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Intriguing topological phases may appear in both insulating and semimetallic states. Topological
insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals
show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt3Sn,
where the two topological features appear simultaneously. Based on first-principles calculations, we
show that Pt3Sn is a 3D weak topological semimetal with topologically nontrivial band inversion
between the valence and conduction bands, where the band structure also possesses type-II Dirac
points at the boundary of two electron pockets. The formation of the Dirac points can be understood
in terms of the representations of relevant symmetry groups and the compatibility relations. The
topological surface states appear in accordance with the nontrivial bulk band topology. The unique
coexistence of the two distinct topological features in Pt3Sn enlarges the material scope in topological
physics, and is potentially useful for spintronics.

I. INTRODUCTION

Topological physics has been one of the most intriguing
findings in condensed matter physics1–4. The topological
aspect of electronic structures was first noted in quantum
Hall effects5,6, and further extended to systems where the
topological nature is protected under time-reversal sym-
metry (Z2 topological insulators7–12) or point-group sym-
metry (topological crystalline insulators13–15). In these
systems, the topologically nontrivial character remains
robust as long as the gap is kept finite. Recently, another
important classes of the topological material in metal-
lic systems, i.e., Dirac/Weyl semimetals3,16–23 were also
discovered. In Dirac semimetals, the band crossing be-
tween two (spin-degenerate) bands occurs, forming a lin-
ear Dirac cone which is reminiscent of a relativistic mass-
less particle. The Dirac points in topological Dirac mate-
rials can appear on high-symmetry paths of the Brillouin
zone (BZ), and are protected by relevant group symme-
try17,18,21.

Although the two topological phases in gapped and
gapless systems were discovered and defined separately,
in principle an electronic band structure may possess the
two topological features simultaneously. The topological
character of a topological insulator can be extended to a
semimetallic band structure since the topological classi-
fication is valid as long as the direct gap at each k-point
of the BZ is kept finite. In this case, the band struc-
ture has electron and hole pockets while the nontrivial
band inversion remains robust. This enables the possi-
bility to have an additional topological character in the
same system because a topological band crossing (e.g.,
Dirac point) in the electron or hole pockets may appear
near the Fermi level. However, a specific material exam-
ple with the coexisting topological features has not been
reported yet.

In this study, we show that Pt3Sn has such an un-
usual band structure with the dual topological nature.
We perform first-principles calculations based on density
functional theory to show that Pt3Sn is a weak topolog-
ical semimetal characterized by nontrivial weak Z2 in-

variants. The semimetallic band structure exhibits elec-
tron and hole pockets, and accidental band crossings in
the conduction bands give rise to Dirac points near the
Fermi energy. While the conventional Dirac points oc-
cur at the boundary between the valence and conduction
bands, the Dirac points in Pt3Sn appear within the con-
duction bands in which the dispersion of the low-lying
conduction bands leads to type-II Dirac points24 that vi-
olate the Lorentz invariance, and thus are not allowed
in high-energy physics (Fig. 1). Representative Dirac
points appear near the Fermi level at the boundary of
two electron pockets. The Dirac points are protected by
relevant point group symmetry, and their formation is
explained by the group representations and the compati-
bility relations. Topological surface states are confirmed
to be consistent with the bulk topological character. We
also discuss the topologically nontrivial band splitting be-
tween the two conduction bands constituting the Dirac
points under anisotropic strain.
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FIG. 1. Schematic illustrations of different Dirac points and
band topology. (a) Conventional Dirac point (DP). (b) Type-
II Dirac point at the boundary of electron and hole pockets.
(c) In Pt3Sn, type-II Dirac points appear at the boundary
of two electron pockets and the valence band has nontrivial
band topology (detailed analysis for the valence band topol-
ogy will be presented below by calculating the parities of the
wavefunctions).
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FIG. 2. Atomic and electronic structure of Pt3Sn. (a) Atomic
structure of Pt3Sn and (b) the corresponding BZ. (c) Elec-
tronic band structure along high-symmetry paths in the BZ.
The solid (dotted) lines denote the calculations with SOC
(without SOC). The Fermi level is set to 0.

II. THEORETICAL METHODS

The electronic structure was calculated using density
functional theory as implemented in VASP package25,26.
PAW (projector augmented wave) method27 was used,
and the energy cutoff for the plane-wave basis was set to
383 eV. We employed PBE (Perdew-Burke-Ernzerhof)
exchange-correlation functional28 and 15 × 15 × 15 k-
point sampling. The effect of the spin-orbit coupling
(SOC) was included. Experimental lattice constant was
used29. For the surface state calculation, 41-layer slab in
(001) direction with a sufficient vacuum region (≈ 25Å)
was adopted. The electronic structure was also checked
and the symmetry representation was analyzed using
WIEN2k package30.

III. RESULTS AND DISCUSSIONS

The crystal structure of Pt3Sn has cubic symmetry
with the space group Pm3m (No. 221) as illustrated in
Fig. 2a. Experimentally, Pt3Sn has been studied regard-
ing the electronic structure31, the atomic structure29, the
surface structure32–36, the oxygen adsorption37,38, the
catalytic properties39, etc. However, the topological fea-
tures of the electronic structure have not been noticed.
The electronic band structure has semimetallic character

(Fig. 2c) where hole pockets appear along Γ–X in the BZ
that compensate electron pockets around R in agreement
with previous theoretical and experimental studies31,40.
Here, due to the simultaneous presence of the spatial in-
version and the time-reversal symmetry, all bands are
spin-degenerate (in our DFT and DFT+U calculations
we find that Pt3Sn does not have a ferromagnetic ground
state in accordance with experiments). The bands near
the Fermi energy is mostly derived from Pt 5d states. We
note that when the spin-orbit coupling is not included,
the band structure shows gapless feature. However, upon
including the spin-orbit coupling, the degeneracy at Γ
and R is lifted to have direct gaps, which results in the
semimetallic band structure. The conduction band min-
imum lies at the R point of the BZ, and the symmetry
representation of the lowest conduction bands at R is Γ+

8

of the (double) group Oh, which came from Γ+
4 by the

spin-orbit splitting via Γ+
4 ⊗ Γ+

6 = Γ+
6 ⊕ Γ+

8 (Fig. 2c),
where the size of the spin-orbit splitting is calculated to
be ≈ 0.72 eV. Similarly, the low-lying conduction bands
at Γ has the Γ+

8 representation.

The band crossings in the two (spin-degenerate) low-
est conduction bands occur at several points in the BZ
(marked by the dashed-line circles in Fig. 2c), which con-
stitute the type-II Dirac points. In particular, the en-
ergy EΛD

of the Dirac points at ΛD in Γ–R direction
lie near the Fermi level EF with EΛD

− EF ≈ 0.14 eV.
The Dirac points at ΛD are protected by the point group
symmetry C3v. In general, two bands with different sym-
metry can cross without hybridization since hybridiza-
tion is forbidden when they belong to different repre-
sentations. Thus, a Dirac point can be developed when
such a band crossing occurs on a high-symmetry line in
the BZ17,18,41. Along Γ–R direction, the two conduc-
tion bands belong to the representations Γ4 and Γ5 + Γ6,
respectively (Fig. 3a), as dictated by the compatibility
relation Oh : Γ+

8 → C3v : Γ4 + Γ5 + Γ6. The two different
representations show different behavior under the sym-
metry operations; for example, they have different eigen-
values with respect to the 3-fold rotation, i.e., e±iπ/3 for
Γ4 and -1 for Γ5 + Γ6. The type-II Dirac points occur at
the boundary of two electron pockets (Fig. 3b, c, d, e),
which is a distinctive feature of Pt3Sn.

Similarly, the band crossings also occur along R–M
and Γ–X to give rises to Dirac points. The relevant
point group symmetry in these cases is C4v, where the
low-lying conduction bands constituting the Dirac points
belong to two different representations Γ6 and Γ7 (since
the compatibility relation is Oh : Γ+

8 → C4v : Γ6 + Γ7).
In contrast, along R–X the symmetry is not sufficiently
high to give rise to a Dirac band crossing. Here, the
relevant point group symmetry is C2v. Since the low-
lying conduction bands belong to the same representa-
tion Γ5 (Oh : Γ+

8 → C2v : 2Γ5), which is the only two-
dimensional representation of C2v, they do not cross, but
develop a small hybridization gap. Note that whether a
band crossing along a high symmetry path is allowed can
be directly read off from the compatibility relation.
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FIG. 3. Electronic band structure near the Dirac point along
Γ–R. (a) The band structure and representations of the low-
lying conduction bands along Γ–R. The constant energy
lines (E = EΛD ) are depicted near the Dirac point in kx–
ky planes with (b) kz = 1√

3
kD − 0.001 × 2π

a
(c) kz = 1√

3
kD

(d) kz = 1√
3
kD + 0.001 × 2π

a
where the Dirac point is located

at 1√
3
(kD, kD, kD) with the energy EΛD . The red circles de-

note (projected) positions of the Dirac point. (e) The band
dispersion in the vicinity of the Dirac point.

The effective Hamiltonian for the type-II Dirac points
can be constructed by considering the invariant terms
under the relevant symmetry42. For the Dirac points at
ΛD along Γ–R, the symmetry to be considered is C3v and
the combination of the spatial inversion I and the time-
reversal T . The basis functions of the Γ4 and Γ5 + Γ6

representations can be represented by
∣∣j = 1

2 ,m = ± 1
2

〉
and

∣∣j = 3
2 ,m = ± 3

2

〉
, respectively. By considering the

transformation rules under the symmetry operations of
C3v and IT , the effective Hamiltonian near the Dirac

point at ΛD can be written as

HΛD
= εΛD

+ vtkz + v3kzσ3 ⊗ I2×2 (1)

+v1 {kxσ1 ⊗ I2×2 − kyσ2 ⊗ σ3}
+v2 {kxσ2 ⊗ σ2 + kyσ2 ⊗ σ1}

= εΛD
+

(vt + v3)kz 0 v1k+ −v2k+

0 (vt + v3)kz v2k− v1k−
v1k− v2k+ (vt − v3)kz 0
−v2k− v1k+ 0 (vt − v3)kz

 ,(2)

where σi are Pauli matrices, I2×2 is the 2 × 2 identity
matrix, k+ = kx+ iky, k− = kx− iky, the local kz axis at
the Dirac point is set along the (111) direction, and ~ is
suppressed for notational simplicity. The corresponding
eigenvalues are given by

E± = εΛD
+ vtkz ±

√
v2
⊥(k2

x + k2
y) + v2

3k
2
z , (3)

where εΛD
is the energy of the Dirac point, vt describes

the “tilting” of the Dirac cone, and v2
⊥ ≡ v2

1 + v2
2 . Note

that each eigenvalue appears twice due to the spin de-
generacy from the I and T symmetry. From the first-
principles calculations, we find that |vt| ≈ 5.3× 104m/s,
|v3| ≈ 5.6 × 103m/s, and |v⊥| ≈ 1.9 × 104m/s. In
particular, since |vt| > |v3| and |v⊥| 6= |v3|, we have
an anisotropic type-II Dirac cone at ΛD. The effective
Hamiltonian at the Dirac point ΛD may look mathemat-
ically analogous to that of silicene43,44 since the sym-
metry group D3 of silicene at the K point of the BZ is
isomorphic to C3v. However, there are important differ-
ences that should be noted; i) the Dirac cones of silicene
are gapped by intrinsic SOC whereas the Dirac cones
in Pt3Sn are not. When SOC is considered, silicene is
known to be a 2D topological insulator45. ii) the Dirac
points of silicene are 2D type-I as opposed to the 3D
type-II Dirac points in Pt3Sn.

Now we discuss the band topology of the valence bands
in Pt3Sn. Due to the time-reversal symmetry and direct
gap at each k point, the band topology of the valence
bands can be defined and characterized by conventional
Z2 topological invariants10. Since the inversion symme-
try is present, the Z2 topological invariants can be cal-
culated by the parity products of the wavefunctions at
time-reversal invariant momenta46. According to our
first-principles calculations, the topological indices are
(ν0; ν1ν2ν3) = (0; 111), where ν0 is the strong topologi-
cal index and ν1, ν2, ν3 are weak ones (Fig. 4a). Thus,
Pt3Sn has a weak topological phase in (111) direction
which can be interpreted as stacked layers of 2D topolog-
ical phases10.

The topological surface states appear in accordance
with the bulk topological invariants (Fig. 4). The pro-
jected parity products in the surface BZ dictate the num-
ber (mod 2) of crossings of the surface bands with a line
connecting two time-reversal invariant momenta in the
bulk direct gap. For instance, along Γ–X, Γ and X have
different parities, hence we have odd number of crossings
(i.e., a single crossing) of the surface states (Fig. 4b, c).
In contrast, along Γ–M , we have the same parities, re-
sulting in even number of crossings. This confirms the
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FIG. 4. Topological surface states of Pt3Sn. (a) The par-
ity products at the time-reversal invariant momenta in the
bulk BZ and (b) the projected values in the surface BZ are
presented. (c) The electronic band structure of the (001) sur-
face. The (d) x and (e) y components of the spin projec-
tion of surface states near Γ, where the red and blue colors
mean the positive and negative values, respectively. Here,
X/10 = (π/10a, 0) and M/10 = (π/10a, π/10a).

bulk-boundary correspondence between the bulk topolog-
ical numbers and the surface state configurations. Also,
the spin projection of the topological surface states is
presented in Fig. 4d and e, in which they show typical
helical spin texture.

The topological band splitting between the low-lying
conduction bands constituting the Dirac points can be in-
vestigated by applying anisotropic strain to the system.
A Dirac material can be a neighboring phase to other
topological phases17,18,21, and perturbation can make the

a b

 0

 0.4

 0.8

 1.2

Γ R

En
er

gy
 (e

V)

Γ X

Z

Y S

T

U

R

+ +

+

+ −

−

−

+

FIG. 5. Topological band splitting of the low-lying conduction
bands under the anisotropic strain. (a) Band dispersion along
Γ–R. (c) Parities at the time-reversal invariant momenta.

Dirac cone massive by breaking the related symmetry to
induce a topological phase transition. Here, we consider
anisotropic strain in which we apply 0%, 1%, 2% of com-
pressive strain along x, y, z directions, respectively (i.e.,
the lattice constants are changed to be a, 0.99a, 0.98a
in x, y, z directions, respectively, where the three lattice
vectors remain orthogonal) while the internal (fractional)
coordinates of the constituent atoms are kept fixed. This
separates the two lowest conduction bands at all k points;
the anisotropic strain beaks the 3-fold and 4-fold symme-
try of the system and opens small gaps in the Dirac cones,
and the degeneracy at Γ and R is also lifted due to the
lowered symmetry (Fig. 5a). Then the band topology of
the lowest conduction band can be defined. Since the
inversion symmetry is preserved under the anisotropic
strain, the topological invariants can be still calculated
from the parities, which is (ν0; ν1ν2ν3) = (1; 000) accord-
ing to our calculation (Fig. 5b). Thus, the anisotropic
strain opens gaps at Dirac points to induce the topo-
logically nontrivial band splitting between the two low-
lying conduction bands. (Note that the topological in-
dices (1;000) are those of the lowest conduction band un-
der the anisotropic strain, and the topological indices of
the valence band are still (0;111) since the direct gap at
each k-point between the valence and conduction bands
remains finite under the anisotropic strain.)

In general, a Dirac point is composed of Weyl points
with opposite chirality17. If the inversion symmetry or
the time-reversal symmetry is broken, a Dirac point will
split into Weyl points. In our system, breaking of the
time-reversal symmetry via magnetic doping could be
feasible experimentally, which would induce type-II Weyl
points.

Experimentally, the topological electronic structure
could be checked by angle resolved photoemission spec-
troscopy (ARPES). Since the Dirac point lies above the
Fermi level, electron doping would be needed to access
the Dirac point using ARPES. According to our density
of states calculation, doping of 0.12 electrons per for-
mula unit is needed for the shift of the Fermi level by
0.14 eV assuming rigid band shift, which could be feasi-
ble in experiments. We note that the energy separation
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of the Dirac bands along Gamma to X is relatively small,
which would make it difficult to confirm experimentally.
Also, in view of surface transport, a bulk-insulating phase
could be more desirable than a bulk-semimetallic phase.
While Pt3Sn has a weak topological phase, a strong topo-
logical phase would be advantageous in that they have
robust topological surface states regardless of the surface
direction. In these regards, further investigation in the
Pt-Sn family would be interesting for future studies.

IV. CONCLUSION

In summary, we presented and theoretically analyzed
a hitherto unnoticed topological electronic structure of
Pt3Sn which has unusual coexistence of the two distinct
topological characters. The lowest conduction bands de-
velop type-II Dirac points along high symmetry paths
in the BZ, and the valence bands have nontrivial band
topology. The group representations and the compatibil-
ity relations explain the formation of Dirac points. The
valence bands are in a weak topological phase, and the
configuration of the topological surface state is consistent

with the bulk band topology. Recently, Dirac node arcs
in an another intermetallic compound PtSn4 have been
studied using ARPES47. Our results show a distinctive
example of a topological material which could be useful
for future spintronic applications.
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