(1,2)
c , see Fig. 2.

This overall scale of G is consistent with the observa-
tion that for a normal tip-superconductor junction, the
quantum of conductance per fermionic degree of free-
dom is given by 2e2/h due to Andreev scattering. In
the trivial C = 0 phase, the conductance vanishes (for
ttip → 0) due to the absence of low-energy modes. The
transition from G 6= 0 to G = 0 for the finite Shiba
lattice occurs approximately at the same critical values

of µ
(1)
c = ±0.4t, µ

(2)
c = ±3.6t as in the thermodynamic

limit. For the Shiba island with R = 15a0, G is still
(nearly) quantized in the C = −1 phase, but deviations
from the quantized value increase more rapidly in the

C = +2 phase as µ
(1)
c is approached, which we attribute

to the finite size of the island (the same conclusion also
holds for irregularly shaped islands, see Sec. VIII).

To further substantiate the topological character of the
nanoscopic system, we adapt and modify a real-space
Chern number formalism previously used for disordered
topological insulators [30] and apply it to our Shiba is-
lands. Numerical results for the modified Chern number,
C̃, are in the inset of Fig. 2, for details see App. D. While
C̃ does not reach integer values for the nanoscopic island
(as topological invariants are strictly defined only in the
thermodynamic limit), it clearly distinguishes between
topologically trivial and non-trivial phases; moreover it
correctly reflects sgn(C) and also allows one to quantita-
tively distinguish between the C = −1 and C = 2 phases.

V. INDUCED SPIN-TRIPLET CORRELATIONS
IN THE p-WAVE CHANNEL

The combination of magnetic impurities, Rashba spin-
orbit interaction, and s-wave superconductivity gives rise
to the emergence of superconducting triplet correlations
[8, 9, 17]. To investigate the spatial form of these corre-
lations, we consider the spin-triplet, equal-spin correla-
tions on nearest-neighbor sites r, r′, as described by the

correlation function 〈c†r,σc
†
r′,σ〉. These correlations de-

scribe superconducting pairing in the p-wave channel. In
Fig. 3 we present the sign of the real and imaginary parts

of 〈c†r,σc
†
r′,σ〉 for σ =↑, ↓ and µ = −0.3t inside the C = 2

phase. The correlations are predominantly real along the
horizontal links, and imaginary along the vertical links,
suggesting a ±px ± ipy orbital structure of the induced
triplet correlations. A closer analysis of the relative sign
of the real and imaginary parts reveals that the correla-

tions inside the droplet are −px + ipy for 〈c†r,↑c
†
r′,↑〉 and

px + ipy for 〈c†r,↓c
†
r′,↓〉, which reflect, as expected, the

broken time-reversal symmetry of the system due to the
presence of magnetic defects. However, outside the mag-

netic island, the correlations are px−ipy for 〈c†r,↑c
†
r′,↑〉 and

px + ipy for 〈c†r,↓c
†
r′,↓〉, which preserve the system’s time-
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FIG. 3: Induced superconducting triplet correlations
〈c†r,σc†r′,σ〉 for σ =↑, ↓. The upper row shows the sign of
the real part, the lower row the sign of the imaginary part
of the correlations – positive (negative) sign is show in blue
(red). The parameters are (α,∆s, J) = (0.2, 0.3, 0.5) t, and
µ = −0.3t corresponding to the C = 2 phase. Shown are just
quarters of the Shiba island with radius R = 15a0.

reversal symmetry. This implies that the nature of the
induced triplet correlations changes between the interior
and exterior of the droplet. We find that these relations
between the signs of the induced triplet correlations hold
both for the topologically trivial and non-trivial phases,
despite the fact that in the topologically trivial phase
there are no edge modes. The C = 0 phase therefore rep-
resents an example of a system that exhibits supercon-
ducting (chiral) triplet (p-wave) correlations, but no cor-
responding edge modes. In general, superconducting cor-
relations in Shiba islands will also feature higher angular-
momentum pairing channels such as d- and f -wave; here
we restrict the investigation to p-wave correlations as a
proof-or-principle for topological superconductivity.

VI. SUPERCURRENTS

The presence of chiral spin-triplet correlations dis-
cussed in the preceding section implies the existence of
a supercurrent in the system [31], i.e., currents that flow
even in the absence of any applied bias V . A plot of the
supercurrents carried by the lowest-energy edge modes in
the topologically non-trivial C = −1 and C = 2 phases
[Figs. 4(a,b)] reveals that they are not only confined to
the edge of the island [35], but that their chirality (i.e.,
direction of flow) reflects the sign of the Chern number,
sgn(C). Recent advances in observing charge currents at
small length scales [32–34] suggest that such supercur-
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FIG. 4: Spatial distribution of the supercurrents (V =0) car-
ried by the lowest energy edge modes in the (a) C = −1
(µ=−4t), and (b) C = +2 (µ= 0) phases. The direction of
the current flow depends on sgn(C) (see insets) with the cur-
rents flowing clockwise in (a) and counter-clockwise in (b).

rents could be observed in the near future. This would
imply that transport experiments could not only mea-
sure the magnitude of C via the differential conductance,
but also its sign, providing unprecedented insight into
the nature of topological phases.

VII. MAJORANA CHARACTER OF EDGE
STATES

The realization of fault-tolerant topological quantum
computing requires the creation of zero-energy Majorana
modes with exotic braiding properties [16]. Such Majo-
rana zero modes have been predicted to exist [8, 9, 17, 37]
and subsequently been observed at the ends of the so-
called Kitaev chains [10–13]. In contrast, the finite size of
the Shiba islands considered above results in topological
edge states that are located at discrete, and non-zero en-
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FIG. 5: A π-flux threaded through the center of the Shiba
island shifts states E = ±ε/2 (black) to almost zero energy
(purple), with the remaining splitting being due to the small
island size; the LDOS was measured at the location indicated
by the red arrow. The spatial LDOS profile corresponds to
one of the almost zero-energy state (arrow) and reveals that
spectral weight is bound to the π-flux as well as to the island
edge, reflecting the presence of two Majorana zero modes for
large islands.
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FIG. 6: Disordered Shiba island of magnetic adatoms with no rotational or mirror symmetries. (a) Energy-resolved LDOS in
the C = −1 phase (µ = −4t). (b) Spatial LDOS of the lowest-energy edge mode shown in (a). (c) Supercurrent carried by the

lowest-energy edge mode shown in (a). (d) Differential conductance, G, and (e) modified Chern number C̃, as a function of µ.
Parameters used: (α,∆s, J) = (0.2, 0.3, 0.5) t.

ergies, ±Ei. The symmetric states at ±Ei arise from the
intrinsic particle-hole symmetry of the superconductor
and can be considered a pair of Majorana fermions. To
create an isolated zero-energy Majorana mode, it is nec-
essary to spatially separate the two Majorana fermions
forming a pair. This can be achieved by inserting a π-
flux in the center of a Shiba island: this flux creates a
half-quantum vortex [38] and binds one of the two Majo-
rana fermions. As a result, the Majorana modes become
spatially separated, with one mode being located at the
island’s edge and one mode in the island’s center at the
π-flux, as follows from a plot of the low-energy LDOS
in Fig. 5. This spatial separation leads to an exponen-
tial suppression of the coupling between the Majorana
modes with increasing radius of the island and a shift of
their energies ±Ei to zero, as shown in the inset of Fig. 5,
where we contrast the low-energy part of the LDOS in
the absence (black) and presence of the π-flux (purple).
We thus obtain two zero-energy Majorana modes in the
limit R→∞, which can be thought of as analogue to the
Majorana bound states at the ends of a Kitaev or Shiba
chain.

VIII. IRREGULARLY SHAPED SHIBA
ISLANDS

So far, we considered a Shiba island that possesses
the same spatial symmetries as the underlying lattice of
the s-wave superconductor (e.g. mirror and discrete ro-
tational symmetries). Unless such highly ordered islands
can be experimentally created using atomic manipulation
techniques (as in the case of molecular graphene [39]), it
is very likely that the experimental realization of Shiba
islands will result in disordered or irregularly shaped is-
lands. The question therefore arises to what extent the
properties of the topological phases, such as their quan-
tized conductance, are robust against deformations in the
shape of the island (as long as the topological phase is
not destroyed).

To investigate this question, we consider the
irregularly-shaped magnetic island possessing no spa-
tial symmetries shown in Fig. 6(b). Despite its irregular
shape, we find that the electronic and transport prop-
erties of the Shiba island, associated with the topolog-
ical phases, remain qualitatively and to a large extent
quantitatively unchanged. In Fig. 6(a), we present the
LDOS at the edge of the island in the C = −1 phase,
which, similar to that shown in Fig. 1, exhibit a series of
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equally (in energy) spaced edge modes. A plot of the spa-
tially resolved LDOS in Fig. 6(b) for the lowest-energy
edge mode in Fig. 6(a) reveals that the edge mode is still
strongly localized along the edge of the island, but pen-
etrates further into the island due to its reduced size [cf.
Fig. 1(b)]. The same conclusion also holds for the spatial
form of the supercurrent shown in Fig. 6(c) that is car-
ried by the lowest-energy edge mode [cf. Fig. 4(a)]. The
chirality of the supercurrents is the same as that for the
circular Shiba island. Moreover, the differential conduc-
tance G [Fig. 6(d)] as well as the modified Chern number

C̃ [Fig. 6(e)] (see also App. D), show very similar depen-
dence on the chemical potential as those of the circular is-
land. This reflects the persistent topological nature of the
irregular-shaped island, as evidenced by a concomitant
quantized tunneling conductance. Our results demon-
strate the robustness of the topological phases and their
intrinsic properties against deformations in the shape of
the island.

IX. SUMMARY

Identifying the characteristic electronic and transport
properties of topological phases in nanoscopic Shiba is-
lands is a key step in the quantum engineering of Ma-
jorana fermions. The robustness and universality of the
results (see Sec. VIII and App. B) is of crucial impor-
tance for applications. Moreover, designing the magnetic
structure or geometry of Shiba islands may enable cre-
ating more complex topological states and manipulat-
ing the spatial structure of Majorana modes. Both of
these possibilities hold exciting new potential for realiz-
ing topological quantum computing.
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Appendix A: Keldysh Formalism

Our starting point for the study of Shiba islands on a
square lattice is the Hamiltonian H = HSC + Htip [18]
with HSC as defined in Eq. (1), and Htip describing the
electronic structure of the tip, as discussed below. To
investigate the transport properties of such magnetic is-
lands, we employ the non-equilibrium Keldysh Green’s
function formalism [40, 41], which allows us to compute
not only the tunneling current between the STS tip and
the superconductor, but also the currents flowing on the
surface of the s-wave superconductor. We note that due
to the Rashba spin orbit coupling, the flow of charge be-
tween two sites in the system can be accompanied by
a spin flip. Within the Keldysh formalism, the spin-
resolved current flowing between sites i and j therefore
has to be generalized to

Iσσ
′

ij = −2gs
e

~

∫ ∞
−∞

dω

2π
Re
[
T̂σσ

′

ij G<(i, σ; j, σ′;ω)
]
, (A1)

where G<(i, σ; j, σ′;ω) is the full, normal lesser Green’s
function that describes the propagation of an electron
with spin σ at site i to an electron with spin σ′ at site
j. Here, the matrix T̂σσ

′
describes the hopping between

two nearest-neighbor sites, which is either given by −t if
σ = σ′ =↑, ↓, or by the Rashba coupling α if σ 6= σ′.

To compute G<(i, σ; j, σ′;ω), we first define the Mat-
subara Green’s function matrix in frequency space using
the effective action

S =
1

β

∑
ωn>0

Ψ†(iωn)Ĝ−1(iωn)Ψ(iωn) (A2)

where the spinor Ψ†(iωn) is defined via

Ψ†(iωn) =
(
d†↑(iωn), d†↓(iωn), d↓(−iωn), d↑(−iωn), . . . , c†r,↑(iωn), c†r,↓(iωn), cr,↓(−iωn), cr,↑(−iωn), . . .

)
(A3)

and r is a site in the superconductor. Ĝ(iωn) is obtained
from the Dyson equation

Ĝ(iωn) =
{

[ĝ(iωn)]
−1 − Ĥ0

}−1

. (A4)

Here, Ĥ0 is the Hamiltonian matrix defined using the

Hamiltonian of Eq.(1) via

HSC =
1

2
Ψ†Ĥ0Ψ (A5)

with spinor

Ψ† =
(
d†↑, d

†
↓, d↓, d↑, . . . , c

†
r,↑, c

†
r,↓, cr,↓, cr,↑, . . .

)
. (A6)
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FIG. 7: (a) - (c) Spin-resolved LDOS at the edge of the Shiba island in the C = −1 (µ = −4t), C = 0 (µ = −2t), and C = 2
(µ = 0) phases, respectively, for a set of parameters (α,∆s, J) = (0.8, 1.2, 2.0) t. Total LDOS for the lowest-energy topological
edge modes in the topological (d) C = −1 (µ = −4t) and (e) C = 2 (µ = 0) phases. Suppercurrents carried by the lowest-energy
topological edge modes in the topological (f) C = −1 (µ = −4t) and (g) C = 2 (µ = 0) phases.

Note that the factor of 1/2 in Eq.(A5) arises since we
consider particle- and hole-like operators for both spin-
projections in the definition of Ĝ(iωn) and the spinor
Ψ†(iωn) in Eq.(A2). Finally, ĝ(iωn) is the Green’s
function matrix that represents decoupled and non-
interacting sites in the system (see below).

To obtain the lesser Green’s function in Eq.(A1), we

define lesser and retarded Green’s function matrices Ĝ<,r

in real space whose (rr′) elements are given by Ĝ<,rrr′ , and
employ the Dyson equations in frequency space

Ĝ< = Ĝr
[
(ĝr)

−1
ĝ< (ĝa)

−1
]
Ĝa (A7a)

Ĝr =
[
(ĝr)

−1 − Ĥ0

]−1

(A7b)

Here, ĝx (x = r, a,<) are given by

ĝx =

(
ĝxtip 0
0 ĝxSC

)
(A8)

where ĝxSC and ĝxtip are the Green’s function matrices de-
scribing the s-wave superconductor and the Shiba island,
and the tip, respectively. ĝxSC are diagonal matrices with

elements

gr0(ω) =
1

ω + iδ
(A9a)

g<0 (ω) = −2inF (ω)Im{gr0(ω)} (A9b)

where nF (ω) is the Fermi distribution function, in the su-
perconductor. Moreover, ĝxtip are diagonal matrices with
the elements of ĝrtip being given by

grtip(ω) = −iπ (A10)

implying that the tip’s density of states is equal to unity
and that we consider the wide band limit. On the other
hand, the diagonal elements of the lesser (4 × 4) matrix
ĝ<tip are given by

g<tip,11(ω) = g<tip,22(ω) = −2inF (ω − eV ) Im{grtip(ω)}
(A11a)

g<tip,33(ω) = g<tip,44(ω) = −2inF (ω + eV ) Im{grtip(ω)}
(A11b)

where e is the electron charge, and V is the potential dif-
ference between the tip and the grounded superconduc-
tor. The spin-resolved local density of states, Nσ(r, E)
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at site r and energy E is obtained from Eq.(A7b) via

Nσ(r, E = ~ω) = − 1

π
Im{Ĝrrr(ω)} . (A12)

Appendix B: Changing the Ratio between
Coherence Length and System Size

If the superconducting coherence length, ξ, is reduced
in comparison to the system size, we expect that the edge
modes are more strongly localized in the vicinity of the
edges. To investigate the effects of a shorter coherence
length on the physical properties of Shiba islands, we
consider a set of parameters (α,∆s, J) = (0.8, 1.2, 2.0) t
which yields a coherence length ξ ≈ 1.25a0, which is
about 5 times smaller than the one considered in Fig. 1.
In Figs. 7(a)-(c), we present the resulting LDOS at the
edge of the Shiba island in the C = −1 (µ = −4t),
C = 0 (µ = −2t), and C = 2 (µ = 0) phases, respec-
tively, which shows a very similar behavior to that pre-
sented in Figs. 1(d)-(f). Moreover, the total LDOS for
the lowest-energy topological edge modes in the topolog-
ical C = −1 (µ = −4t) and C = 2 (µ = 0) phases, shown
in Figs. 7(d) and (e), reveals that due to the decreased
superconducting coherence length, the edge modes are
much more narrowly confined to the edge of the island
than in Figs. 1(b),(c). The same conclusion also holds
for the spatial form of the supercurrents carried by the
lowest-energy modes, shown in Figs. 7(f) and (g). As al-
ready discussed in Sec. VI, we find that the chirality of
the supercurrents is determined by the sign of the Chern
number C. Independent of the ratio between ξ and sys-
tem size, we again find that the conductance is quantized
in the topological phases.

Appendix C: I(V ) Curve and Differential Tunnel
Conductance G

The main difference between the topological non-
trivial (C 6= 0) and trivial (C = 0) phases lies in the
presence of topological low-energy in-gap states (whose
conductance is quantized) in the former, and the absence
of these states in the latter. To characterize this differ-
ence, we consider the maximum differential conductance
G = max∆V [dI(r)/dV ] in a narrow voltage range, ∆V ,
around zero voltage (light blue area in Fig. 8). Here, r
is the position in the superconductor where the electrons
from the tip tunnel into. For concreteness, we consider a
finite-sized Shiba lattice of sizeNx = Ny = 41. Moreover,
we chose the range ∆V such that only a single edge mode
with energy E (which might be degenerate) lies within
the energy window 0 ≤ E ≤ e∆V = ∆E, as shown in
Figs. 8(b)-(d). We note that in the thermodynamic limit
of a Shiba lattice, the C = 2 phase possesses pairs of two
degenerate edge modes. As a result, the conductance is
twice as large as in the C = −1 phase [see Figs. 8(b) and
(d), and Fig. 2]. For any finite Shiba lattice or island, the

FIG. 8: (a) Schematic picture of a finite Shiba lattice with
STS tip. Differential conductance, G = dI/dV , and current-
voltage dependence I(V ) for a finite Shiba lattice of size Nx =
Ny = 41 in the (b) C = 2 (µ = 0), (c) C = 0 (µ = −2t), and (d)
C = −1 (µ = −4t) phases. Here, (α,∆s, J) = (0.2, 0.3, 0.5) t
and ttip = 0.2t. The light blue shaded area indicates the range
of ∆E.

degeneracy between the two modes is broken [see also the
discussion in App. E]. However, the non-zero electronic
hopping ttip between the STS tip and the superconductor
leads to an energy broadening of the edge modes, such
that for sufficiently large ttip this broken degeneracy in
the C = 2 phase cannot any longer be resolved even for
a finite-sized system, as the width of the peaks is given
by ∼ t2tip. Thus the conductance is still twice as large
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as in the C = −1 phase [cf. Figs. 8(b) and (d)]. In
contrast, due to the absence of low energy edge modes
in the topological trivial phases, no states lie within the
energy window ∆E, leading to G ≈ 0. The small, but
non-zero value of G [see Fig. 8(c)] in the C = 0 phase at
low bias arises from the non-zero electronic hopping ttip,
and vanishes in the limit ttip → 0 .

Appendix D: Real-Space Chern Number for Hybrid
Systems

The topologically invariant Chern number C is conven-
tionally computed in momentum space for a translation-
ally invariant system using [23]

C =
1

2πi

∫
BZ

tr {Pk [∂k1Pk, ∂k2Pk]} dk (D1)

where Pk is the k-decomposition of the projector P onto
the occupied states. The question of how this expression
needs to be modified for systems with a broken transla-
tional invariance, for example due to the presence of dis-
order, was first considered by Bellissard et al. [42]. They
derived a formulation of the Chern number in real space,
which for a translationally invariant system, and in the
thermodynamic limit, reproduces the results obtained
from the momentum-space formulation in Eq.(D1). Fur-
ther progress was made by the pioneering work of Pro-
dan et al. [43–45] who introduced an optimized real-space
Chern number (RSCN), given by

CRS =2πi
∑
α

〈0, α|P [−i[x1, P ],−i[x2, P ]] |0, α〉 (D2)

FIG. 9: Real-space Chern number (RSCN) as a function of µ
for a fully covered 41× 41 Shiba lattice with periodic bound-
ary conditions. Parameters used: (α,∆s, J) = (0.2, 0.3, 0.5) t

leading to µ
(1)
c = −0.4 t and µ

(2)
c = −3.6 t.

where

−i[xi, P ] =
∑
m

cme
−im∆ixPeim∆ix . (D3)

Within this formulation, the Chern number converges ex-
ponentially fast to the thermodynamic limit, such that
one obtains very good approximations to the thermo-
dynamic limit already for small real-space systems with
periodic boundary conditions. To demonstrate this, we
consider a (41×41) Shiba lattice with periodic boundary
conditions (this implies that the surface of the s-wave
superconductor is fully covered by magnetic atoms), and
present in Fig. 9 the resulting RSCN as a function of
chemical potential µ, for the same parameters as used in
the main text. We see that the RSCN reproduces the ex-
pected quantization of the Chern number of the infinitely
large system to high accuracy even for this rather small
system size. As the formulation of RSCN assumes peri-
odic boundary conditions, the question naturally arises
of whether it can be applied to Shiba lattices with open
boundary conditions (OBC), or to finite-size Shiba is-
lands on the surface of an s-wave superconductor, even
if the latter possesses periodic boundary conditions. In
order to investigate the latter case, we plot in Fig. 10 the
Chern number for a Shiba stripe (“stripe”, see inset), a
Shiba island (“island”) and a fully covered system where
an island of magnetic adatoms is missing (“hole”) as a
function of coverage (the coverage is defined as the ra-
tio of sites covered by magnetic adatoms and the total
number of sites in the system). We find that for such fi-
nite magnetic islands, the use of periodic or open bound-
ary conditions shows very little quantitative effect on the
RSCN. For coverage between approximately 30 and 80
percent we obtain a linear dependence of the Chern num-
ber on coverage in all three cases. To understand this
linear scaling, we note that the systems considered in
Fig. 10 consist of a topologically non-trivial region (the
magnetic Shiba island) with C 6= 0 and a trivial region
(the surrounding superconductor) with C = 0. Since the
RSCN contains a summation over all lattice sites in the
system (this can be seen when writing the projector Pk

in real space), and not only a summation over sites that
belong to the topological island, one can think of it as
an averaged quantity: trivial regions yield a zero con-
tribution to the Chern number, while non-trivial regions
yield a finite contribution, resulting in the observed scal-
ing of the RSCN with coverage of the non-trivial region.
Therefore, to describe the topological nature of systems
consisting of topologically trivial and non-trivial regions,
we introduce a modified Chern number, C̃, defined as

C̃ ≡ CRS

coverage
. (D4)

The modified Chern number is not a topological invari-
ant in a strict sense, as it does not reach integer values as
expected from an invariant. Nevertheless, the modified
Chern number provides important insight into the topo-
logical phase of the Shiba islands, as follows from a plot
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FIG. 10: Real-space Chern number (RSCN) as a function of
coverage, i.e., the ratio of sites covered by magnetic adatoms
and the total number of sites, for µ = 0 corresponding to
the C = 2 phase. The lattice is a 41 × 41 superconductor
with periodic boundary conditions where a stripe of magnetic
adatoms (blue) or an island of adatoms (red) is deposited. In
addition, a covered system is considered where an island of
adatoms is missing, yielding a hole (green). Parameters used:
(α,∆s, J) = (0.8, 1.2, 2.0) t.

of C̃ as a function of µ shown in Fig. 11 for the Shiba is-
land considered in the main text. This plot demonstrates
that C̃ (despite not being a strict topological invariant)
retains features of a topological invariant: (i) it clearly
distinguishes between phases with C 6= 0 and C = 0. In
particular, for those values of µ where for the Shiba lat-
tice with PBC one finds C = 0, the Shiba island also
possesses a RSCN that is strictly zero. (ii) The sign of

C̃ is in all cases in agreement with the PBC results. (iii)

Even quantitatively C̃ leads to reasonable results: for in-
stance, for the Shiba island which would correspond to
C = −1 (C = 2) in the thermodynamic limit, we find

C̃ ≈ −0.8 (C̃ ≈ 1.7). We therefore conclude that the

modified Chern number C̃ is a valuable tool for the de-
tection of topological phases.

Lastly, we consider the effects of a finite-size Shiba lat-
tices with open boundary conditions (in contrast to the
periodic boundary conditions considered above). Here,
we find that switching from periodic to open boundary
conditions (while keeping the coverage at unity) leads
to a suppression of the Chern number by approximately
25% for the considered system sizes and for all values of
µ, as shown in Fig. 11. As mentioned before, for Shiba is-
lands the difference between periodic and open boundary
conditions is negligible.

FIG. 11: Real-space Chern number divided by coverage, C̃,
as a function of µ which reproduces the phase diagram of
an infinitely large Shiba lattice [18]. Results correspond to a
Shiba island with a diameter of 30 atoms on a 41 × 41 su-
perconducting square lattice. In addition to the results for
the Shiba island (red), we also present C̃ = C for the fully
covered system (coverage = 1) with periodic boundary condi-
tions (black) and open boundary conditions (blue). Parame-
ters used: (α,∆s, J) = (0.2, 0.3, 0.5) t.

Appendix E: Results for Ribbon Geometry

One of the main objectives of this article is to predict
which topological properties of Shiba lattices will persist
down to small nanoscopic Shiba islands. To extrapolate
between Shiba lattices with periodic boundary conditions
(such as the one discussed in Fig. 9) and finite-size Shiba
islands with open boundary conditions, it is instructive
to consider Shiba nano-ribbons – systems with cylinder
geometry – which can be thought of a system which has
PBC imposed along one and OBC imposed along another
direction. Formally, one performs a Fourier transforma-
tion along the x direction but remains in real space re-
garding the y coordinate. Energy spectra can then be
plotted with respect to the momentum quantum number
kx ≡ k. Moreover, due to OBC along the y direction the
system possesses edges and carries thus C edge modes
(due to bulk-boundary correspondence), which can be
studied as a function of k. Note that a ribbon carries 2C
edge modes, C per edge, while a system with OBC in x
and y directions such as the Shiba island possesses only
C edge modes.

The relation between the cylinder spectra shown in
Fig. 12 for two different parameter sets and different
topological phases and the corresponding Shiba island
LDOS plots (see Fig. 1) is obvious, as one simply has
to project all energy levels at different k values onto
each other in order to obtain the global (i.e., spatially
integrated) DOS. The number of energy levels or energy
peaks in the LDOS depends on the number of lattice
sites. For the cylinder spectra k is a free parameter and
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FIG. 12: Cylinder spectra on a ribbon consisting of 100 unit cells. Top row: (α,∆s, J) = (0.2, 0.3, 0.5) t. Bottom row:
(α,∆s, J) = (0.8, 1.2, 2.0) t. Systems with Chern numbers C = −1, 0, and 2 correspond to µ/t = −4, −2, and 0, respectively.

we can choose arbitrary discretizations, e.g. the spectra
in Fig. 12 are shown for 150 k values. Fig. 12 discloses
an interesting detail: for the C = 2 phase, the two chi-
ral edge modes are at different wave vectors. Of course
the distinction via wavevectors becomes useless for the
Shiba islands, but we see that the naive picture that the
C > 1 chiral edge modes are like identical copies on top

of each other is by no means justified. For the LDOS
plots of the Shiba island we should keep in mind, that
energy levels do not necessarily need to come in pairs for
C = 2 and that the two dispersive Majorana modes might
behave differently, in particular when the island shape is
not symmetric (see Sec. VIII) or dirt and imperfections
are present such as in realistic situations.
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