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Abstract

We describe the non-equilibrium quench dynamics of the Sachdev-Ye-Kitaev models of fermions

with random all-to-all interactions. These provide tractable models of the dynamics of quantum

systems without quasiparticle excitations. The Kadanoff-Baym equations show that, at long times,

the fermion two point function has a thermal form at a final temperature determined by energy

conservation, and the numerical analysis is consistent with a thermalization rate proportional to

this temperature. We also obtain an exact analytic solution of the quench dynamics in the large

q limit of a model with q fermion interactions: in this limit, the thermalization of the two-point

function is instantaneous.
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I. INTRODUCTION

Investigating the dynamics of isolated quantum many-body systems is an essential ques-

tion with wide-ranging implications to the fundamentals of statistical physics. The under-

standing of non-equilibrium quantum physics is important for a large variety of phenomena

such as the dynamics of the early universe [1], heavy ion collisions at large hadron colliders [2],

and pump and probe experiments [3] in condensed matter systems. Typically, the thermal-

ization of quantum many body systems can be anticipated by recognizing ergodic behavior

[4]. In contrast, a non-ergodic systems possess an extensive amount of local conserved quan-

tities, which forbids thermalization. However, recent theoretical studies and experiments of

strongly correlated systems advocate for a critical investigation of this naive categorization

in ergodic and non-ergodic systems. For instance, the emergence of a time-scale leading to a

quasistationary (or ‘prethermal’) state [5, 6], which still has fundamentally different proper-

ties from the true thermal equilibrium, goes already beyond the usual ergodic/non-ergodic

behavior. Other examples, which go beyond this naive categorization, are one dimensional

systems close to integrability [7], systems with slow modes preventing the thermalization of

fast modes [8] or interacting disordered systems [9].

The non-equilibrium dynamics of strongly interacting quantum many-particle systems are

usually studied within the Schwinger-Keldysh formalism, which can describe evolution from

a generic initial state to a final state which reaches thermal equilibrium at long times [10].

The thermodynamic parameters of the final state (e.g. temperature) are determined by the

values of the conjugate conserved quantities (e.g. energy). The Kadanoff-Baym equations

obtained from this formalism describe the manner and rate by which this final thermal state

is reached.

The Kadanoff-Baym equations are usually too difficult to solve in their full generality.

Frequently, a quasiparticle structure has been imposed on the spectral functions, so that

the Kadanoff-Baym equations reduce to a quantum Boltzmann equation for the quasipar-

ticle distribution functions. Clearly such an approach cannot be employed for final states

of Hamiltonians which describe critical quantum matter without quasiparticle excitations.

The most common approach is then to employ an expansion away from a regime where

quasiparticles exist, using a small parameter such as the deviation of dimensionality from

the critical dimension, or the inverse of the number of field components: the analysis is then
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still carried out using quasiparticle distribution functions [11, 12].

In this paper, we will examine the non-equilibrium dynamics towards a final state with-

out quasiparticles. We will not employ a quasiparticle decomposition, and instead provide

solutions of the full Kadanoff-Baym equations. We can obtain non-equilibrium solutions

for the Sachdev-Ye-Kitaev (SYK) models [13–15] with all-to-all and random interactions

between q Majorana fermions on N sites. These models are solvable realizations of quan-

tum matter without quasiparticles in equilibrium, and here we shall extend their study

to non-equilibrium dynamics. We shall present numerical solutions of the Kadanoff-Baym

equations for the fermion Green’s function at q = 4, and an exact analytic solutions in the

limit of large q (no quasiparticles are present in this limit). The large q solution relies on

a remarkable exact SL(2,C) invariance, and has connections to quantum gravity on AdS2

with the Schwarzian effective action [14–20] for the equilibrium dynamics.

We find that the numerical q = 4 shows thermalization (of the two-point correlator) in

a time of order the inverse final temperature: this thermalization rate is in accord with the

fastest possible rate expected in non-quasiparticle systems [21]. In the large q limit, we find

the surprising result that thermalization of the two-point correlator is instantaneous: the

interpretation of this result is not fully clear from our results, but it could be an indication

of a prethermal state appearing at q =∞.

A. Model and results

The equilibrium SYK Hamiltonian we shall study is (using conventions from Ref. 15)

H = (i)
q
2

∑

1≤i1<i2<...<iq≤N

ji1i2...iqψi1ψi2 ...ψiq (1.1)

where ψi are Majorana fermions on sites i = 1 . . . N obeying

{ψi, ψj} = δij , (1.2)

and ji1i2...iq are independent Gaussian random variables with zero mean and variance

〈j2
i1...iq
〉 =

J2(q − 1)!

N q−1
. (1.3)

These models are solvable realizations of quantum matter without quasiparticles. Here we

shall study their non-equilibrium dynamics.
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In the Schwinger-Keldysh formalism, observables are computed by evolving the initial

state both forward and backwards along the closed time contour C [10], along which we

define the contour-ordered Green’s function

iG(t1, t2) = TC 〈ψ(t1)ψ(t2)〉 . (1.4)

The fields in the path integral are separated into components lying on the front and back

of the contour. The two point functions of these fields define a matrix of Green’s functions.

Of these, we will be interested in the Majorana fermion greater(lesser) Green’s functions

G>(<)(t1, t2) defined as follows

G>(t1, t2) ≡ G(t−1 , t
+
2 ) , (1.5a)

G<(t1, t2) ≡ G(t+1 , t
−
2 ) (1.5b)

where t−i lives on the lower contour and t+i on the upper contour. Majorana fermions obey

the following property

G>(t1, t2) = −G<(t2, t1). (1.6)

This condition continues to hold even out of equilibrium [22]. This conveniently allows us to

directly study a single component of the Green’s function and then use Eq.(1.6) to construct

all other Green’s functions. The time evolution of the greater Green’s function is governed

by the Kadanoff-Baym equations derived from the non-equilibrium Dyson equation. We

will study the non-equilibrium dynamics of the SYK model by solving the Kadanoff-Baym

equations for the greater Green’s function and tracking it’s evolution after a quantum quench.

We start with a preliminary discussion of the closed time path integral formalism for

Majorana fermions in Section II and compute the disorder averaged partition function for

the SYK model with q = 2 and q = 4 interactions. We will then derive the Schwinger-Dyson

equations on the closed time contour, and in turn use them to derive the Kadanoff-Baym

equations on the real time axis. See also the related analysis of Ref. 23.

In Section III we will present numerical solutions of the Kadanoff-Baym equations for

an SYK model with time-dependent q = 2 and q = 4 terms. Although several protocols

are considered, the most interesting results appear for the following quench protocol. For

t < 0, we start with a thermal state with both q = 2 and q = 4 interactions present. In this

case the q = 2 free fermion terms dominate at low energies, and hence we have Fermi liquid

behavior at low temperatures. At t = 0 we switch off the q = 2 term so that we have only
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the q = 4 Hamiltonian as in Eq. (1.1) for t > 0. This Hamiltonian describes a non-Fermi

liquid even at the lowest energies [13]. Just after the quench at t = 0, the system is in

a non-equilibrium state. We show from the Kadanoff-Baym equations, and verify by our

numerical analysis, that at late times the greater Green’s function satisfies a Kubo-Martin-

Schwinger (KMS) condition for a non-Fermi liquid state at q = 4 for an inverse temperature

βf = 1/Tf : this implies that the two-point correlator has the thermal equilibrium value at

the inverse temperature βf . The value of βf is such that the total energy of the system

remains the same after the quench at t = 0+.

We will describe the time evolution of the system for t ≥ 0 by computing two-point

fermion Green’s functions. As the system approaches equilibrium, it is useful to characterize

the correlators in terms of the absolute and relative times given by

T = (t1 + t2)/2 , t = t1 − t2 . (1.7)

In the case T → ∞ the Green’s functions only depend on the relative time and are char-

acterized by an inverse temperature βf . For large T we will use the Green’s functions to

extract an effective temperature βeff(T ) and from the numerical analysis we characterize the

late time approach to equilibrium by

βeff(T ) = βf + α exp (−Γ T ) . (1.8)

This defines a thermalization rate, Γ. Our complete numerical results for Γ appear in Fig. 3,

and reasonably fit the behavior

Γ = C/βf , βfJ4 � 1 , (1.9)

where C is a numerical constant independent of the initial state. Thus, at low final

temperatures, the thermalization rate of the non-Fermi liquid two-point function appears

proportional to temperature, as is expected for systems without quasiparticle excitations

[21].

In Section IV we obtain exact analytic solutions of the Kadanoff-Baym equation in the

limit of large q (no quasiparticles are present in this limit), where q refers to the number

of fermions in the interaction in Eq. (1.1). This limit allows us to study corrections to the

low temperature conformal solution and obtain equations that are exactly solvable. The
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large q solution relies on a remarkable exact SL(2,C) invariance, and has connections to

quantum gravity on AdS2 with the Schwarzian effective action [14–20]. For this limit, we

will consider a model in which the t < 0 Hamiltonian has both a q-fermion interaction J ,

and a pq fermion interaction Jp. At t > 0, we quench to only a q fermion interaction J . We

will show that the non-equilibrium dynamics of this model are exactly solvable in the limit

of large q taken at fixed p.

For t1 > 0 or t2 > 0 we find, in the large q limit of Section IV, that the 1/q correction to

the Green’s function (defined as in Eq. (4.1)), g(t1, t2), obeys the two-dimensional Liouville

equation. The most general solution of the Liouville equation can be written as [24]

g(t1, t2) = ln

[ −h′1(t1)h′2(t2)

J 2(h1(t1)− h2(t2))2

]
, (1.10)

where h1(t1) and h2(t2) are arbitrary functions of their arguments. A remarkable and sig-

nificant feature of this expression for g(t1, t2) is that it is exactly invariant under SL(2,C)

transformations of the functions h1,2(t). We will use the Schwinger-Keldysh analysis to

derive ordinary differential equations that are obeyed by h1,2(t) in Section IV. Naturally,

these equations will also be invariant under SL(2,C) transformations. We will show that for

generic initial conditions in the regime t1 < 0 and t2 < 0, the solutions for h1(t1) and h2(t2)

at t1 > 0 and t2 > 0 can be written in terms of four complex constants a, b, c, d, two real

constants σ, θ are determined by the initial conditions in the t1 < 0 and t2 < 0 quadrant of

the t1-t2 plane.

A surprising feature of our large q solutions is that for all t1 > 0 and t2 > 0 the result in

Eq. (1.10) depends only upon the relative time t, and not on the average time T . Further, we

find that the two point function obeys a KMS condition [15, 25] at an inverse temperature

determined by the two real constants σ and θ. This shows that the large q limit yields

a solution in which the fermion two-point function thermalizes instantaneously at t = 0+.

This could indicate that the thermalization rate Γ diverges as at q → ∞. Alternatively,

as pointed out to us by Aavishkar Patel, the present large q solution could describe a pre-

thermal state, and adding the 1/q2 corrections will give a finite thermalization rate; in such

a scenario, thermalization is a two-step process, with the first step occuring much faster

than the second. However, we will not examine the 1/q2 corrections here to settle this issue.
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II. KADANOFF-BAYM EQUATIONS FROM THE PATH INTEGRAL

We will consider the following time-dependent Hamiltonian

H(t) = i
∑

i<j

j2,ij f2(t)ψiψj −
∑

i<j<k<l

j4,ijkl f4(t)ψiψjψkψl, (2.1)

where j2,ij and j4,ijkl are random variables as described in Eq. (1.3), and f2(t) and f4(t)

are arbitrary functions of time. We will use f2(t) and f4(t) to specify the quench protocol

by using them to turn on(off) or rescale couplings. We construct the path integral for this

Hamiltonian of Majorana fermions from the familiar complex fermion path integral [26] by

expressing the complex fermions Ψi in terms of two real fermions ψi and χi i.e. Ψi = ψi+iχi.

Since χi is just a spectator which does not appear in the Hamiltonian, we can disregard its

contribution and write the path integral representation of the partition function as

Z =

∫
Dψ

∫
Dj2,ij

∫
Dj4,ijklP2(j4,ijkl)P1(j2,ij)e

iS[ψ] , (2.2)

with the action

S[ψ] =

∫

C
dt
{ i

2

∑

i

ψi∂tψi − i
∑

i<j

j2,ijf2(t)ψiψj +
∑

i<j<k<l

j4,ijklf4(t)ψiψjψkψl

}
. (2.3)

Here, the Majorana fields ψi live on the closed time contour C, and Z is normalized to one.

The probability distributions of j2,ij and j4,ijkl are given by

P1(j2,ij) =

√
N

2J2
2π

exp
(
− N

2J2
2

∑

i<j

j2
2,ij

)
, (2.4)

P2(j4,ijkl) =

√
N3

12J2
4π

exp
(
− N3

12J2
4

∑

i<j<k<l

j2
4,ijkl

)
. (2.5)

The normalization of Z allows us to directly average over disorder by performing the j2,ij

and j4,ijkl integrals. This gives us the following path integral

Z =

∫
Dψ exp

{
−1

2

∫

C
dt1
∑

i

ψi∂t1ψi −
J2

2

4N

∑

i,j

∫

C
dt1

∫

C
dt2f2(t1)f2(t2)ψi(t1)ψi(t2)ψj(t1)ψj(t2)

− 3J2
4

4!N3

∑

i,j,k,l

∫

C
dt1

∫

C
dt2f4(t1)f4(t2)ψi(t1)ψi(t2)ψj(t1)ψj(t2)ψk(t1)ψk(t2)ψl(t1)ψl(t2)

}
,

where the action is bi-local in time. We introduce the bi-linear field G (the Green’s function)

G(t1, t2) = − i

N

∑

i

ψi(t1)ψi(t2) . (2.6)
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and impose Eq. (2.6) by a Lagrange multiplier Σ (which will turn out to be the self energy).

This leads to the following partition function

Z =

∫
Dψ

∫
DG

∫
DΣ exp

{
−1

2

∫

C
dt1
∑

i

ψi∂t1ψi +
J2

2N

4

∫

C
dt1

∫

C
dt2f2(t1)f2(t2)G(t1, t2)2

− 3J2
4N

4!

∫

C
dt1

∫

C
dt2f4(t1)f4(t2)G(t1, t2)4 +

i

2

∫

C
dt1

∫

C
dt1Σ(t1, t2)

[
G(t1, t2) +

i

N

∑

i

ψi(t1)ψi(t2)
]}
.

Rescaling integration variables as Σ→ iNΣ and integrating out the fermion yields

Z =

∫
DG

∫
DΣ exp

{
iS
[
G,Σ

]}
, (2.7)

with the action written in terms of G and Σ

S
[
G,Σ

]
=− iN

2
tr log

[
−i(G−1

0 − Σ)
]
− iJ2

2N

4

∫

C
dt1

∫

C
dt2f2(t1)f2(t2)G(t1, t2)2

+
3iJ2

4N

4!

∫

C
dt1

∫

C
dt2f4(t1)f4(t2)G(t1, t2)4 +

iN

2

∫

C
dt1

∫

C
dt2Σ(t1, t2)G(t1, t2)

(2.8)

where G0 is the free Majorana Green’s function and G−1
0 (t1, t2) = i∂tδC(t1, t2). Varying

the action with respect to Σ and G yields the Schwinger-Dyson equations for the Green’s

function and self-energy:

G−1
0 (t1, t2)−G−1(t1, t2) = Σ(t1, t2) , (2.9)

Σ(t1, t2) = J2
2f2(t1)f2(t2)G(t1, t2)− J2

4f4(t1)f4(t2)G(t1, t2)3. (2.10)

Note that the time arguments are with respect to the closed time contour making the matrix

structure of the full Green’s function implicit. The bare greater and lesser Green’s functions

for the Majorana fermions are given by

G>
0 (t1, t2) = − i

2
. (2.11)

We now use G> and G< to define the retarded, advanced and Keldysh Green’s functions:

GR(t1, t2) ≡ Θ(t1 − t2)
[
G>(t1, t2)−G<(t1, t2)

]
, (2.12a)

GA(t1, t2) ≡ Θ(t2 − t1)
[
G<(t1, t2)−G>(t1, t2)

]
, (2.12b)

GK(t1, t2) ≡ G>(t1, t2) +G<(t1, t2) . (2.12c)
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Similarly, we introduce retarded and advanced self-energies

ΣR(t1, t2) ≡Θ(t1 − t2)
[
Σ>(t1, t2)− Σ<(t1, t2)

]
, (2.13)

ΣA(t1, t2) ≡−Θ(t2 − t1)
[
Σ>(t1, t2)− Σ<(t1, t2)

]
(2.14)

For more details on the Schwinger-Keldysh formalism and the saddle point approximation

we refer to Refs. 10, 15, and 22.

To obtain the Kadanoff-Baym equations, we rewrite the Schwinger-Dyson equations in

(2.9) as
∫

C
dt3G

−1
0 (t1, t3)G(t3, t2) = δC(t1, t2) +

∫

C
dt3Σ(t1, t3)G(t3, t2) , (2.15)

∫

C
dt3G(t1, t3)G−1

0 (t3, t2) = δC(t1, t2) +

∫

C
dt3G(t1, t3)Σ(t3, t2) . (2.16)

Using the Langreth rules described in Ref. 27, we rewrite Eq. (2.15) and Eq. (2.16) on the

real time axis as
∫

C
dt3Σ(t+1 , t3)G(t3, t

+
2 ) =

∫ ∞

−∞
dt3
{

ΣR(t1, t3)G>(t3, t2) + Σ>(t1, t2)GA(t2, t3)
}
, (2.17)

∫

C
dt3G(t+1 , t3)Σ(t3, t

+
2 ) =

∫ ∞

−∞
dt3
{
GR(t1, t3)Σ>(t3, t2) +G>(t1, t2)ΣA(t2, t3)

}
, (2.18)

The last equation gives us the following equations of motion for G>

i∂t1G
>(t1, t2) =

∫ ∞

−∞
dt3

{
ΣR(t1, t3)G>(t3, t2) + Σ>(t1, t3)GA(t3, t2)

}
, (2.19)

−i∂t2G>(t1, t2) =

∫ ∞

−∞
dt3

{
GR(t1, t3)Σ>(t3, t2) +G>(t1, t3)ΣA(t3, t2)

}
, (2.20)

where

Σ>(t1, t2) = J2
2f2(t1)f2(t2)G>(t1, t2)− J2

4f4(t1)f4(t2)
(
G>(t1, t2)

)3
(2.21)

and ΣR and ΣA are defined in Eq. (2.13) and Eq. (2.14). In Section III, we will solve this

system of equations numerically. Analytic solutions for the generalization of this model in

the large q limit will appear in Section IV.

III. KADANOFF-BAYM EQUATIONS: NUMERICAL STUDY

All of the quench protocols we considered are of the form

f2(t) = α1Θ(−t) + α2Θ(t) ,

f4(t) = γ1Θ(−t) + γ2Θ(t) , (3.1)
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where Θ(t) is the unit step function, and will be denoted by (J2,i, J4,i)→ (J2,f , J4,f ). Specif-

ically, we choose the following four protocols

A) (J2,i, 0) → (J2,f , 0) quench: the energy scale of the random hopping model gets sud-

denly rescaled.

B) (0, 0)→ (0, J4,f ) quench: the system is quenched from an uncorrelated state by switch-

ing on the interaction of the SYK model.

C) (J2,i, 0)→ (0, J4,f ) quench: the system is prepared in the ground state of the random

hopping model and then quenched to the SYK Hamiltonian.

D) (J2,i, J4,f )→ (0, J4) quench: starting from a ground state with the quadratic and the

quartic terms present the quadratic term is switched off.

The numerical results for quenches A-C appear in Appendix D, while those for the most

interesting case of quench D appear below.

The Kadanoff-Baym equations for the SYK model (Eqs. (2.19) and (2.20)) are solved nu-

merically for each quench protocol described above. The absence of momentum dependence

will allow us to explore dynamics at long times after the quench. We set the quench time to

t1 = t2 = 0. For t1 < 0 and t2 < 0, we are in thermal equilibrium and the time dependence

of the Green’s function is determined by the Dyson equation. When quenching the ground

state of the random hopping model, we can use the exact solution for G> as an initial con-

dition. In all other cases, we solve the Dyson equation self-consistently: for further details

we refer to Appendix C. Using the boundary conditions given by pre-quench state, we solve

Kadanoff-Baym equation for t1 > 0 or t2 > 0, and obtain the post-quench evolution of G>.

Integrals in the Kadanoff-Baym equation are computed using the trapezoidal rule. After

discretizing the integrals, the remaining ordinary differential equations are solved using a

predictor-corrector scheme, where the corrector is determined self-consistently by iteration.

For long times after the quench, the numerical effort is equivalent to a second-order Runge-

Kutta scheme, because the self-consistency of the predictor-corrector scheme converges very

fast. Using this approach right after the quench reduces numerical errors significantly.

To interpret the long time behavior Green’s functions, we briefly comment on properties

of thermal Green’s functions. In thermal equilibrium, all Green’s function only depend on
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the relatice time t. The imaginary part of the Fourier transformed retarded Green’s function

is given by the spectral function

A(ω) = −2 ImGR(ω) . (3.2)

In thermal equilibrium, the Kubo-Martin-Schwinger (KMS) condition [10] establishes a re-

lationship between G>(ω) and G<(ω) which is given by

G>(ω) = −eβωG<(ω) . (3.3)

Using the definition of GR, we can write the spectral function in terms of G> as

A(ω) = G>(ω)(1 + e−βω). (3.4)

Similarly the Keldysh component of the fermionic Green’s function is related to the spectral

function by

iGK(ω) = iG>(ω) + iG<(ω) = tanh
(
βω/2

)
A(ω) . (3.5)

Out of equilibrium, the Green’s we have defined functions depend on both τ and T . However,

we can still consider the Fourier transform with respect to t given by

GR(T , ω) =

∫ ∞

0

dt e−δteiωtGR(T + t/2, T − t/2) , (3.6)

known as the Wigner transform. Using Eq. (3.6), we the express the spectral function out

of equilibrium in terms of T and ω as

A(T , ω) = −2 ImGR(T , ω). (3.7)

We can compute the spectral function and the Keldysh component of the Green’s function

by numerically solving for G>(t1, t2). To investigate thermalization behaviour, at each T

we fit
iGK(T , ω)

A(T , ω)
to tanh

(βeff(T )ω

2

)
at low ω. (3.8)

and so determined a time-independent effective inverse temperature βeff(T ). By Eq. (3.5),

βeff(T ) is the actual inverse temperature, βf , in a thermal state reached as T → ∞.
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−2.5 0 2.5

ω/J4,f

−1

0

1
iG

K
(T

,ω
)/

A
(T

,ω
)

T J4 = −50

T J4 = 0

T J4 = 50

J2,i = 0.5, J2,f = 0, J4,i = J4,f = 1, Ti = 0.04J4

FIG. 1. The ratio of the Keldysh and spectral function is shown before and after a quench from a

J2+J4 model to a purely J4 model. Fits to this data allow determination of the effective temper-

ature as a function of time after the quench, βeff(T ) using Eq. (3.8).

−50 0 50

T

0.05

0.075

0.1

T
e
ff

Ti = 0.04J4

Ti = 0.08J4

J2,i = 0.0625, J2,f = 0, J4,i = J4,f = 1

FIG. 2. Fits to the values of the effective temperature βeff(T ) = 1/Teff(T ) from results as in Fig. 1

to Eq. (1.8) to allow determination of the thermalization rate Γ for each quench.
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FIG. 3. The values of the thermalization rate Γ obtained from Fig. 2 are shown as a function of the

final temperature, Tf , for each quench. One of our main numerical results is the proportionality

of Γ to Tf at small Tf � J . At low temperatures the relaxation towards equilibrium is expected

to be controlled by quantum and classical fluctuations and hence we expect an equilbration rate

proportional to Tf . At higher temperatures Γ is of order J4 and since at high temperatures the

relaxation is essentially dominated by thermal fluctuations the relaxation rate is dominated by the

microscopic interaction energy-scale of the fermions.

A. Numerical results

We describe the results for quench D above, in which (J2,i, J4,i)→ (0, J4,f ) i. e. quenches

from a Hamiltonian with a quadratic and a quartic term to a Hamiltonian where the

quadratic term has been switched off. This quench results in nontrivial dynamics of the

two-point function. To study thermalization, we can check the validity of the fluctuation-

dissipation relation and the behavior of the effective temperature Teff(T ) = β−1
eff (T ) at times

after the quench. The effective temperature can either be obtained from the derivative

of iGK(T , ω)/A(T , ω) at ω = 0, or as a fit of tanh[ω/(2Teff)] to that function to some

frequency interval. As shown in Fig. 1, long after the quench, the numerical results for

iGK(T , ω)/A(T , ω) are well described by tanh[ω/(2Teff)], indicating that the Green’s func-
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tion has thermalized. At intermediate times, the low frequency behaviour is still well de-

scribed by this function. At high frequencies, deviations are visible, which indicate that

iGK(T , ω)/A(T , ω) is non-thermal at such times.

Long after after the quench, the value of Teff(T ) relaxes exponentially rapidly to Tf .

In Fig. 2 we show the time-dependence of the effective temperature, and a fit of T−1
eff to

Eq. (1.8). The thermalization rate, Γ obtained from such fits is shown in Fig. 3. This rate

appears proportional to the final temperature Tf at small final temperatures as noted in

Eq. (1.9), and saturates at higher temperatures. It is difficult to determine Γ numerically

at large Tf/J4, and this likely leads to the oscillatory behavior present in Fig. 3.

IV. KADANOFF-BAYM EQUATIONS: LARGE q LIMIT

We will consider a model with a q fermion coupling J(t), and a pq fermion coupling Jp(t).

For now, we keep the time-dependence of both couplings arbitrary. In the large q limit, the

Green’s function can be written as [15]

G>(t1, t2) = −i 〈ψ(t1)ψ(t2)〉 = − i
2

[
1 +

1

q
g(t1, t2) + . . .

]
(4.1)

where

g(t, t) = 0 . (4.2)
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and the Kadanoff-Baym equations in Eqs. (2.19), (2.20) and (2.21) for G>(t1, t2) now become

i
∂

∂t1
G>(t1, t2) = −iq

∫ t1

−∞
dt3 J(t1)J(t3)

[
(G>)q−1(t1, t3)− (G<)q−1(t1, t3)

]
G>(t3, t2)

+ iq
∫ t2

−∞
dt3 J(t1)J(t3)(G>)q−1(t1, t3) [G>(t3, t2)−G<(t3, t2)]

− ipq
∫ t1

−∞
dt3 Jp(t1)Jp(t3)

[
(G>)pq−1(t1, t3)− (G<)pq−1(t1, t3)

]
G>(t3, t2)

+ ipq
∫ t2

−∞
dt3 Jp(t1)Jp(t3)(G>)pq−1(t1, t3) [G>(t3, t2)−G<(t3, t2)] ,

−i ∂
∂t2

G>(t1, t2) = −iq
∫ t1

−∞
dt3 J(t3)J(t2) [G>(t1, t3)−G<(t1, t3)] (G>)q−1(t3, t2)

+ iq
∫ t2

−∞
dt3 J(t3)J(t2)G>(t1, t3)

[
(G>)q−1(t3, t2)− (G<)q−1(t3, t2)

]

− ipq
∫ t1

−∞
dt3 Jp(t3)Jp(t2) [G>(t1, t3)−G<(t1, t3)] (G>)pq−1(t3, t2) (4.3)

+ ipq
∫ t2

−∞
dt3 Jp(t3)Jp(t2)G>(t1, t3)

[
(G>)pq−1(t3, t2)− (G<)pq−1(t3, t2)

]
.

where we have defined

Jp(t) ≡ Jpf2(t) , J(t) ≡ Jf4(t) . (4.4)

Also, recall that Eq. (1.6) relates G> to G<.

We note a property of the Kadanoff-Baym equations in Eq. (4.3), connected to a comment

in Section I above Eq. (1.7). If we set Jp(t) = 0, then all dependence of Eq. (4.3) on J(t)

can be scaled away by reparameterizing time via

∫ t

J(t′)dt′ → t . (4.5)

This implies that correlation functions remain in thermal equilibrium in the new time co-

ordinate. However, when both Jp(t) and J(t) are non-zero, such a reparameterization is

not sufficient, and there are non-trivial quench dynamics, as shown in our numerical study

in Section III. Below, we will see that the quench dynamics can also be trivial in the limit

q →∞, even when both Jp(t) and J(t) are both non-zero. This result arises from fairly non-

trivial computations which are described below, and in particular from an SL(2,C) symmetry

of the parameterization of the equations.

In the large q limit, we assume a solution of the form in Eq. (4.1). Inserting Eq. (4.1)
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into Eq. (4.3), we obtain to leading order in 1/q

∂

∂t1
g(t1, t2) = 2

∫ t2

−∞
dt3 J (t1)J (t3)eg(t1,t3) −

∫ t1

−∞
dt3 J (t1)J (t3)

[
eg(t1,t3) + eg(t3,t1)

]

+ 2

∫ t2

−∞
dt3 Jp(t1)Jp(t3)epg(t1,t3) −

∫ t1

−∞
dt3 Jp(t1)Jp(t3)

[
epg(t1,t3) + epg(t3,t1)

]
,

∂

∂t2
g(t1, t2) = 2

∫ t1

−∞
dt3 J (t3)J (t2)eg(t3,t2) −

∫ t2

−∞
dt3 J (t3)J (t2)

[
eg(t3,t2) + eg(t2,t3)

]
(4.6)

+ 2

∫ t1

−∞
dt3 Jp(t3)Jp(t2)epg(t3,t2) −

∫ t2

−∞
dt3 Jp(t3)Jp(t2)

[
epg(t3,t2) + epg(t2,t3)

]
,

where

J 2(t) = qJ2(t)21−q , J 2
p (t) = qJ2

p (t)21−pq (4.7)

Remarkably, these non-linear, partial, integro-differential equations are exactly solvable for

our quench protocol and all other initial conditions, as we will show in the remainder of this

section. The final exact solution appears in Section IV D, and surprisingly shows that the

solution is instantaneously in thermal equilibrium at t = 0+.

The key to the exact solution is to take derivatives of either equation in Eq. (4.6) to

obtain
∂2

∂t1∂t2
g(t1, t2) = 2J (t1)J (t2)eg(t1,t2) + 2Jp(t1)Jp(t2)epg(t1,t2) . (4.8)

We will look at the case where Jp(t) is non-zero only for t < 0, while J (t) is time indepen-

dent:

Jp(t) = Jp Θ(−t) , J (t) = J ; (4.9)

This is the analog of the protocol D in Section III. In this case, Eq. (4.8) is the Lorentzian

Liouville equation
∂2

∂t1∂t2
g(t1, t2) = 2J 2 eg(t1,t2) , (4.10)

in three of the four quadrants of the t1-t2 plane (labeled as in Fig. 4). The most general

solution of Eq. (4.10) in these quadrants is

gα(t1, t2) = ln

[ −h′α1(t1)h′α2(t2)

J 2(hα1(t1)− hα2(t2))2

]
, for α = A, Ã, B,D . (4.11)

Eq. (4.11) will also apply for α = C when Jp = 0. Eq. (4.2) implies that the functions

hA1(t) and hA2(t) obey

h′A1(t)h′A2(t) = −J 2(hA1(t)− hA2(t))2 , (4.12)
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FIG. 4. The regions in the t1-t2 plane.

and similarly

h′
Ã1

(t)h′
Ã2

(t) = −J 2(hÃ1(t)− hÃ2(t))2 . (4.13)

A crucial feature of Eq. (4.11) is that gα(t1, t2) remains invariant under the SL(2,C)

transformation which maps both hα1 and hα2 by the same transformation

h(t)→ a h(t) + b

c h(t) + d
, (4.14)

where a, b, c, d are complex numbers obeying ad − bc = 1. This transformation can be

performed for each region α in the t1,t2 plane.

Given the symmetries of Eq. (4.6) and the thermal initial conditions, we look for solutions

which obey

g(t2, t1) = [g(t1, t2)]∗ . (4.15)

This property can be related to the causality of the Kadanoff-Baym equations as is explained

in Appendix E. We can satisfy Eq. (4.15) in quadrants A, B, D by the relations

hÃ1(t) = h∗A2(t) ,

hÃ2(t) = h∗A1(t) ,

hD1(t) = h∗B2(t) ,

hD2(t) = h∗B1(t) . (4.16)
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The solution in Eq. (4.11) applies in all but the C quadrant of Fig. 4. In quadrant

C, the system is in thermal equilibrium, and so the Green’s function depends only upon

time differences. We describe this equilibrium solution in Appendix F. In the following

subsections, we describe the results of inserting the parameterization in Eq. (4.11) back into

Eq. (4.6) to obtain ordinary differential equations for hα1 and hα2 in the remainder of the

t1-t2 plane.

A. Quadrant B

From Eq. (4.6), we obtain for t1 < 0 and t2 > 0

− ∂

∂t1
gB(t1, t2) = −J 2

∫ ∞

−∞
dt′ egC(t′) sgn(t′ − t1)− 2J 2

∫ t2

0

dt3 e
gB(t1,t3)

− J 2
p

∫ ∞

−∞
dt′sgn(t′ − t1)epgC(t′) ,

∂

∂t2
gB(t1, t2) = 2J 2

∫ t1

−∞
dt3 e

gB(t3,t2) − J 2

∫ 0

−∞
dt3

[
egB(t3,t2) + egD(t2,t3)

]

− J 2

∫ t2

0

dt3
[
egA(t3,t2) + egÃ(t2,t3)

]
. (4.17)

Inserting Eq. (4.11) in Eq. (4.17) leads to

−h
′′
B1(t1)

h′B1(t1)
= −J 2

∫ ∞

−∞
dt′ egC(t′) sgn(t′ − t1)− 2h′B1(t1)

hB1(t1)− hB2(0)

− J 2
p

∫ ∞

−∞
dt′sgn(t′ − t1)epgC(t′) , (4.18)

h′′B2(t2)

h′B2(t2)
= − 2h′B2(t2)

hB1(−∞)− hB2(t2)
(4.19)

− h′B2(t2)

hB1(0)− hB2(t2)
+

h′B2(t2)

hB1(−∞)− hB2(t2)
− h∗′B2(t2)

h∗B1(0)− h∗B2(t2)
+

h∗′B2(t2)

h∗B1(−∞)− h∗B2(t2)

− h′A2(t2)

hA1(t2)− hA2(t2)
+

h′A2(t2)

hA1(0)− hA2(t2)
− h∗′A2(t2)

h∗A1(t2)− h∗A2(t2)
+

h∗′A2(t2)

h∗A1(0)− h∗A2(t2)
.

We also have the compatibility condition at the boundary between regions B and C,

which is

gC(t1) = ln

[ −h′B1(t1)h′B2(0)

J 2(hB1(t1)− hB2(0))2

]
; (4.20)

taking the derivative of this equation we obtain precisely the first equation in Eq. (4.18)

after using Eq. (F2). This reassures us that the system of equations are not overdetermined.
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We can easily integrate Eq. (4.20) to obtain

h′B2(0)

hB1(t1)− hB2(0)
− h′B2(0)

hB1(−∞)− hB2(0)
= J 2

∫ t1

−∞
dt egC(t) . (4.21)

B. Region A

Now t2 > t1 > 0. From the second Eq. (4.6) we obtain

∂

∂t2
gA(t1, t2) = 2J 2

∫ 0

−∞
dt3 e

gB(t3,t2) + 2J 2

∫ t1

0

dt3 e
gA(t3,t2) − J 2

∫ 0

−∞
dt3

[
egB(t3,t2) + egD(t2,t3)

]

− J 2

∫ t2

0

dt3
[
egA(t3,t2) + egÃ(t2,t3)

]
. (4.22)

Inserting Eq. (4.11) into Eq. (4.22) results in

h′′A2(t2)

h′A2(t2)
=

2h′B2(t2)

hB1(0)− hB2(t2)
− 2h′B2(t2)

hB1(−∞)− hB2(t2)
− 2h′A2(t2)

hA1(0)− hA2(t2)
(4.23)

− h′B2(t2)

hB1(0)− hB2(t2)
+

h′B2(t2)

hB1(−∞)− hB2(t2)
− h∗′B2(t2)

h∗B1(0)− h∗B2(t2)
+

h∗′B2(t2)

h∗B1(−∞)− h∗B2(t2)

− h′A2(t2)

hA1(t2)− hA2(t2)
+

h′A2(t2)

hA1(0)− hA2(t2)
− h∗′A2(t2)

h∗A1(t2)− h∗A2(t2)
+

h∗′A2(t2)

h∗A1(0)− h∗A2(t2)
.

The first Eq. (4.6) is given by

− ∂

∂t1
gA(t1, t2) = −J 2

∫ 0

−∞
dt3 e

gD(t1,t3) − J 2

∫ t1

0

dt3 e
g
Ã

(t1,t3) − 2J 2

∫ t2

t1

dt3 e
gA(t1,t3)

+ J 2

∫ 0

−∞
dt3 e

gB(t3,t1) + J 2

∫ t1

0

dt3 e
gA(t3,t1) . (4.24)

Inserting Eq. (4.11) into Eq. (4.24) leads to

−h
′′
A1(t1)

h′A1(t1)
=

2h′A1(t1)

hA2(t1)− hA1(t1)
(4.25)

− h∗′B2(t1)

h∗B1(0)− h∗B2(t1)
+

h∗′B2(t1)

h∗B1(−∞)− h∗B2(t1)
+

h′B2(t1)

hB1(0)− hB2(t1)
− h′B2(t1)

hB1(−∞)− hB2(t1)

+
h′A2(t1)

hA1(t1)− hA2(t1)
− h′A2(t1)

hA1(0)− hA2(t1)
− h∗′A2(t1)

h∗A1(t1)− h∗A2(t1)
+

h∗′A2(t1)

h∗A1(0)− h∗A2(t1)
.

From Eqs. (4.23) and (4.25) we conclude

h′′A1(t)

h′A1(t)
+
h′′A2(t)

h′A2(t)
= 2

(
h′A1(t)− h′A2(t)

hA1(t)− hA2(t)

)
. (4.26)

This is precisely the logarithmic derivative of the Majorana condition in Eq. (4.12). The

compatibility condition at the boundary of region A and region B is

h′A1(0)h′A2(t2)

(hA1(0)− hA2(t2))2
=

h′B1(0)h′B2(t2)

(hB1(0)− hB2(t2))2
. (4.27)
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This can be integrated to

h′A1(0)

hA2(t2)− hA1(0)
=

h′B1(0)

hB2(t2)− hB1(0)
+ c4 , (4.28)

where c4 is a constant of integration.

C. Combined equations

We adopt a simple choice to solve Eq. (4.28)

hB2(t) = hA2(t) ,

hB1(0) = hA1(0) ,

h′B1(0) = h′A1(0) . (4.29)

Then we find that Eqs. (4.19) and (4.23) are consistent with each other. Collecting all

equations, we need to solve

−h
′′
A1(t)

h′A1(t)
= − 2h′A1(t)

hA1(t)− hA2(t)
+

h∗′A2(t)

h∗B1(−∞)− h∗A2(t)
− h′A2(t)

hB1(−∞)− hA2(t)

+
h′A2(t)

hA1(t)− hA2(t)
− h∗′A2(t)

h∗A1(t)− h∗A2(t)
, t ≥ 0 (4.30)

h′A1(t)h′A2(t) = −J 2(hA1(t)− hA2(t))2 , t ≥ 0 (4.31)

h′B2(0)

hB1(t)− hB2(0)
=

h′B2(0)

hB1(−∞)− hB2(0)
+ J 2

∫ t

−∞
dt′ egC(t′) , t ≤ 0 (4.32)

hA1(0) = hB1(0) , (4.33)

h′A1(0) = h′B1(0) , (4.34)

hA2(0) = hB2(0) . (4.35)

It can be verified that all expressions above are invariant with respect to SL(2,C) transfor-

mations of the hα1 and hα2 fields. Given the values of hB1(−∞), hB2(0), h′B2(0), and gC(t),

Eqs. (4.32-4.35) determine the values of hA1(0), h′A1(0), and hA2(0). Then Eqs. (4.30,4.31)

uniquely determine hA1(t) and hA2(t) for all t ≥ 0. Because of the SL(2,C) invariance, final

result for gA(t1, t2) will be independent of the values chosen for hB1(−∞), hB2(0), h′B2(0).

D. Exact solution

A solution of the form in Eq. (F16) does not apply to Eqs. (4.30-4.35) in region A because

it does not have enough free parameters to satisfy the initial conditions. However, we can
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use the SL(2,C) invariance of Eqs. (4.30-4.32) to propose the following ansatz:

hA1(t) =
a eσt + c

c eσt + d
, hA2(t) =

a e−2iθeσt + b

c e−2iθeσt + d
. (4.36)

We can now verify that Eq. (4.36) is an exact solution of Eqs. (4.30-4.35). This solution is

characterized by 4 complex numbers a, b, c, d and two real numbers θ, σ. These are uniquely

determined from the values of hB1(−∞), hA1(0), h′A1(0), and hA2(0) by the solution of the

following 6 equations

ad− bc = 1 ,

σ = 2J sin(θ) ,

e−4iθ =
(b− d hB1(−∞))(a∗ − c∗ h∗B1(−∞))

(b∗ − d∗ h∗B1(−∞))(a− c hB1(−∞))
,

hA1(0) =
a+ b

c+ d
,

hA2(0) =
a e−2iθ + b

c e−2iθ + d
,

h′A1(0) =
2 sin(θ)

(c+ d)2
. (4.37)

Inserting Eq. (4.36) into Eq. (4.11) we obtain the exact solution for the Green’s function

in region A

gA(t1, t2) = ln

[ −σ2

4J 2 sinh2(σ(t1 − t2)/2 + iθ)

]
. (4.38)

As expected from SL(2, C) invariance, this result is independent of the values of a, b, c, d.

Moreover, as stated in Section I, the surprising feature of this result is that it only depends

only upon the relative time t, and is independent of T = (t1 + t2)/2. Indeed Eq. (4.38)

obeys a KMS condition [15, 25] for an inverse temperature

βf =
2(π − 2θ)

σ
; (4.39)

we can verify the value in Eq. (4.39) by taking a Fourier transform of Eq. (4.38) and compar-

ing with Eq. (3.3). So we obtain our main result of the large q limit: all of quadrant A is in

thermal equilibrium at the temperature βf . We also numerically integrated Eqs. (4.30-4.35),

starting from generic initial conditions, and verified that the numerical solution obeyed the

expressions in Eqs. (4.36) and (4.37). The equations in Eq. (4.37) determine the values of

σ and θ in the final state, and hence the value of the final temperature via Eq. (4.39). In

general, this will be different from the value of the initial temperature in quadrant C.
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Eqs. (4.36) and (4.37) also determine the solutions in the other quadrants via the ex-

pressions specified earlier. The solutions in region Ã follow from the conjugacy property in

Eq. (4.16). In quadrant B, we have hB2(t) = hA2(t) in Eq. (4.29), while hB1(t) was specified

in Eq. (4.21) using the initial state in quadrant C. Note that the solution in quadrant B is

not of a thermal form, as hB1 and hB2 are not simply related as in Eq. (4.36). The solution

in quadrant D follows from that in quadrant B via the conjugacy property in Eq. (4.16).

Finally, the initial state in quadrant C was described in Appendix F.

Note also that in the limit βfJ � 1, we have θ � 1 and then

σ =
2π

βf
. (4.40)

Then Eqs. (4.1) and (4.38) describe the 1/q expansion of the low temperature conformal

solution [25] describing the equilibrium non-Fermi liquid state (see Appendix B). And the

value of σ in Eq. (4.40) is the maximal Lyapunov exponent for quantum chaos [28]. This

chaos exponent appears in the time evolution of h1,2(t). However, in the large q limit, it

does not directly control the rapid thermalization rate. We note that recent studies of Fermi

surfaces coupled to gauge fields, and of disordered metals, also found a relaxation/dephasing

rate which was larger than the Lyapunov rate [29, 30].

V. CONCLUSIONS

Quantum many-body systems without quasiparticle excitations are expected to locally

thermalize in the fastest possible times of order ~/(kBT ) as T → 0, where T is the absolute

temperature of the final state [21]. This excludes e.g. the existence of systems in which the

local thermalization rate is given by Γ ∼ T p as T → 0 with p < 1, and no counterexamples

have been found.

In this paper we examined SYK models, which saturate the more rigorous bound on the

Lyapunov exponent characterizing the rate of growth of chaos in quantum systems [28]. Our

numerical study of the model with a final Hamiltonian with q = 4 showed that this system

does thermalize rapidly, and the thermalization rate is consistent with Γ = CT at low T

where C is dimensionless constant, as indicated in Eq. (1.9) and Fig. 3.

We also studied a large q limit of the SYK models, where an exact analytic solution of the

non-equilibrium dynamics was possible. Here we found that thermalization of the fermion
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Green’s function was instantaneous. Remarkably, the large q solution given by Eq. (4.11)

and (4.36): also has a direct connection with the Schwarzian. The Schwarzian was proposed

as an effective Lagrangian for the low energy limit of the equilibrium theory of the SYK

model. Consider the Euler-Lagrange equation of motion of a Lagrangian, L, which is the

Schwarzian of h(t)

L[h(t)] =
h′′′(t)

h′(t)
− 3

2

(
h′′(t)

h′(t)

)2

. (5.1)

with the equation of motion

[h′(t)]
2
h′′′′(t) + 3 [h′′(t)]

3 − 4h′(t)h′′(t)h′′′(t) = 0 . (5.2)

It can now be verified that the expressions for h1,2(t) in Eq. (4.36) both obey Eq. (5.2),

with the parameter σ controlling the exponential growth of h1,2(t). (Note, however, that we

did not obtain Eq. (4.36) by solving Eq. (5.2): instead, Eq. (4.36) was obtained by solving

the Kadanoff-Baym equations for the large-q SYK model in Eq. (4.6).) The structure of

h1,2(t) in Eq. (4.36) is intimately connected to the SL(2,C) invariance and the instantaneous

thermalization of the large q limit. The connection with the Schwarzian here indicates that

gravitational models [14–20] of the quantum quench in AdS2, which map to a Schwarzian

boundary theory, also exhibit instant thermalization.

Indeed, the equation of motion of the metric in two-dimensional gravity [18] takes a form

identical to that for the two-point fermion correlator in Eq. (4.10). Studies of black hole

formation in AdS2 from a collapsing shell of matter show that the Hawking temperature of

the black hole jumps instantaneously to a new equilibrium value after the passage of the shell

[20, 31]. These features are strikingly similar to those obtained in our large q analysis. There

have been studies of quantum quenches in AdS2, either in the context of quantum impurity

problems [32], or in the context of higher-dimensional black holes which have an AdS2 factor

in the low energy limit [33]; it would be useful to analytically extract the behavior of just

AdS2 by extending such studies.

The final question we must ask is the following: what do our results tell us about the

overall thermalization process in the SYK model? In this paper we have studied the ther-

malization of the Green’s function, which is the simplest object we could have picked. We

found that the thermalization was instantaneous in the large q limit, but finite for general

q. In order to reconcile the large q limit with numerical results it will be necessary to study

higher order corrections in 1/q to understand how this connects to the numerical q = 4
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numerical solution: does the constant C →∞ as q →∞, or (as pointed to us by Aavishkar

Patel) is thermalization at large q a two-step process. In such a two-step scenario, we have

a very rapid pre-thermalization of the two point function computed in this article, which is

followed by a slower true thermalization of higher order corrections.

We thank J. Maldacena of informing us about another work [34] which studied aspects

of thermalization of SYK models by very different methods, along with connections to

gravity in AdS2. Sonner and Velma [35] demonstrated that the SYK model obeys eigenstate

thermalization. Gu et al. [36] studied an SYK chain for a thermofield double initial state,

and found prethermalization behavior.
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Appendix A: Spectral function and Green’s functions of random hopping model

The random hopping model of Majorana fermions, i. e.the SYK Hamiltonian for q = 2,

is exactly solvable [15]. The Matsubara Green’s function follows from the solution of the
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Dyson equation

G(iωn)−1 = iωn − Σ(iωn) = iωn + J2
2G(iωn). (A1)

This can be rewritten as a quadratic equation for
(
G(iωn)

)−1
. Matching the branches with

the correct high-frequency asymptotics and symmetry yields the propagator

G(iωn) =
2

iωn + i sgn(ωn)
√
ω2
n + 4J2

2

. (A2)

Analytically continuing to the real frequency axis from the upper half plane yields the

retarded Green’s function,

GR(ω + iδ) =
2

ω + iδ + i
√

4J2
2 − (ω + iδ)2

, (A3)

where δ can be set to zero due to the presence of the finite imaginary part and sgnωn → 1

in the analytic continuation from the upper half plane. For the spectral function, we obtain

A(ω) = −2 ImGR(ω + iδ) =
2

J2

√
1−

( ω

2J2

)2

for |ω| < 2J2, (A4)

which is the well-known semicircular density of states.

This yields the following expression for G>(t)

iG>(t) =
1

2J2t

(
J1(2J2t)− iH1(2J2t)

)
, (A5)

where J1 is the Bessel function of the first kind (BesselJ in Mathematica) and H1 is the

Struve function (StruveH in Mathematica).

Appendix B: Spectral Function in the Conformal Limit

In the scaling limit at non-zero temperature the retarded Green’s function is given by the

following expression

iGR(t) = 2b(cos π∆)

(
π

β sinh πt
β

)2∆

θ(t) , (B1)

where ∆ = 1/q is the fermion scaling dimension. At q = 4 we obtain

iGR
c (t) =

√
2b

(
π

β sinh πt
β

) 1
2

θ(t) (B2)
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The Wigner transform of the retarded Green’s functions is given by

iGR(ω) =
√

2b

∫ ∞

0

dteiωt

(
π

β sinh πt
β

) 1
2

= b

(
π

β

)− 1
2

B

(
1

2
;
1

4
− iβω

2π

)
, (B3)

where b = (4πJ2
4 )−1/4. The associated spectral function is

A(T , ω) = 2b

(
π

β

)− 1
2

Re

[
B

(
1

2
;
1

4
− iβω

2π

)]
. (B4)

Appendix C: Details on the Numerical Solution of Kadanoff-Baym equation

The Green’s function is typically determined on two-dimensional grids in (t, t′) space

with 8000×8000 or 12000×12000 points, where the quench happens after half of the points

in each direction. When starting from initial states in which only J2 is finite, the Green’s

function decays algebraically in time. This leads to significant finite size effects in Fourier

transforms. In order to reduce the latter, most numerical results were obtained by starting

from a thermal state in which J2 and J4, or only J4, are finite. In these cases, the Green’s

function decays exponentially as a function of the relative time dependence.

We checked the quality and consistency of the results by monitoring the conservation of

energy, the normalization of the spectral function and the real and imaginary part of the

retarded propagator are Kramers-Kronig consistent for long times after the quench.

In order to time-evolve the Kadanoff-Baym equations we have to determine G<(t1, t2)

for t1, t2. When quenching the ground state of the random hopping model, we can use the

exact solution for G> as initial condition. When we do not have an analytic expression the

Green’s function we solve the Dyson equation self-consistently according to the following

scheme:

1. Prepare iG> with an initial guess, for example the propagator of the random hopping

model.

2. Computation of retarded self-energy in time domain:

iΣR(t) = Θ(t)(iΣ>(t) + iΣ>(−t)) (C1)
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3. Fourier transformation

iΣR(ω) =

∫ ∞

−∞
dteiωtiΣR(t) (C2)

4. Solve the Dyson equation:

GR(ω) =
1

ω − ΣR(ω)
(C3)

5. Determine spectral function

A(ω) = −2 ImGR(ω) (C4)

6. Determine iG>(ω) from spectral function,

iG>(ω) = (1− nF (ω))A(ω) (C5)

Note that this is the only step in the self-consistency procedure where the temperature

β−1 enters through the Fermi function nF .

7. Fourier transformation to the time domain

iG>(t) =

∫ ∞

−∞

dω

2π
e−iωtiG>(ω) (C6)

8. Continue with step 2 until convergence is reached.

Appendix D: Numerical quenches: simpler cases

This appendix describes the quenches A-C discussed in Section III.

1. (J2,i, 0)→ (J2,f , 0) quench: Rescaling of the Random-Hopping model

We start by discussing the simplest quench protocol A. In Fig. 5 we show the spectral

function long before and long after a parameter quench. These results were obtained from a

numerical Fourier transformation of the retarded Green’s function as described by Eq. (3.6)

with a broadening of δ = 0.025. In Fig. 6, we show the frequency dependence of the Keldysh

component of the fermionic Green’s function for the same quench protocol as in Fig. 5.

We determined the inverse temperature β using Eq. (3.8), and found that βJ2 was roughly

constant across the quench. All three results of this (J2,i, 0)→ (J2,f , 0) quench are consistent
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FIG. 5. The spectral function of the random hopping model A long before (T = −14.7) and after

(T = 14.7) a parameter quench from J2,i = 1 to J2,f = 0.5 and 2.0. The width depends only on

the value of Jf , becoming wider if Jf > Ji and narrower if Jf < Ji.

with a rescaling of energy scales for all quantities. This is expected because the random

hopping model has only one energy scale J2, and the analog of the reparameterization in

Eq. (4.5) applies here. This also applies to the complementary case (0, J4,i) → (0, J4,f ) (as

was pointed out to us by J. Maldacena). For analytic expressions of the spectral functions

we refer to Appendix A.

2. (0, 0)→ (0, J4) quench: From bare Majorana fermions to the SYK model

Next we conside the quench B. In Fig. 7, we show the spectral function long after suddely

switching on the quartic interaction in the SYK model, starting from bare, noninteracting

Majorana fermions. When interpreting results of this quench protocol, it is important to

keep in mind that the Hamiltonian before the quench is zero, so that any finite J4,f is an

arbitrarily strong perturbation. We found that the total energy is zero both before and after

the quench, i. e. the quench does not pump energy into the system, and that the Keldysh

component of the Green’s function vanishes before and after the quench. The latter is to be

expected for free Majorana fermions, and is consistent with the post-quench temperature of

the system being infinite, i. e. βf = 0. Indeed the spectral function in Fig. 7 agrees with
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FIG. 6. The Keldysh component of the Green’s function of the random hopping model A long

before (T = −14.7) and after (T = 14.7) a parameter quench from J2,i = 1 to J2,f = 0.5 and 2.0.

FIG. 7. The spectral function for Majorana fermions is shown long after a quench starting with

free Majorana fermions and switching on a q = 4 SYK interaction term. Here J4,f = 1.

that of the SYK model at infinite temperature.
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3. (J2,i, 0)→ (0, J4,f ): From a quadratic to a quartic model

We now consider C, the model containing both q = 2 and q = 4 interactions. The quench

from the purely quadratic to the purely quartic model decouples the regions t1, t2 < 0 from

t1, t2 > 0: this can be seen from the structure of the Kadanoff-Baym equations, and of the

self-energy for this quench protocol, which reads

Σ(t1, t2) = Θ(−t1)Θ(−t2)J2
2G(t1, t2)−Θ(t1)Θ(t2)J2

4G(t1, t2)3 . (D1)

Inserting this into the Kadanoff-Baym equations for t1 > 0 and t2 > 0, we can see that

all time integrals are restricted to positive times, and the initial condition does not matter.

Although G>(t1, t2) shows some time evolution for t1 ≷ 0 and t2 ≶ 0 due to integrals

involving the region with t1 < 0 and t2 < 0, G> in this region does not influence the time

evolution at positive t1, t2 because Σ(t1, t2) = 0 when t1 ≷ 0 and t2 ≶ 0. Thus, the relevant

initial condition for the time evolution of G>(t1, t2) is iG>(t1 = 0, t2 = 0) = 1/2. Hence

propagating iG> forward in time using the self-energy of the quartic model, we obtain the

same time evolution at positive times as we did when starting from bare Majorana fermions

in case B. So the final state here is also the SYM model at infinite temperature.

Appendix E: Conjugacy property of g(t1, t2)

In this appendix we illustrate that the causality structure of the Kadanoff-Baym equations

eq. (4.6) leads to the property

[g(t1, t2)]∗ = g(t2, t1) (E1)

in all four quadrants of Fig. 8. Since the system is thermal in quadrant C the conjugacy

property [g(t1, t2)]∗ = g(t2, t1) can be read off the thermal solution for t1, t2 ≤ 0. Next, we

consider the propagation from the line {(t1, t2) ∈ R2 |t2 = 0, t1 ≤ 0} for an infinitesimal time

∆t in the t2 direction to the line {(t1, t2) ∈ R2 |t2 = ∆t, t1 ≤ 0}. We discretize equation (4.6)

as follows

1

∆t
[g(t1,∆t)− g(t1, 0)] = 2

∫ t1

−∞
dt3 J (t3)J (0)eg(t3,0) −

∫ 0

−∞
dt3 J (t3)J (0)

[
eg(t3,0) + eg(0,t3)

]

+ 2

∫ t1

−∞
dt3 Jp(t3)Jp(0)epg(t3,0) −

∫ 0

−∞
dt3 Jp(t3)Jp(0)

[
epg(t3,0) + epg(0,t3)

]

(E2)
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FIG. 8. The propagation of the conjugacy property in the t1-t2 plane.

and solve the resulting equation for g(t1,∆t). Taking the complex conjugate leads to

g(t1,∆t)
∗ = g(t1, 0)∗ + ∆t

{
2

∫ t1

−∞
dt3 J (t3)J (0)eg(t3,0)∗ −

∫ 0

−∞
dt3 J (t3)J (0)

[
eg(t3,0)∗ + eg(0,t3)∗

]

+ 2

∫ t1

−∞
dt3 Jp(t3)Jp(0)epg(t3,0)∗ −

∫ 0

−∞
dt3 Jp(t3)Jp(0)

[
epg(t3,0)∗ + epg(0,t3)∗

]
}
.

(E3)

On the right hand side we are allowed to use the property g(t1, t2)∗ = g(t2, t1) since all g’s

are still living in the C quadrant. We obtain

g(t1,∆t)
∗ = g(0, t1) + ∆t

{
2

∫ t1

−∞
dt3 J (t3)J (0)eg(0,t3) −

∫ 0

−∞
dt3 J (t3)J (0)

[
eg(0,t3) + eg(t3,0)

]

+ 2

∫ t1

−∞
dt3 Jp(t3)Jp(0)epg(0,t3) −

∫ 0

−∞
dt3 Jp(t3)Jp(0)

[
epg(0,t3) + epg(t3,0)

]
}
.

(E4)

Next we let the system propagate from the line {(t1, t2) ∈ R2 |t2 ≤ 0, t1 = 0} for an infinites-

imal time ∆t in the t1 direction to the line {(t1, t2) ∈ R2 |t1 = ∆t, t2 ≤ 0}. We discretize

equation (4.3) as follows

− 1

∆t
[g(∆t, t2)− g(0, t2)] =

∫ 0

−∞
dt3 J (0)J (t3)

[
eg(0,t3) + eg(t3,0)

]
− 2

∫ t2

−∞
dt3 J (0)J (t3)eg(0,t3)

+

∫ 0

−∞
dt3 Jp(0)Jp(t3)

[
epg(0,t3) + epg(t3,0)

]
− 2

∫ t2

−∞
dt3 Jp(0)Jp(t3)epg(0,t3)

(E5)
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We set t2 = t1 in the last equation and solve for g(∆t, t1) leading to

g(∆t, t1) = g(0, t1)−∆t

{∫ 0

−∞
dt3 J (0)J (t3)

[
eg(0,t3) + eg(t3,0)

]
− 2

∫ t1

−∞
dt3 J (0)J (t3)eg(0,t3)

+

∫ 0

−∞
dt3 Jp(0)Jp(t3)

[
epg(0,t3) + epg(t3,0)

]
− 2

∫ t1

−∞
dt3 Jp(0)Jp(t3)epg(0,t3)

}
. (E6)

Comparing the right hand side of (E3) with (E6) we conclude g(t1,∆t)
∗ = g(∆t, t1). Fur-

thermore, the point g(∆t,∆t) fulfills the conjugate property trivially. In total we propagated

the conjugate property one time slice. Repeating this argument for every time slice of size

∆t, the property will hold in all four quadrants of Fig. 8.

Appendix F: Initial state in the large q limit

In quadrant C in Fig. 4, all Green’s functions are dependent only on time differences, so

we can write

gC(t1, t2) ≡ gC(t1 − t2) (F1)

and Eq. (4.6) as

dgC(t)

dt
= J 2

∫ ∞

−∞
dt′ egC(t′) sgn(t′ − t) + J 2

p

∫ ∞

−∞
dt′ epgC(t′) sgn(t′ − t) . (F2)

This implies the second order differential equation (also obtainable from Eq. (4.8))

− d2gC
dt2

= 2J 2egC + 2J 2
p e

pgC . (F3)

Eq. (F3) turns out to be exactly solvable at p = 2 (pointed out to us by Wenbo Fu,

following [37]). Inserting gC(t) = ln(−1/f(t)) into Eq. (F3) we get

1

f

d2f

dt2
− 1

f 2

(
df

dt

)2

= −2J 2

f
+

2J 2
2

f 2
(F4)

The solution of this differential equation yields

gC(t) = ln

[
−σ2

√
4J 4 + 2J 2

2 σ
2 cosh(σt− 2iθ)− 2J 2

]
, (F5)

with

cos(2θ) =
2J 2 − σ2

√
4J 4 + 2J 2

2 σ
2
. (F6)
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By evaluating the Fourier transform of the Green’s function we find G>(−ω) = e−βiωG>(ω),

or by analytically continuing to imaginary time, we find that the initial inverse temperature

is

βi =
2(π − 2θ)

σ
. (F7)

We will ultimately be interested in the scaling limit in which θ → 0 and σ � J ,J2.

Eq. (F3) is also exactly solvable at p = 1/2 by

gC(t) = 2 ln


 σ2/2

i
√

4J 4
1/2 + J 2σ2 sinh(σt/2− iθ) + 2J 2

1/2


 , (F8)

where now

sin(θ) =
σ2/2− 2J 2

1/2√
4J 4

1/2 + J 2σ2
. (F9)

The value of the inverse initial temperature remains as in Eq. (F7).

Note that both solutions in Eqs. (F5) and (F8) obey

gC(−t) = g∗C(t) (F10)

It is also useful to recast the solution in quadrant C for the case Jp = 0 in the form

of Eq. (4.11). We subdivide quadrant C into two subregions just as in quadrant A. From

Eqs. (4.6) and (4.11) we obtain for t2 > t1

h′′C1(t1)

h′C1(t1)
=

2h∗′C2(t1)

h∗C1(t1)− h∗C2(t1)
− 2h∗′C2(t1)

h∗C1(−∞)− h∗C2(t1)
− 2h′C1(t1)

hC2(t1)− hC1(t1)

− h∗′C2(t1)

h∗C1(t1)− h∗C2(t1)
+

h∗′C2(t1)

h∗C1(−∞)− h∗C2(t1)
− h′C2(t1)

hC1(t1)− hC2(t1)
+

h′C2(t1)

hC1(−∞)− hC2(t1)

h′′C2(t2)

h′C2(t2)
= − 2h′C2(t2)

hC1(−∞)− hC2(t2)
− h′C2(t2)

hC1(t2)− hC2(t2)
+

h′C2(t2)

hC1(−∞)− hC2(t2)

− h∗′C2(t2)

h∗C1(t2)− h∗C2(t2)
+

h∗′C2(t2)

h∗C1(−∞)− h∗C2(t2)
. (F11)

Adding the equations in Eq. (F11), we have

h′′C1(t)

h′C1(t)
+
h′′C2(t)

h′C2(t)
= 2

(
h′C1(t)− h′C2(t)

hC1(t)− hC2(t)

)
(F12)

which integrates to the expected

h′C1(t)h′C2(t) = −J 2(hC1(t)− hC2(t))2 (F13)
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The final equations for the thermal equilibrium state are

h′′C1(t)

h′C1(t)
=

2h′C1(t1)

hC1(t)− hC2(t)
− h∗′C2(t)

h∗C1(−∞)− h∗C2(t)
+

h′C2(t)

hC1(−∞)− hC2(t)
(F14)

− h′C2(t)

hC1(t)− hC2(t)
+

h∗′C2(t)

h∗C1(t)− h∗C2(t)

h′C1(t)h′C2(t) = −J 2(hC1(t)− hC2(t))2 . (F15)

Unlike Eqs. (4.30,4.31), Eqs. (F14,F15) have to be integrated from t = −∞. One solution

of Eqs. (F14,F15) is

hC1(t) = hC1(−∞) + Aeiθeσt hC2(t) = hC1(−∞) + Ae−iθeσt (F16)

with

σ = 2J sin(θ) . (F17)

Note that the gC(t1, t2) obtained from this solution agrees with Eq. (F5) at J2 = 0 and with

Eq. (F8) at J1/2 = 0.
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