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We study the dynamical thermal conductivity of the two-dimensional Kitaev spin-model on the
honeycomb lattice. We find a strongly temperature dependent low-frequency spectral intensity as
a direct consequence of fractionalization of spins into mobile Majorana matter and a static Z2

gauge field. The latter acts as an emergent thermally activated disorder, leading to the appearance
of a pseudogap which closes in the thermodynamic limit, indicating a dissipative heat conductor.
Our analysis is based on complementary calculations of the current correlation function, compris-
ing exact diagonalization by means of a complete summation over all gauge sectors, as well as a
phenomenological mean-field treatment of thermal gauge fluctuations, valid at intermediate and
high temperatures. The results will also be contrasted against the conductivity discarding gauge
fluctuations.

I. INTRODUCTION

Thermal transport is an important tool to study el-
ementary magnetic excitations in local moment materi-
als. This has been demonstrated in a large variety of
systems displaying excitations, which range from con-
ventional spin waves to exotic fractional quasiparticles,
including magnons [1–8], triplons [9, 10], spinons [11–
16], and emergent magnetic monopoles [17–20]. Most re-
cently, the first thermal transport measurements have ap-
peared in systems with strong spin-orbit coupling (SOC),
which are potentially proximate to 2D spin-liquid states
[21–23].

Quantum magnets with SOC have attracted consider-
able interest, because they allow for directionally depen-
dent highly anisotropic super-exchange, which can lead
to strongly frustrated quantum magnets [24–27]. Among
them is Kitaev’s model on the honeycomb lattice [28].
It constitutes the rare case of a 2D spin system with an
exactly known spin-liquid ground state and fractionaliza-
tion of spins in terms of bulk Majorana fermions and Z2

gauge fields [28–32]. Part of its quantum phases are per-
turbatively equivalent to the toric code [33], providing a
direct link to paradigmatic models of topological order
[34, 35]. In finite magnetic fields the Z2 vortices acquire
non-abelian anyonic statistics and the Majorana Dirac
spectrum opens a gap displaying a chiral edge mode [28].

There is an ongoing quest for Kitaev materials with
2D honeycomb variants Na2IrO3 [36], α-Li2IrO3 [37], α-
RuCl3 [38], and 3D polymorphs β-,γ-Li2IrO3 [39, 40],
as well as triangular lattice versions Ba3IrTi2O9 under
scrutiny [41]. Presently, all compounds show significant
non-Kitaev exchange. The role of coupling to extrinsic
degrees of freedom, such as phonons, is an open issue [23].
In pursuit of signatures of fractionalization, an enormous
amount of research has been performed on the spin dy-
namics in Kitaev models and materials, including the dy-
namic structure factor [42–44], Raman scattering [45, 46],
and nuclear magnetic resonance [47]. Thermal conductiv-

ity measurements on α-RuCl3 [21–23] have mostly been
confined to the longitudinal component κxx and reveal
[23] that the heat transport seems intimately related to
spin-phonon coupling. Very recently, observations of pu-
tative chiral edge modes [28], using off-diagonal κxy at
finite magnetic fields, have appeared in literature [48].

Theoretically, fractionalization has long been a topic
for magnetic transport in 1D quantum magnets, due to
the existence of spinons in Heisenberg chains and dimer-
ized or frustrated variants thereof [49, 50]. One key ques-
tion is the dissipation of currents, which has been inves-
tigated extensively at zero frequency (dc) and momen-
tum in connection with the linear response Drude weight
(DW) [51–57], which is the non-dissipating dc part of
the current autocorrelation function and, if existent, in-
dicates a ballistic channel of the fractional quasiparticles.

First theoretical studies, of heat transport in Kitaev
models have been carried out on chains [58] and ladders
[59] with very different conclusions. In the former, gauge
fields are absent and the chain is found to be a perfect,
ballistic heat conductor with a finite thermal DW. The
ladder is the simplest quasi-1D descendant of the honey-
comb lattice model featuring both, matter fermions and
Z2 gauge fields. It is found to display no ballistic chan-
nel and a zero frequency insulating pseudogap. This is
a direct consequence of fractionalization, with the static
gauge fields acting as an emergent, thermally induced
disorder, which scatters the current carrying mobile Ma-
jorana matter. Since dimensionality of the Majorana
matter could have a significant impact on the scatter-
ing from the gauge field, the prime motivation of the
present work is to extend the ideas of Ref. [59] to 2D.
As our central results, we find that similar to Ref. [59],
ballistic channels are suppressed and finite low-frequency
spectral weight is generated in the dynamical conductiv-
ity by scattering from the gauge field. However, in sharp
contrast to the ladder, the pseudogap does not survive
the thermodynamic limit in 2D, leading to a dissipative
heat conductor, rather than an insulator.
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Figure 1. Kitaev model on a honeycomb lattice, deformed
into the so-called brickwall lattice. The Jx, Jy, and Jz ex-
change links are indicated by red, green, and blue lines re-
spectively, and the two sublattices with dark and light color
bullets. The lattice is formed along the e1, e2 directions.
The dark yellowish bullets lying on the middle of the z-links,
indicate the vertices of the effective square lattice (ESL), ro-
tated to the left by 45°, with unit vectors ex, ey (light blue
shaded region). The exchange interactions for the ESL are
Jx and Jy along the ex and ey directions respectively. The
flux operator Φj of the j-th plaquette, is the product of the
6 spin operators around the plaquette, as shown in the dark
yellowish highlighted region. The eigenvalue of the flux op-
erator on that plaquette is equal to the product of the two
corresponding η fields belonging to the same plaquette, i.e.,
Φj =

∏6
l=1 σ

α(l)
jl = ηj,1ηj,2.

The paper is organized as follows. In Section II, we
provide details of the Kitaev model as needed for this
work. In Section III we summarize magnetic heat trans-
port theory in the linear response regime. In Section
IV we present and compare our results, derived from
three complementary methods, i.e. exact diagonaliza-
tion (ED), Sec. IVA, average gauge configuration (AGC)
calculations, Sec. IVB, and zero vortex sector (ZVS) an-
alytic evaluations, Sec. IVC. Lastly, Sec. V contains our
conclusions.

II. KITAEV MODEL

In this section we briefly summarize several points,
clarifying the use of Kitaev’s model [28] in this work.
The Hamiltonian reads

H =
∑

〈l,m〉,α(〈l,m〉)

Jασ
α
l σ

α
m , (1)

where 〈l,m〉 refer to the sites on the nearest neighbor
bonds of the honeycomb lattice. For simplicity, in this
work, we will envisage the honeycomb lattice to be de-
formed into the so-called brickwall lattice (BWL) [29, 30],
shown in Fig. 1. Jα and σα are the exchange cou-
pling constants and Pauli matrices respectively for co-
ordinates α = x, y, z. The relation α(〈l,m〉) can be

read off from the red, green, and blue bond coloring in
Fig. 1. It is known that this model can be mapped onto
free spinless (‘matter’) fermions in the presence of static
Z2 gauge fluxes. The allowed values ±1 of the latter
are related to the eigenvalues of the conserved operator
Φ =

∏
l=1...6 σ

α(l)
l around each plaquette, Fig. 1, where

α(l) = x, y, z, refers to that component of the exchange
link which is not part of the loop passing site l [28]. For
the remainder of this work we set ~, kB , and the lattice
constant a to unity, and choose Jz as the unit of energy.

Several routes have been established to map the spins
in Eq. (1) to fermions, e.g. using overcomplete sets of
Majorana fermions [28], Jordan-Wigner transformation
[29, 30], or bond algebras [31]. While intermediate steps
of these mappings are rather distinct, eventually all arrive
at the same bulk Hamiltonian. On a BWL lattice of 2N
sites, it comprises 2N free Majorana fermions - dubbed
mobile Majorana matter in the literature - in the presence
of N static Z2 gauge field variables residing on the z-
bonds. By introducing one spinless complex fermion for
each pair of Majorana fermions on each z-bond of the
BWL the resulting final Hamiltonian reads [30]

H =
∑
r

h(r) , (2)

with h(r) the single particle local energy

h(r) = Jx(d†r + dr)(d
†
r+ex − dr+ex) + Jy(d†r + dr)

×(d†r+ey − dr+ey ) + Jzηr(2d
†
rdr − 1) . (3)

d
(†)
r and ηr = ±1 refer to the spinless matter fermions and

the gauge fields, which can be visualized to be located on
the sites of a dual lattice of the z-bonds of the BWL,
forming an effective square lattice (ESL) of N sites,
Fig. 1. In the fermionic representation Φr = ηrηr+e1

,
for the brickwall lattice, and Φr = ηrηr+ex−ey for the
ESL. From the preceding, it is rather apparent that the
ESL model lacks C4 symmetry and the two diagonal di-
rections ex ± ey are distinct.

While the focus of our work is on bulk transport
properties, we state three remarks of caution regarding
boundary conditions. First, the mapping from Eq. (1)
is exact only if periodic boundary conditions (PBCs) are
used along the e2 direction of the BWL [29, 30]. Requir-
ing PBCs also along the x, y-chains (e1 direction of the
BWL), requires consideration of surface terms [30, 32],
as known from any Jordan-Wigner type of mapping. It
has been shown recently, that for bulk thermal transport
on Kitaev ladders such surface terms have no relevant
effect [59], and therefore we discard them. Second, to
describe bulk properties based on the ESL, it is natural
to apply PBCs along the ex,y directions of the lattice.
This implies nonstandard O(1/L) finite size corrections
for a system of N = L×L sites. We do not expect these
to be of any qualitative relevance. Third, and finally, the
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spectrum of the Kitaev model is highly degenerate. The
relevance of this for the current correlation function is
briefly commented on in App. A.

III. THERMAL TRANSPORT

The primary goal of this work is to evaluate the dynam-
ical equilibrium bulk thermal conductivity of the Kitaev
model. In this section, and for completeness, we recollect
the basic ingredients for this.

To start, linear response theory with respect to a real
space dependent local equilibrium temperature T+δT (r)
has to be performed, based on a canonical density ma-
trix ρ = exp[−

´
d3r (β + δβ(r))h(r)], where β = 1/T ,

and h(r) is a local energy density which has to fulfill
H =

´
d3r h(r), where H is the Hamiltonian. In this

framework, the linearized expectation value of the µ com-
ponent of the energy current Jµ in d dimensions is ob-
tained from the dynamical thermal conductivity tensor
κµν(q, ω) at wave vector q and frequency ω through

〈Jµ(q, ω)〉 =

d∑
ν=1

κµν(q, ω)∂νT (q, ω) . (4)

The equilibrium thermal expectation value 〈A〉 reads
〈A〉 = TrAe−βH/Z, with Z = Tre−βH the partition func-
tion. The spectrum κ′µν(ω), namely the real part of the
thermal conductivity, follows from the Fourier transform
of the current correlation function, Cµν(ω),

κ′µν(ω) =
β

2ω

(
1− e−βω

)
Cµν(ω) , (5)

Cµν(ω) =

ˆ
dteiωtCµν(t) , Cµν(t) =

1

N
〈Jµ(t)Jν〉. (6)

It is customary to decompose Cµν(ω) as [49]

Cµν(ω) = 4πDµνT
2 δ(ω) + Cregµν (ω) , (7)

where the regular part refers to Cregµν (ω) = Cµν(ω 6= 0)
and the Drude weight (DW) Dµν is a measure for the
ballistic contribution to the heat flow

Dµν =
β2

2ZV

∑
El=Em

e−βEl〈l|Jµ|m〉〈m|Jν |l〉 . (8)

Because of Eq. (5), κ′µν(ω) = 2πDµνδ(ω) + κregµν (ω).
Whenever Dµν 6= 0, the system is a perfect heat conduc-
tor in channel µν. Otherwise it is a dissipative conductor
with a limiting dc heat conductivity of κdcµν = κ′µν(ω →
0). If both, Dµν = 0 and κdcµν = 0, the system is an
insulator in channel µν.

To determine the energy current J we turn to a real
space version of the continuity equation ∂th(r) + ∇ ·

J (r) = 0, which is more amenable to describe the spin-
less fermions of Hamiltonian (2) and (3), which comprise
a real space dependent potential by virtue of ηr. To this
end we use the polarization operator P [59],

J = i[H,P] , with P =
∑
r

rh(r) , (9)

which yields the same current operator as the continuity
equation in the limit of q→ 0 for a homogeneous system.
For the Kitaev model on the ESL and using our definition
of the energy density, given in Eq. (3), we arrive at the
energy current

Jµ = 2iJµ
∑
r

[Jzηrbrbr−eµ + τµJµ̄brbr+ex−ey ] , (10)

where br = (d†r + dr), µ̄ = y(x) and τµ = +(−) for
µ = x(y). From the expression above, one can readily
see that also the energy current operator is diagonal in
the gauge fields.

We caution that the only requirement for h(r) is, that
H =

´
d3r h(r). This may be a reason for differing quan-

titative results for the Drude weight and the regular con-
ductivity spectrum, obtained in recent studies of vari-
ous frustrated and spin ladder models [55, 58, 61, 62].
However, it is generally believed that universal qualita-
tive statements, concerning the existence or absence of
finite Drude weights and dc conductivities are insensitive
to the freedom of choice for the energy density.

IV. EVALUATION OF HEAT CURRENT
CORRELATION FUNCTIONS

Even though Kitaev’s model comprises free fermions,
the distribution of the ηr in real space, renders analyti-
cal evaluation of thermal traces infeasible. Numerically,
quantum Monte-Carlo (QMC) methods have been used
for a variety of observables [64–66]. Regarding thermal
transport, to the best of our knowledge, exact diagonal-
ization (ED) [59], summing over all gauge configurations,
supplemented also by approximate methods, has been
used first to evaluate Cµµ(t) for the Kitaev Hamiltonian
on a ladder [59]. Here we will extend this work to d=2 di-
mensions. In 2D, Cxy(t), the off diagonal thermal trans-
port coefficient may also be of interest, in particular in
the non-Abelian phase at finite magnetic fields [28]. Here
chiral edge states could give rise to quantized values of
κxy–describing a thermal Hall conductivity–for temper-
atures well below the gap which is opened by the mag-
netic field [28, 48]. In this work we will not consider finite
magnetic fields and analyze the longitudinal heat trans-
port properties, i.e. Cµµ, κ′µµ, and Dµµ, at finite tem-
peratures, using unbiased exact diagonalization, as well
as an approximate ensemble of average gauge configura-
tions. In addition, we perform an illustrative evaluation
of Cµµ(ω), and Dµµ(T ) based on only the uniform gauge.
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For the remainder of the article, the dynamical trans-
port properties are presented via the correlation function
Cµµ(ω, T ) while regarding the experimentally relevant
static transport properties, we present the DW Dµµ(T )
and the dc thermal conductivity κdcµµ(T ). We focus on the
isotropic gapless point Jx = Jy = Jz unless mentioned
otherwise.

A. Exact diagonalization (ED)

Since the energy current operator is diagonal in the
gauge field, the correlation function Cµµ(t) can be writ-
ten as

Cµµ(t) =
1

ZN
Trη[Zd(η) 〈Jµ(t)Jµ〉d(η)] , (11)

where N is the number of lattice sites of the ESL, the
subscript d(η) refers to tracing over matter fermions
at a fixed gauge field state and the subsectors’ parti-
tion functions Zd(η) sum up to the total partition func-
tion Z. To numerically evaluate Eq. (11), we resort to
ED. To this end, we define a 2N component operator
D† = (d†1, . . . , d

†
N , d1, . . . , dN ) of the matter fermions.

The indices {1, 2, . . . , N} label all sites r of the ESL. In
terms ofD† the Hamiltonian and the current are set up in
real space as H = D†h(η)D, and Jµ = D†jµ(η)D. Both
h(η) and jµ(η) are 2N × 2N matrices, which depend on
the actual state of the gauge field η = (η1, η2, . . . , ηN ).
For each given η we compute a Bogoliubov transforma-
tionU, which introduces canonical quasiparticle fermions
A† = (a†1, . . . , a

†
N , a1, . . . , aN ) via A = U†D and maps

the Hamiltonian to H = 1
2A
†EA, where E is diagonal

and diag(E) = (ε1, . . . , εN ,−ε1, . . . ,−εN ), with εj being
the quasiparticle energies.

With these definitions, the current correlation function
in a fixed gauge configuration reads

Cηµµ(ω) =
2π

N

∑
klmn

LklLmn

(
〈A†kAn〉〈AlA

†
m〉

− 〈A†kA
†
m〉〈AlAn〉

)
δ(εl − εk − ω) , (12)

where L = U†j(η)U and 〈A(†)
µ A

(†)
ν 〉 is either zero, fj , or

(1 − fj), depending on the components of the spinor A
involved, and fj = 1/(eβεj + 1) is the Fermi-Dirac distri-
bution. Since the partition functions Zd(η) are byprod-
ucts of the ED for each gauge subsector, tracing the latter
and Eq. (9), as in Eq. (11) completes the evaluation of
Cµµ(ω).

In Fig. 2, we present the frequency dependence of
the correlation function Cµµ(ω) for three temperatures
T/Jz = 0.1, 2, 100. We note that we focus only on the
positive frequency spectrum, ω > 0, because Cµµ(−ω) =
e−βωCµµ(ω), as required by detailed balance. To re-
duce the computational effort for the evaluation of full
traces over the 2N possible gauge field configurations,
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Figure 2. (a) Cµµ(ω) obtained by ED for a lattice of N = 6×6
sites at three different temperatures T/Jz = 0.1, 2, 100. (b)
Low frequency zoom of (a).

we make use of translation symmetry. This allows us to
reach systems up to N = 36 sites corresponding to an
enormous Hilbert space dimension of the underlying spin
model of 272 states. The δ functions are binned in win-
dows of δω = 10−3, except for the lowest temperature,
T/Jz = 0.1, at which a binning of δω = 0.02 has been
chosen due to the larger finite size effects. The sharp
peaks at finite frequencies are amplified by the very fine
binning, and they are not expected to survive in the ther-
modynamic limit.

Equation (12) allows for two types of spectral contribu-
tions, namely quasiparticle, i.e. εlεk > 0, or pairbreak-
ing, i.e. εlεk < 0, transport. The high frequency spectral
weight (ω/Jz & 6) in Fig. 2 is solely generated by the
pairbreaking terms, and it is only quantitatively affected
by the gauge excitations. Contrarily, the quasiparticle
contribution is related to the matter fermion density re-
laxation and therefore is strongly affected by scattering
from the gauge fields. As is obvious from Fig. 2, the latter
contribution displays a weight strongly increasing with
T which directly reflects the temperature dependence of
the matter fermion occupation number. As shown in
Sec. IVC, assuming only the ground state gauge, the
complete quasiparticle transport accumulates into only
a single T -dependent DW. In the presence of randomly
distributed gauge excitation however, i.e. taking into ac-
count that the majority of gauge sectors lacks transla-
tional invariance, most of the DW spreads over a finite
low-ω range, in a non-monotonous way, exhibiting also a
prominent low frequency depletion. Hence, for all tem-
peratures T/Jz & 1 the spectrum is qualitatively different
from that discarding gauge excitations, Sec. IVC, Fig. 7.
We understand this central result to be a clear indication
of fractionalization, where the matter fermions scatter off
gauge field degrees of freedom, with the latter acting as
a thermally activated disorder. We note that on any fi-
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Figure 3. Drude weight Dµµ(T ) versus temperature for three
different system sizes obtained via ED.

nite system remnants of a DW will remain within the
spectrum.

At very low temperatures, T/Jz . 0.1 the gauge exci-
tations will start to freeze out and the correlation func-
tion will approach the form of Cµµ(ω) within the ground
state sector, Fig. 7. This regime suffers from large fi-
nite size effects and it is difficult to be tackled with our
methods (see also the discussion in the context of Fig. 4).

The low-ω spectral hump in the correlation function
displays a clearly visible, sharp dip as ω → 0, with
C(ω → 0) ' 0, as can be read off from Fig. 2(b). This
is particularly obvious at elevated temperatures. For se-
mantic simplicity, we coin this suppression of the regular
part of the conductivity spectrum, approaching zero only
at the single point ω = 0, a pseudogap. The behavior of
this low frequency pseudogap with system-size is crucial
in order to characterize the system as conducting or insu-
lating in the thermodynamic limit, and requires a careful
finite size analysis. Either the pseudogap will close as
L → ∞ and the system will have a conducting dc chan-
nel, or the pseudogap remains open. In the latter case the
system will be characterized by the presence(absence) of
a finite DW as an ideal conductor(insulator). These is-
sues relate the system directly to questions of disorder in
Dirac semi-metals [67, 68]. While our ED provides clear
evidence for signatures of fractionalization in the dynam-
ical correlation function, a convincing answer to the be-
havior of the pseudogap with system size requires larger
lattices, which we will tackle with the average gauge con-
figuration approach, presented in Sec. IVB.

Next, we focus on the temperature dependence of the
ballistic contribution to the thermal conductivity, namely
the DW, Eqs. (7), and (8). In Fig. 3, we present the tem-
perature dependence of the DW for three different system
sizes, acquired from the degeneracy plateau as usual [49].
The general form of the temperature dependence of the
DW is that of a typical spin system exhibiting a maxi-

mum around T ≈ Jz. With increasing system size, the
magnitude of the DW is reduced. Note that this is dif-
ferent from the behavior of the DW obtained for other
transport quantities in Ref. [66]. Although the system
sizes at hand do not allow for a safe finite size extrap-
olation, our findings are suggestive of a vanishing DW
in the thermodynamic limit. This picture is further cor-
roborated by the AGC method, presented in Sec. IVB
[69].

B. Average gauge configuration (AGC)

In this section, we introduce an approximatemethod to
evaluate the current correlation function, capturing the
main physics, and allowing to reach systems of ∼ 60×60
sites, i.e. ∼ O(100) larger than with ED, which is cru-
cial to understand the low frequency regime of the cor-
relation function. The main idea is to reduce the full
trace Trη[. . . ] to an average 〈. . .〉n(T ) over only domi-
nant gauge configurations, set by a temperature depen-
dent mean density n(T ) of elementary gauge excitations
off the gauge ground state. I.e., we reduce the evalua-
tion of Cµµ(t) to a disorder problem in a system of free
fermions with an emergent temperature dependent defect
density

Cµµ(t) ≈ 〈〈Jµ(t)Jµ〉d(η)〉n(T ) . (13)

Several comments are in order for this approach. First,
while the Hamiltonian (2,3) is formulated in terms of
matter fermions and gauge fields ηr, the physical degrees
of freedom are rather fermions and fluxes. In turn, de-
pending on the temperature, fluctuations in n(T ) may be
very large, rendering a mean field treatment in terms of
the number of excited fluxes Φ(T ) more appropriate. On
the Kitaev ladder [59], this can be achieved by a direct
mapping between n(T ) and Φ(T ). On the honeycomb
lattice this is not feasible. To make progress, we con-
fine ourselves to temperatures above a scale TR, which
is elevated enough, such that a large number of fluxes
is excited. Then, random gauge and flux ensembles will
both behave similarly.

To approximate the scale TR, we evaluate n(T ) and its
fluctuations δn(T ), Φ(T ) and its temperature derivative
Φ′(T ), as well as a thermodynamic observable, namely
the specific heat CV exactly on a finite system of N =
6× 6 sites. We use

n(T ) =
1

ZN
TrηZd(η)nη , (14)

where nη is the number of gauge fields flipped off the uni-
form ground state sectors, excluding degenerate ground
state sectors. The flux density is defined by

Φ(T ) =
1

ZN

∑
{ηr}

Zd(η)

∑
r

Φr , Φr = ηrηr+ex−ey . (15)
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Figure 4. (a) Temperature dependence of the mean density
of gauge excitations n(T ), and the flux density Φ(T ). A fit,
n(T ) ∼ 1/[e(∆/T )b + 1] is shown, with ∆ = 0.06, and b = 3.5.
The infinite temperature limit of n(T → ∞) = n∞ = 0.434
is marked by a horizontal gray dashed line [70]. (b) Temper-
ature dependence of the fluctuations of the mean density of
gauge excitations δn(T ) and the derivative of the flux den-
sity Φ′(T ) normalized to its minimum value at the cross over
temperature Φ′(Tm) = −15.16. Vertical dashed gray line: lo-
cation of Tm ' 0.06Jz. In addition, the specific heat is shown,
obtained from ED and from the AGC methods, labeled ac-
cordingly. For the AGC, n(T ) as fitted to the ED result is
used. All ED data from an N = 6 × 6 sites system. The
AGC data from an N = 20 × 20 system, with NR = 20000
realizations.

First, Fig. 4(a) shows that at very low temperatures,
n(T ) and Φ(T ) represent the gauge homogeneous ground
state. Second, at temperatures T/Jz ∼ 0.03, well be-
low the single gauge flip gap ∆1/Jz ' 0.263 [28], collec-
tive gauge excitations lead to a rapid increase of n(T ),
a downturn of Φ(T ), and a region of large fluctuations
δn(T ) > n(T ). Third, and for T & 0.1Jz ≡ TR, the
system has essentially settled into a completely random
gauge state with its proper infinite temperature limiting
value of n∞ ' 0.434 for N = 6 × 6 [70]. In this regime
the system can be considered as free fermions scattering
from a fully random binary potential.

In the crossover region n(T ) ∼ 1/[e(∆/T )b+1] with ∆ =
0.06, and b = 3.5 for the finite system [71]. This rather
abrupt transition is likely due to gauge-gauge interactions
and the large degree of degeneracy of the gauge fields for a
given number of fluxes [72]. Considering the specific heat
CV [73] in Fig. 4(b), there is a clear release of entropy of
the fluxes or the gauges in the vicinity of Tm ' 0.06Jz
[66, 74].

In view of δn(T )/n(T ) versus T , as in Fig. 4(a,b),
the AGC will work acceptably well for T & TR. An
indication of this is provided by evaluating CV within
the AGC, using n(T ) as from the ED, averaging over
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Figure 5. Cµµ(ω) obtained via the AGC method for various
lattices L = 16− 60 and three different temperatures T/Jz =
0.1, 2.1, 100 from top to bottom. The left panels show the low
frequency behavior of Cµµ(ω), emphasizing the development
of the low frequency pseudogap with system size. The arrows
in the right panels indicate the zero frequency extrapolation
value from a 2nd order polynomial. For T/Jz = 100 the ED
results for a system with L = 6 are also displayed.

NR = 20000 realizations, for a system with N = 20× 20.
Obviously the agreement to the exact result is excellent
down to T ≈ TR, below which the AGC does not account
for all of the entropy release. To conclude: we confine all
subsequent AGC calculations to TR . T < ∞, using a
fully random η ensemble, i.e. n(T ) = 0.5.

In Fig. 5, we present the energy current correlation
function obtained via the AGC method spanning three
decades of temperature T/J = 0.1, 2.1, 100 and a bin-
ning of δω = 0.001. The left panels of the plot highlight
the low frequency behavior of Cµµ(ω, T ) while the right
ones scan the complete positive frequency range. First,
the qualitative and quantitative agreement between the
ED and the AGC method for all temperatures shown is
remarkable [69]. At high temperatures there is a low
frequency hump, the weight of which reduces with tem-
perature due to the occupation numbers of the matter
fermions. At the same time, and since the sum rule does
not change with temperature, more weight is accumu-
lated at high frequencies, as in Fig. 2.

The left panels of Fig. 5 show, that apart from a
smooth downturn at ω/Jz ≈ 1 there is a second, sharp
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Figure 6. (a) dc thermal conductivity κdcµµ versus tempera-
ture for different system sizes, obtained from fitting a second
order polynomial to the low frequency regime of the corre-
lation function. In the insets (b) and (c) this low frequency
behavior of C(ω) for a system of L = 40 at two temperatures
T/Jz = 0.1, 100 is shown, as well as, the corresponding linear
and quadratic fit polynomials. The fitting range is restricted
in the range 0.02 ≤ ω/Jz ≤ 0.12 for all the fits.

dip structure within a very low energy range of ω/Jz � 1.
This narrow part of the pseudogap displays a strong sys-
tem size dependence, in stark contrast to the rest of the
frequency spectrum, for which larger system sizes merely
render the spectra smoother. It is interesting to note
that the system sizes which can be reached by ED do not
display this low frequency structure, Fig. 5(e), rendering
the use of the AGC method essential [69]. This low-ω
behavior with system size very much suggests the pseu-
dogap to close in the thermodynamic limit. Therefore
we extract a dc limit of the correlation function by fit-
ting the data shortly before the dip. Because of the slight
curvature within the data, we choose to fit a second or-
der polynomial in the range [0.02 − 0.12], incorporating
100 frequency points, see also the inset of Fig. 6 and its
discussion. The dc limit extrapolation for all three tem-
peratures is marked by the gray arrows at the right panels
of the plot. In addition, we note that we did not find any
Drude weights for the systems analyzed [69]. In conclu-
sion the system will be a normal dissipative conductor in
the thermodynamic limit.

Next, in Fig. 6, we present the temperature depen-
dence of the dc thermal conductivity, Eq. (5), for differ-
ent system sizes. The overall behavior of κdcµµ(T ) versus T
resembles that of other spin systems with, however, a low
temperature increase with an exponent lower than one, a
maximum related solely to an intrinsic energy scale, i.e.,
at T/Jz ≈ 1, and lastly a 1/T 2 decay at high tempera-
tures. To assess this result several sources of uncertainty
have to be mentioned. First, finite size effects are visible,
which are however satisfyingly small. Second, choosing
a particular fit function and fitting range induces an er-

ror. Its magnitude can be estimated from the two insets
Figs. 6(b), and 6(c), where either a 1st (c0 + c1ω) or a
2nd order polynomial (c0 + c1ω + c2ω

2) is used, leading
to slightly different dc extrapolations. Similar variations
can be induced by changing the frequency window of the
fit. In passing we mention, that at high temperatures log-
arithmic fit functions, i.e. ln(c0+c1ω) also provide a good
representation of C(ω � 1). Finally, the least square fit
itself comprises an error which, however, is comparable
with the size of the symbols depicted.

C. Fixed ground state gauge

As compared to the previous sections, fixing the gauge
to a ground state configuration, allows to obtain analytic
expressions for the conductivity. While in principle this
only represents the limit T/∆ → 0, it can nevertheless
be used to check the approach to low temperatures of the
ED and AGC results. Moreover it is instructive, to con-
trast a fictitious heat conductivity at all temperatures,
arising from fixing the gauge to ηr = 1 with that includ-
ing the effects of thermally excited gauges. Since ηr = 1
is a homogeneous state, we switch to momentum space,
where the Hamiltonian and the current can be written as

H =
∑
k

D†khkDk , Jµ =
∑
k

D†kLk,µDk , (16)

where boldface Dk = (dk, d
†
−k) are ‘spinors’, with d†r =∑

k exp(−ik · r)d†k. We label the two entries by light
symbols Dkα, with α = 1, 2. Note that Dkα are destruc-
tion(creation) operators depending on α = 1(2). Both,
the Hamiltonian and current matrix elements, hk and
Lk,x(y) for the x(y)-directions are encoded in 2×2 matri-
ces. From Eqs. (2), (3), and (10) we get

hk =

[
ek i∆k

i∆−k −e−k

]
, Lk,µ = lk,µ

[
1 1
1 1

]
(17)

where,

ek = 2[Jz − [Jx cos(kx) + Jy cos(ky)] , (18a)
∆k = 2[Jx sin(kx) + Jy sin(ky)] , (18b)
lk,µ = 2[JµJz sin(kµ)− JxJy sin(kµ − kµ)] , (18c)

with µ = y(x) for µ = x(y). After Bogoliubov transfor-
mation onto hk’s quasiparticle (QP) basis c(†)k , the Hamil-
tonian reads

H =
∑
k

εk(c†kck −
1

2
) , with εk =

√
e2
k + ∆2

k . (19)

Remarkably, the current operator is invariant under this
Bogoliubov transformation. I.e. also in the QP basis
Jµ =

∑
k C
†
kLk,µCk, with Lk,µ identical to Eq. (17) and

Ck = (ck, c
†
−k). Since Lk,µ is not diagonal, the energy
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current has both, QP and pairbreaking contributions. It
is satisfying to realize that 2 lk,µ = εk ∂εk/∂kµ Therefore,
and because of Eqs. (16), and (17), the naive expectation
that the energy current can be written as

Jµ =
∑
k

εk
∂εk
∂kµ

c†kck + pair breaking terms , (20)

is indeed satisfied by our definition of the local energy
density Eq. (3).

Evaluating the current correlation function in the QP
basis is straightforward. We get

C0
µµ(ω) =

2π

N

∑
k

{2|lk,µ|2[ 2fk(1− fk) δ(ω)+

f2
k δ(ω + 2εk) + (1− fk)2 δ(ω − 2εk)]} . (21)

Where the superscript 0 refers to the ground state gauge,
the term ∼ δ(ω) represents the DW, and the remaining
two addends are the pairbreaking contributions

Figure 7(a) shows C0
µµ(ω) for two representative cases

of Jx,y/Jz = 1 (Jx,y/Jz = 0.25) referring to a gapless
(gapped) matter sector. Several comment are in or-
der. First, the regular spectrum at small ω reflects the
gap structure of the low energy quasiparticle DOS com-
bined with the energy current, leading to a power law
C0
µµ(ω) ∝ ω3 in the gapless case, while displaying a linear

onset above a finite gap. Second, within the spectrum a
weak van-Hove singularity arises from the saddlepoint of
the dispersion Eq. (19). E.g. for the gapless case in Fig. 7,
there is a log-singular derivative of C0

µµ(ω) at ω = 4,
which is hardly noticeable on the scale of the plot. The
inset Fig. 7(b) depicts the Drude weight divided by T 2

versus temperature. The main point is to demonstrate,
that in the gapless(gapped) case the Drude weight is fi-
nite for any T > 0 with Dµµ ∝ T 2(∝ exp(−a/T )) for
T � 1. This implies that remaining within the ground
state gauge, the system is a ballistic energy conductor,
with infinite heat conductivity at any finite temperature.
The inset Fig. 7(c) details another aspect of the DW,
namely that the spectral weight of the ballistic channel,
i.e. T 2Dµµ, is of similar size than that of the integrated
regular spectrum I0(T ) = −́

∞
−∞ C0

µµ(ω) dω.

V. DISCUSSION AND CONCLUSION

In conclusion, we have studied the dynamical longitu-
dinal heat transport of the 2D Kitaev model on the hon-
eycomb lattice. Our conclusions are based on three com-
plementary approaches, using the mapping of the spin
Hamiltonian onto matter fermions and a Z2 gauge field.
First, we have employed numerically exact diagonaliza-
tion of small systems, up to 72 spin sites. Second, to
reach system sizes of up to 7200 spin sites, we have ap-
proximately restricted the complete gauge trace to only
a random gauge configuration, demonstrating that this

0 4 8 12
ω/Jz

0

2

4

6

8

10

12

C
0 µµ

(ω
) 

/ J
z4

Jx,y/Jz=1,      T=0

Jx,y/Jz=0.25, T=0

0 1 2T/Jz

0

2

4

6

D
µµ

(T
) 

/ (
T

2 J z4 )

0 2 4 6 8

T/Jz
0

1

T
2 D

µµ
(T

) 
/ I

0(T
)

(b) (a)

(c)
× 5

× 5

Figure 7. (a) Black(blue) lines: T=0 regular part of dynami-
cal current correlation function C0

µµ(ω) versus frequency ω>0
using the ground state gauge for gapless(ful) matter sector at
Jx,y/Jz = 1(0.25). Insets: (b) DW Dµµ/T

2 versus tempera-
ture. (c) Ballistic weight T 2Dµµ normalized to the weight of
the regular part I0(T ) = −́

∞
−∞ C

0
µµ(ω) dω.

leads to reliable results over a wide range of tempera-
tures. Finally, we have performed an analytical evalua-
tion of transport properties in the uniform gauge sector.

Among our main findings is, that fractionalization into
Majorana matter and static gauge fields leaves a clear
fingerprint on the spectrum of the current correlation
function. In fact, thermally populated gauge excitations
serve as an emergent disorder inducing an intrinsic en-
ergy scale for the relaxation of the matter fermion heat
currents. This relaxation leads to a clearly observable
low-ω accumulation of spectral weight in the current cor-
relation function, increasing in intensity as the matter
fermion density increases with temperature. We find this
low-ω spectral weight to display a zero frequency pseu-
dogap, which is strongly system size dependent. Based
on finite size scaling, we have concluded that in the ther-
modynamic limit, the pseudogap closes, rendering the dc
limit of the correlation function finite, albeit leaving a
very sharp low-ω depletion within the spectrum behind.
Therefore we have shown the 2D Kitaev model to be a
normal dissipative heat conductor. This is in stark con-
trast to the Kitaev ladder, which is an insulator with a
vanishing Drude weight and dc limit of the dynamical
conductivity [59], as well as the one dimensional Kitaev
chain, which is a ballistic conductor [58] and features a
finite Drude weight (DW). We find, that for the 2D Ki-
taev model, the DW is finite only on small systems or
when gauge excitations are completely neglected.

We caution that our finite size analysis cannot exclude
extreme scenarios, in which at system sizes way beyond
our reach, the pseudogap ceases to close and/or alters
its variation with ω, such as to remain with a zero dc
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conductivity.
Our findings allow for a–certainly very coarse grained–

comparative reference to magnetic thermal transport in
‘conventional’ 2D antiferromagnets (AFM) with magnon
excitations and scattering from some form of extrinsic
disorder or grain structures. Such transport has be-
come of great interest e.g. in the context of the par-
ent compounds of the cuprate superconductors [5, 75,
76]. Straightforward power counting for this case yields
κmagnon ∼ T 2 at low T , followed by a rapid drop be-
yond temperatures where the exponential decrease of the
2D magnetic correlation length dominates the magnon’s
mean free path instead of the defect scattering length [76–
78]. A similar T 2 behavior is only observed in the absence
of gauge fluctuations for the Kitaev model, namely in the
DW of the ground state sector (Fig. 7), as a consequence
of the Dirac cone dispersion at the isotropic point. Due
to the intrinsic thermally activated disorder, κdcµµ of Fig. 6
displays two striking differences if compared to the ther-
mal transport in conventional 2D AFMs, as described
above: (i) it features a maximum set to the scale of the
exchange energy, while in 2D AFMs the location of this
maximum is non-universally related to the interplay be-
tween the correlation- and defect scattering lengths, and
(ii) it features an increase with T with an approximate
power less than unity within the low-T range depicted.

From a materials point of view, compounds potentially
proximate to the Kitaev model display a heat transport,
intricately intertwined with lattice degrees of freedom
[21–23]. Furthermore, these materials order magnetically
at low temperatures [42, 79] due to non-Kitaev magnetic
interactions [80, 81]. The impact of such additional in-
teractions can be manifold, e.g. fluxes may acquire dis-
persion, contributing to the heat flow, drag effects may
occur, or fluxes and matter fermions may recombine even-
tually destroying fractionalization. Currently it seems
most promising to consider transport at elevated T , in-
volving higher energy excitations. Here, recent inelas-
tic neutron scattering experiments [42] and the magnetic
contribution to the specific heat [22, 82, 83] show sig-
natures consistent with Majorana matter. We hope that
this picture would be further corroborated by future heat
transport data as depicted in Fig. 6.
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Appendix A: Degeneracies

This appendix highlights the role of the degeneracies of
the Kitaev model with respect to the observable consid-
ered, namely the heat current correlation function. First,
we recapitulate that the spectrum of the Kitaev model is
highly degenerate. This is due to the fact that a ‘chain-
flip’, i.e. inverting the sign of ηr located on all z-links at-
tached to any particular xy-chain is a unitary transforma-
tion [29], leaving the fermionic spectrum invariant. We
emphasize, that this degeneracy is a physical property
and unrelated to spurious states which arise in some of
the mappings [28] from spins to fermions and Z2 fields for
the Kitaev model. While only the case of open boundary
conditions (OBCs) along the xy-chains is considered in
Ref. [29], the degeneracy remains in place using Eqs. (2),
and (3) with PBCs on the torus and also for our square
lattice geometry.

On any finite system of N = L× L sites, and restrict-
ing to even L = 2k with k ∈ N hereafter, chain-flips
will render each gauge configuration 2L−1 fold degener-
ate. On these finite systems, the ground state is either
within the manifold of ηr = 1 ∀r [28], the homogeneous
sector, or in a homogeneous sector, except for one ‘line-
flip’, i.e. with ηr = 1 ∀r, except for a single ladder of
z-links with ηr = −1. The energies Ee(o) of these two
types of configurations are the two lowest of the system.
For a 4× 4 system these two gauge sectors are shown in
Fig. 8(a),(b). Fig. 8(c) shows the collapse of the ground
state energies for these two lowest energy sectors versus
L. As L→∞ this implies a 2L fold degeneracy. Follow-
ing the same logic, all energies of the model are at least
2L-fold degenerate in the thermodynamic limit.

The main point of this appendix is to exemplify, that
not only the Hamiltonian, but also the physical observ-
able Cµµ(ω) is invariant under chain-flip operations. In
Fig. 8(d,e) we show this for two sets of degenerate
gauge configurations on a 4 × 4 system. Fig. 8(d) de-
picts Cµµ(ω), using the first two gauge configurations
from Fig. 8(a), while Fig. 8(e) employs the latter two
gauges, with however gauge fields flipped on the two red
sites. Obviously Cµµ(ω) is identical within each of the
two sets of gauges. Therefore, in the thermodynamic
limit, the trace over η in Eq. (11) can in principle be re-
stricted to one of the 2L identical subtraces over gauge
sectors, which are equivalent up to all chain-flip opera-
tions and a single line-flip.

Appendix B: ED vs AGC for a small system

In this appendix we make a direct comparison of the
ED, Sec. IVA, and the AGC, Sec. IVB, methods for a
small system of N = 6 × 6 sites. In Fig. 9, we plot
the correlation function Cµµ(ω), obtained via the ED
and the AGC methods at three different temperatures
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Figure 8. (a), (b): All 2L−1 gauge amplitudes for the gauge
sectors {η0}e,o of the two lowest fermionic ground state en-
ergies Ee, Eo on a finite L × L = 4 × 4 square lattice with
PBCs. (a) [(b)] exhibit even[odd] number of line-flips. Com-
plete fermionic spectrum is degenerate within (a)[(b)], respec-
tively. (c): Collapse of gauge sectors {η0}e,o onto 2L gauge
sectors with degenerate fermionic spectrum, versus 1/L = 2k,
k ∈ N for Jx = Jy = Jz. Cµµ(ω) on L × L = 4 × 4, at
T/Jz = 10. (d) for two degenerate ground state gauge config-
urations {η}1,2, shown in the graph, from the gauge sectors
depicted in Fig. 8(a). Inset: proves conductivities identical
up to numerical error. (e) for two fixed degenerate ground
state gauge configurations {η}1,2, shown in the graph, from
the gauge sectors depicted in Fig. 8(a), including two flipped
gauge fields as the red sites indicate. Inset: proves conduc-
tivities identical up to numerical error.

T/Jz = 0.1, 2, 100 (from top to bottom). To anticipate
finite size effects arising from the large mean level spacing
of a system with a small linear dimension, we average over
NR = 50000 random configurations with n(T ) = 0.5. At
high temperatures and down to T ≈ Jz, the agreement
between the two methods is impressive. Not only is the
overall behavior of Cµµ(ω) quantitatively captured by the
AGC method but also the fine structure yielded by sin-
gularities at the density of states. At the lowest temper-
ature of T = 0.1Jz, the AGC method clearly deviates
from the exact high frequency structure of the correla-
tion function, however the low frequency region ω < 4Jz
is still captured rather well.
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Figure 9. Comparison of Cµµ(ω) obtained via ED and AGC
for a system of N = 6 × 6 sites, with Jx = Jy = Jz, at three
temperatures T/Jz = 0.1, 2.0, 100. The left panels display the
full positive frequency spectrum of the correlation function
at each temperature, while the right ones highlight the low
frequency regime. The δ-functions for the lowest temperature
are binned in windows of δω = 0.02 while for the other two
temperatures the bin size is δω = 0.001. The AGC data
are averaged over NR = 50000 random configurations with
n(T ) = 0.5.

Figure 9 fortifies the physical conclusions extracted in
the main text in the following two important aspects.
First, it shows that the AGC method is capable of de-
tecting the existence of a finite Drude weight (DW), al-
though it fails to predict the correct weight of it. The
latter does not come as a surprise since the evaluation
of the DW involves only degenerate states and the AGC
method is a random averaging approach. Therefore, the
absence of any trace of a DW for the larger systems dis-
played in Fig. 5 shows that the DW decays fast with
system size, and the weight of the ballistic channel com-
pletely disappears in the thermodynamic limit. Second,
Fig. 9 provides additional support for the notion of a clos-
ing of the low frequency dip with system size extracted
from the AGC. Namely, according to Fig. 5, ED displays
only a very shallow pseudogap. However Fig. 9 proves,
that this is not at variance with the AGC, but solely due
to the smaller system size of ED–which in turn we have
overcome by using the AGC method.
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