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Recent photoemission spectroscopy measurements [arXiv:1509.01611] on cuprate superconductors
have inferred that over a wide range of doping, the imaginary part of the electron self-energy scales
as Σ′′ ∼ (ω2 + π2T 2)a with a = 1 in the overdoped Fermi-liquid state and a < 0.5 in the optimal to
underdoped regime. We show that this non-Fermi-liquid scaling behavior can naturally be explained
by the presence of a scale-invariant state of matter known as unparticles. We evaluate analytically
the electron self-energy due to interactions with fermionic unparticles. We find that, in agreement
with experiments, the imaginary part of the self-energy scales with respect to temperature and energy
as Σ′′ ∼ T 2+2α and ω2+2α, where α is the anomalous dimension of the unparticle propagator. In
addition, the calculated occupancy and susceptibility of fermionic unparticles, unlike those of normal
fermions, have significant spectral weights even at high energies. This unconventional behavior is
attributed to the branch cut in the unparticle propagator which broadens the unparticle spectral
function over a wide energy range and non-trivially alters the scattering phase space by enhancing
(suppressing) the intrinsic susceptibility at low energies for negative (positive) α. Our work presents
new evidence suggesting that unparticles might be important low-energy degrees of freedom in
strongly coupled systems such as the cuprate superconductors.

I. INTRODUCTION

Understanding the physics of cuprate superconduc-
tors involves identifying the low-energy degrees of free-
dom that can reproduce the bizarre features of the
normal state which traditionally include T -linear re-
sistivity, pseudogap, Fermi arcs, etc. Adding to the
complexity are the recent angle-resolved photoemission
spectroscopy (ARPES) measurements1 of the cuprates
that revealed that its well-known T -linear resistivity
can be construed as a slice of a unified power-law scal-
ing behavior. Over a wide range of doping levels, the
measured scattering rates in the non-superconducting
state scale with respect to temperature and frequency
as Σ′′ ∼

(
ω2 + π2T 2

)a
, with only the scaling expo-

nent a varying with doping. The power-law smoothly
varies from Fermi-liquid-like at overdoping, to one with
a ∼ 0.5 representing T -linear scattering rate at opti-
mal doping, and to a . 0.5 at underdoping. Such a
non-Fermi-liquid state of matter is dubbed a power-law
liquid.

Theoretically, mechanisms yielding similar non-Fermi
liquid scalings have been extensively studied2–11. In a
marginal Fermi liquid2, a polarizability proportional to
ω/T leads to T -linear resistivity, while a d-wave Pomer-
anchuk instability in two dimensions3 yields self-energies
with ω2/3 and T 2/3 dependence. In addition, simi-
lar behaviors can also be obtained by coupling quasi-
particles with gauge bosons4, Goldstone bosons5, and
critical bosons6 near a quantum critical point7. Fur-
thermore, strong coupling theories using the anti-de
Sitter spacetime (AdS)/conformal field theory (CFT)
correspondence8 and Gutzwiller projection in hidden
Fermi liquid theory9 also exhibit T -linear resistivity. In
particular, the spectral functions calculated within the
AdS/CFT formalism can also exhibit a range of power-
law scaling when the scaling dimension of the boundary
fermionic operator is tuned continuously10,11.

Because of the recent unified scaling observations, it
is natural to invoke a scale-invariant sector such as un-
particles as the effective low-energy degrees of freedom
in the cuprates. Proposed a decade ago as a scale-
invariant sector within the standard model12, unparti-
cles can emerge in strong coupling theories as low-energy
degrees of freedom. Exhibiting features similar to those
of a fractional number of invisible massless particles12,
unparticles are an incoherent state of matter that lack
any particle-like behavior. They can be construed as
a product of states with a continuous distribution of
masses13–15 and can be constructed from theories in
AdS16.

While extensively studied in high-energy physics, un-
particles remain relatively new in condensed matter
physics. In the context of the cuprates, unparticles
have been proposed to explain the absence of Luttinger’s
theorem in the pseudogap phase17 using zeros in the
Green function18 and have also been found to yield
unusual superconducting properties17,19,20 and optical
conductivity21.

Unparticles can arise in the cuprates because any non-
trivial infrared dynamics in a strongly correlated elec-
tron system is controlled by a critical fixed point. Con-
sequently, scale invariance can be used to construct the
form of the underlying propagator. This propagator
which can acquire an anomalous dimension within the
renormalization group approach is the unparticle prop-
agator. Furthermore, in the context of AdS/CFT, one
of us22,23 showed that a massive scalar field in the bulk
is generally dual to a nonlocal operator (i.e., a fractional
Laplacian) on the boundary. The propagator of these
operators is of a power-law form, just like the unparti-
cle propagator. These results indicate that unparticles
should generically exist in a strongly-coupled system.

In the context of the Hubbard model near half-filling,
dynamical spectral weight transfer24 has long been ob-
served to occur. The key implication is that the number
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of low-energy degrees of freedom exceeds the number
of electrons the lower band can hold. Hence, the low-
energy physics is not delineated by counting electrons
alone. Such anomalous physics disappears in the over-
doped regime. If the critical physics near optimal doping
is due to the apparent non-Fermi liquid behavior in the
underdoped regime, then it is natural to suggest that
the non-electron-like degrees of freedom in the under-
doped regime arise from a scale-invariant sector. Con-
sequently, unparticle propagators are a natural starting
point for describing such physics.

In this paper, we show analytically that interactions
between electrons and fermionic unparticles can repro-
duce the power-law liquid revealed in the cuprates by re-
cent ARPES experiments1. This paper is a follow-up to
our recent paper that focused on bosonic unparticles25.
Here we find that, in agreement with the experi-
ments, the electron self-energy due to interactions with
fermionic unparticles exhibits power-law scaling with re-
spect to both energy and temperature: Σ′′ ∼ ω2+2α and
T 2+2α, where α is the anomalous scaling of the unpar-
ticle propagator. In addition, we find that the occu-
pancy number and susceptibility of fermionic unparti-
cles, unlike those of normal fermions, have significant
spectral weights even at high energies. These uncon-
ventional behaviors can be attributed to the branch cut
in the unparticle propagator which broadens the unpar-
ticle spectral function over a wide energy range, and
non-trivially alters the scattering phase space by en-
hancing (suppressing) the intrinsic susceptibility at low
energies for negative (positive) α.

II. ELECTRON-FERMIONIC UNPARTICLE
SCATTERING

A. Model

We consider a system of electrons in the presence of a
background of fermionic unparticles. The action of the
system in Matsubara-Fourier space is given by

S = T
∑
n

∑
p

ψ†n(p)G−10 (p, iωn)ψn(p)

+ T
∑
n

∑
p

φ†n(p)G−1α (p, iωn)φn(p)

+ UT 3
∑
m,n,l

∑
k,p,q

ψ†m−l(k − q)φ
†
n+l(p+ q)φn(p)ψm(k),

(1)

where ψ is the non-relativistic electron field, φ is the
fermionic unparticle field, G0 is the bare electron Green
function

G0(p, iωn) =
1

iωn − Ep
, (2)

and Gα is the fermionic unparticle Green function

Gα (k, iωn) =
1

(iωn − εk + µ)
1−α . (3)

Here, εk is the unparticle energy spectrum, 1 − α is
the scaling exponent, and µ is the chemical potential.
When α = 0, the Green function reduces to that of
a normal particle. In addition, U is the interaction
between electrons and unparticles, and T is the tem-
perature. The subscripts of the fields denote the de-
pendence on the Matsubara frequency. In this model,
the fermionic unparticles are assumed to exist up to
a UV momentum cutoff, Λ because they represent a
low-energy description of some microscopic theory. For
the unparticle Green function to be scale-invariant, we
set µ = 0 when α 6= 0. While the literature in high-
energy physics considers fermionic unparticles as rela-
tivistic four-spinors within the standard model26,27, here
in the context of the cuprates, we consider them as non-
relativistic fermions. For simplicity, we also omit the
normalization factor and the effects of spins.

In this paper, we focus on unparticles with −1 < α <
1. In this case, instead of a simple pole, the unparticle
Green function has a branch cut, which we choose to
be along the negative energy axis. That is, the branch
cut of z1−α is chosen to be along −∞ < z < 0 with the
phase angle defined in the range −π < θ < π. Fig. 1
shows that, compared to particles, the spectral function
of unparticles

Aα (k, ω) ≡ − 1

π
ImGα(k, ω + iη)

=
1

π
|sin (πα)| θ (εk − ω)

|εk − ω|1−α
(4)

remains divergent at ω = εk, but has a broadened peak
due to the presence of the branch cut, representing the
incoherence of unparticles. Here θ(x) is the Heaviside
step function. It is precisely the modeling of the broad
incoherent background in the electron spectral function
that unparticles are tailored to handle.

For the unparticle spectral function to satisfy the
usual sum rule, a high energy cutoff is implicitly as-
sumed when α > 0. Similarly, the IR divergence when
α < 0 is regularized by an IR cutoff η, where a con-
venient choice for the spectral function is Aα (k, ω) =
1
π |sin (πα)| θ(εk−ω)

|εk−ω−iη|1−α
. These cutoffs naturally arise

from the fact that unparticles are effective degrees of
freedom of some strongly interacting theories and so
are scale-invariant only within a certain energy range.
These cutoffs also ensure the convergence of other ob-
servables, such as the susceptibility.

Since the IR/UV cutoffs are free parameters in
our model, they can in principle be made sufficiently
small/large for experimental agreement. However, what
ultimately sets the cutoffs cannot be an extrinsic scale.
In the cuprates, phonons with energies around 10 meV28

are intrinsically present. Since our model does not take
into account these phonons, they naturally set a low-
energy scale η at which the power-law scaling breaks
down. This scale is well below the energy of 0.1 eV up
to which the ARPES experiments measured1 and there-
fore is low enough to explain the experiments.
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Figure 1: (a) The spectral function Aα (ω) of unparticles
compared to that of particles. As α deviates from zero,
the delta peak in the spectral function broadens due to
the branch cut in the Green function. (b) The energy
and momentum dependence of the unparticle spectral
function for a quadratic energy spectrum εk ∼ k2 with
α = 0.5. The broadening of the spectral function reflects
the incoherent nature of unparticles.

B. Electron self-energy

For a constant interaction U between electrons and
fermionic unparticles, Fig. 2 illustrates the lowest-order
contribution to the electron self-energy Σ (k, iωn) within
a perturbative approach. This can be written as

Σ (k, iωn) = −U2
∑
q

T
∑
iωm

G0 (k − q, iωn − iωm)

χα (q, iωm) , (5)

where

χα (q, iωm) =
∑
p

T
∑
iωn

Gα (p, iωn)Gα (p− q, iωn − iωm)

(6)

is the unparticle susceptibility, and G0 (p, iωm) is the
electron Green function. While unparticle-particle in-
teractions in the standard model are constrained by ex-
periments to be weak12, the coupling strength U here
in the cuprates can be significant.

Figure 2: The lowest-order Feynman diagram of the
electron self-energy due to interactions between elec-
trons and fermionic unparticles. The solid lines, double
line, and wavy lines correspond to fermionic unparti-
cles, electron, and the electron-unparticle interaction,
respectively.

Appendix A details our analytic evaluation of the
Matsubara sums in Eqs. 5 and 6 using standard con-
tour integration techniques. After analytic continuation
iωn → ω + iη, we write the imaginary part of the elec-
tron self-energy in the standard form

Σ′′ (k, ω) = −U2
∑
p

χ′′α (k − p, ω − Ep)

× [nB (ω − Ep) + nF (−Ep)] , (7)

where

χ′′α (q, ω) = π

ˆ ∞
−∞

dz [nF (z)− nF (z − ω)]

×
∑
p

Aα (p, z)Aα (p− q, z − ω) . (8)

Here, nF/B (z) =
(
ez/T ± 1

)−1
is the Fermi (Bose) dis-

tribution, and Ek is the electron energy spectrum.

To understand how the electron self-energy depends
on the anomalous dimension α, it is insightful to con-
sider the scattering phase space. This phase space is
governed by the function S̃′′α given by
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S̃′′α (ε1, ε2, ε3, ω) = [nB (ω − ε3) + nF (−ε3)] [κ̄α (ε2, ε1 − ω + ε3)− κ̄α (ε1, ε2 + ω − ε3)] , (9)

κ̄α (ε, ε′) = π

ˆ ∞
−∞

dz nF (z)Aα (z − ε)Aα (z − ε′) , (10)

such that

Σ′′ (k, ω) = −U2
∑
pq

S̃′′α (εp, εp−q, Ek−q, ω) . (11)

This function S̃′′α describes the amount of scattering at
different energies.

To elucidate the analytic structure of S̃′′α, we note
that, for α > 0 in the T → 0 limit, the integral κ̄ eval-
uates to the closed-form expression

κ̄ (ε, ε′) =
1

1− 2α

1

π
sin2 (πα)

[
2

ξ (ε, ε′)

]1−2α
2F1

[
1− α, 1

2
− α;

3

2
− α;

∣∣∣∣ ε− ε′ξ (ε, ε′)

∣∣∣∣2
]
,(12)

where 2F1 (a, b; c; z) is the hypergeometric function, and
ξ (ε, ε′) = max (|ε− ε′| , ε+ ε′). As in the Fermi liquid
case, α = 0,

S̃′′FL (ε1, ε2, ε3, ω) = πδ (ε1 − ε2 − ω + ε3)

[θ (−ε1) θ (−ε3) θ (ε2)

+θ (ε1) θ (ε3) θ (−ε2)] , (13)

we find that the analogous expression for unparticles
S̃′′α (ε1, ε2, ε3, ω) diverges when ε1 − ε2 + ε3 − ω = 0 and
ε1ε2 < 0. However, given that the unparticle chemical
potential µ = 0, this divergence does not occur because
ε1, ε2 are nonnegative. In addition, unlike the Fermi
liquid result, S̃′′α (ε1, ε2, ε3, ω) can be nonzero for other
values of energies ε1, ε2, ε3, ω. These features are illus-
trated in Fig. 3. These nonzero values provide addi-
tional contributions to the electron self-energy, and can
be attributed to the broadening of the unparticle spec-
tral function illustrated in Fig. 1.

Im
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2
,E
,ω
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Figure 3: Top: Plot of the self-energy Matsubara sum
S̃′′α (ε1, ε2, E, ω) at T = 0.01 for ε1 = 2.7, ε2 = −1.4,
and E = 4.2. Bottom: Same plot but with ε2 = 1.4.
Compared to the Fermi liquid result, the unparticle one
has additional nontrivial contributions.

Next, to determine the scaling form of the electron
self-energy in the T → 0 limit, we note that the unpar-
ticle spectral function scales as

Aα(λω) = − 1

π
lim
η→0

ImGα(λω + iη)

= − 1

π
λ−1+α lim

η→0
ImGα(ω + iη)

= λ−1+αAα(ω). (14)

Consequently, we have

κ̄α (λε, λε′) = λ−1+2ακ̄α (ε, ε′) , (15)

S̃′′α (λε1λε2, λε3, λω) = λ−1+2αS̃′′α (ε1, ε2, ε3, ω) . (16)

Then, approximating the density of states to be con-
stant near the Fermi level, we find that the imaginary
part of the electron self-energy in the T → 0 limit be-
comes

Σ′′ (k, ω) = −U2
∑
p1p2p3

δp1+p3,p2+kS̃
′′
α (εp1 , εp2 , Ep3 , ω)

∼ −U2

ˆ
dε1dε2dE S̃′′α (ε1, ε2, E, ω) , (17)
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which scales with respect to energy ω as

Σ′′ (k, λω) = λ2+2αΣ′′ (k, ω) . (18)

Therefore, the electron self-energy due to electron-
unparticle interactions behaves as Σ′′ ∼ ω2+2α at low
temperatures, deviating from the Fermi liquid behavior
of Σ′′FL ∼ ω2. In the ω → 0 limit, a similar argument
shows that Σ′′ ∼ T 2+2α at low energies. Summarized
in Fig. 4, these scaling behaviors of the electron self-
energy are our main result; they hold for −1 < α < 1,
and do not depend on the specific form of the electron
energy spectrum, Ek. For α . 0, this non-Fermi-liquid
state of matter quantitatively corresponds to the power-
law liquid revealed in the cuprates by the recent ARPES
measurements1.

α = -0.7

α = -0.5

α = 0

α = 0.5

ω, T

-
Σ
″
(ω
,T
)

underdoping

optimal

doping
overdoping

Figure 4: Schematic of the energy and temperature de-
pendence of the electron self-energy, showing deviations
from Fermi liquid theory. In the cuprates, unparticles
with α . 0, α ≈ −0.5, and α < −0.5 correspond to over-
doping, optimal doping, and underdoping, respectively.

C. Susceptibility

The scaling behavior of the electron self-energy can
be traced back to the unparticle susceptibility χα given
by Eq. 8. Fig. 5 illustrates the unparticle suscepti-
bility in the q → 0 and T → 0 limit for a quadratic
energy spectrum εk ∼ k2 in two dimensions. We note
three features distinctive from the analogous free elec-
tron susceptibility. First, the unparticle susceptibility is
nonzero despite the chemical potential being restricted
to be zero on account of scale invariance. This is un-
like normal particles for which a zero chemical potential
necessarily implies that there is zero filling and hence
zero susceptibility. Second, the unparticle susceptibility
does not have a cutoff at high energies. Third, from

χ′′α (q = 0, ω) ∝
ˆ
dz [θ (−z)− θ (ω − z)]

×
ˆ
dεAα (z − ε)Aα (z − ω − ε) ,(19)

we see that the susceptibility scales as χ′′ (0, ω) ∼
ω2α. Such a scaling form ensures that when α < 0
(α > 0), the susceptibility is enhanced (suppressed) at
low energies, as shown in Fig. 5. Such an enhancement
(suppression) is crucial for the increased (decreased)
scattering rate, as quantified by the electron self-energy
in the previous subsection. These features completely
violate the usual susceptibility sum rule and can be at-
tributed to the broadening of the unparticle spectral
function. As |α| decreases, the features become less pro-
nounced, as expected.

Similar non-Fermi liquid behavior induced by the en-
hancement of low energy susceptibility also occurs, for
example, in systems where large portions of the Fermi
surface are nested with a single nesting wave vector29,30,
and in multiband models with orbital fluctuations31.
Additionally, the self-energy of a Fermi liquid in the
presence of weak impurities has an imaginary part of
the form Σ′′ ∼ (E − Ef )d/2, where d is the spatial
dimension32. Non-Fermi liquid behavior in this case can
also be understood as an enhancement in the low energy
spectrum of the susceptibility32.

When α < 0, the scaling behavior χ′′α (q = 0, ω) ∼ ω2α

may seem to suggest a divergence as ω → 0. However,
when the IR divergence of the spectral function is reg-
ularized as described above, the susceptibility in fact
remains finite and continuous. What happens is that
the scaling behavior is true only for ω larger than some
energy scale dependent on the IR cut off.



6

-
χ
″
(q
=
0
,ω

)

α = 0.2

α = 0.3

α = 0.4

0

5

10

15

α = -0.4

α = -0.5

α = -0.6

0 2 4 6 8 10
0

20

40

ω

Figure 5: The energy dependence of the unparticle sus-
ceptibility χ′′α for a quadratic energy spectrum εk ∼ p2

in the T → 0 and q → 0 limit, for various values of
α. The scaling behavior χ′′α ∼ ω2α is associated with
the scaling of the electron self-energy depicted in Fig.
4. Note that these plots are only qualitatively accurate
due to issues with numerical stability.

D. Occupancy

In Fermi liquid theory, the quadratic scaling of the
electron self-energy follows from a phase-space argu-
ment involving the occupancy of electrons. Therefore,
it can be illuminating to explore how this argument is
modified in the case of unparticles by computing the
occupancy for unparticles,

nα (εp) =

ˆ ∞
−∞

dz nF (z)Aα (z − εp) ez0
+

. (20)

Fig. 6 shows that in the T → 0 limit, unlike the Fermi
distribution for particles, the occupancy of unparticles is
significant even when εp is large. This counterintuitive
result can be understood by noting that the occupancy
number measures the filling of states at momentum p,
instead of at energy εp. This distinction is important
because, unlike the particle case, the unparticle spec-
tral function is broadened over a wide energy range.
Consequently, even unparticles with a large εp possess a
significant amount of low energy states that are filled at
low temperatures. For α < 0, these states enlarge the
scattering phase space in the electron self-energy by en-
hancing the low energy susceptibility bubble, resulting
in the non-Fermi liquid behavior described in the pre-
ceding section. In addition, the occupancy is notably
non-symmetric, reflecting the particle-hole asymmetry
of the unparticle Green function. This enhancement of

phase space undoubtedly reflects the enhanced scatter-
ing rate that ultimately grows linearly with temperature
as opposed to the standard T 2 in the Fermi liquid case.
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Figure 6: The energy εp dependence of the unparticle
occupancy at T = 0. The significant occupancy at large
εp differs from the Fermi distribution.

III. DISCUSSION AND CONCLUSIONS

While our model likely exhibits conventional Fermi
liquid behavior at energy scales below the IR cutoff,
what happens in that regime does not detract from
the main point of our paper. That is, the electron
self-energy above the IR cutoff exhibits the power-law
scaling observed experimentally. In fact, the ARPES
measurements1 also possess an inherent cutoff due to
a limited energy resolution of 4 meV33. Consequently,
the behavior of the cuprates at lower energies remains
unclear.

As discussed in Ref. 1, a sublinear scaling of the elec-
tron self-energy can be interpreted as having a vanishing
quasiparticle residue Z in Fermi liquid theory. This sig-
nifies that interactions with fermionic unparticles with
α < −0.5 cause electrons to behave completely incoher-
ently, which is unsurprising given the nature of unpar-
ticles. Nevertheless, since Σ′′ (ω = 0, T = 0) = 0, the
Fermi surface remains sharp34.

We can similarly calculate the self-energy of unpar-
ticles due to self interactions, that is, when the elec-
tron line in Fig. 2 is replaced by another unparticle
line. Naively, we expect the self-energy to scale as
Σ′′ ∼ ω2+3α and T 2+3α. This result, as well as the sus-
ceptibility and occupancy calculated above, can in prin-
ciple be observed experimentally. However, any mean-
ingful comparison with experimental observations would
require further knowledge about the form of couplings
between unparticles and external fields.

While the unparticle approach may resemble An-
derson’s proposal of a 2D Luttinger liquid35, the two
models differ for two main reasons. First, Ander-
son’s model acquires anomalous properties because
the current-carrying degrees of freedom themselves are
scale-invariant objects. In the present unparticle pic-
ture, the current-carrying degrees of freedom are still
electrons; their unusual properties arise from scattering
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off scale-invariant unparticles. Second, in Anderson’s
model, the extension of Luttinger liquid to two dimen-
sions lacks a rigorous basis: bosonization by transform-
ing fermions to particle-hole excitations requires the
particle-hole pairs to be long-lived, which is guaranteed
only in 1D. On the other hand, as is well known in
conformal field theory, the unparticle idea is completely
general regardless of spatial dimension; the construc-
tion of unparticles depends only on symmetry consid-
erations. In fact, as shown previously by one of us17,
scale-invariant matter constructed using gauge/gravity
duality has its anomalous dimension a function of spa-
tial dimension and a mass of the bulk scalar field.

While dimensional considerations may suggest the
self-energy’s power-law scaling, they are insufficient as
a proof due to technical complications. Since the un-
particle propagator has branch cuts instead of poles,
the convergence of the self-energy contour integral re-
quires a careful choice of contour. In fact, the conver-
gence of certain components of the integral depends on
α, which is not obvious from the formal expression of
the self-energy. Moreover, an explicit evaluation eluci-
dates the way the scattering phase space is altered by
an enhancement of the imaginary part of the low-energy
susceptibility. Obtaining this simple physical interpre-
tation would have been impossible from trivial power
counting.

For the perturbative approach we have adopted to be
meaningful, two conditions need to be satisfied. First,
the contributions at each order of perturbation are fi-
nite. Second, the perturbation series converge. For the
first condition, Fig. 3b and Eq. 12 show that the Mat-
subara sum S̃α in the self-energy converges for all ener-
gies when α < 1

2 at least in the limit T → 0. Conse-
quently, the self-energy is finite, as required. For the sec-
ond condition to be satisfied, one can consider a model
in which both fermionic unparticles and electrons sat-
isfy an SU(N) gauge group. For an unparticle-electron
interaction given by U/N , the effective electron-electron
interaction (the fermionic unparticle pair bubble) is of
the order U2/N . One can then follow the same anal-
ysis of Ref. 36 which outlines the details of the 1/N
expansion. Nevertheless, for simplicity, we just assume
that the electron interaction with the unparticle sector
is small.

Our recent paper25 studied the effects of bosonic un-
particles on the electron self-energy. While similar scal-
ing behaviors were obtained, there are a few subtle
differences. First, while a unitarity bound constrains

the scaling dimension of bosonic unparticles, we do not
know of any such constraint for fermionic unparticles.
This freedom allows for a more qualitative agreement
with experiments. Second, unlike the results in the
bosonic case, there is no dependence on the dimension-
ality in the scaling of Σ′′. This state of affairs obtains
because we approximate the density of states of both
electrons and fermionic unparticles to be constant near
the Fermi level. Third, our susceptibility plots in Fig. 5
differ from that in Ref. 25, because a nonzero chemical
potential was previously adopted.

In conclusion, we showed analytically that interac-
tions between electrons and fermionic unparticles—a
scale-invariant state of matter—can produce the power-
law liquid revealed in the cuprates by recent ARPES
experiments1. In particular, we found that, at low tem-
peratures and energies, the electron self-energy due to
interactions with fermionic unparticles exhibits power-
law scaling with respect to energy and temperature:
Σ′′ ∼ ω2+2α and T 2+2α, where α is the anomalous scal-
ing of the unparticle propagator. This non-Fermi-liquid
behavior can be attributed to the broadening of the
unparticle spectral function over a wide energy range,
which drastically alters the scattering phase space by
enhancing (suppressing) the intrinsic susceptibility at
low energies for negative (positive) α. Although unpar-
ticles have zero chemical potential as required by scale
invariance, they nevertheless can contribute to the elec-
tron self-energy due to the same broadening. Our re-
sults present new evidence suggesting that unparticles
might be important low-energy degrees of freedom in
the cuprates, and should inspire the interpretation of
other experimental data using unparticles.
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Appendix A: Analytic evaluation of Matsubara sums

1. Susceptibility

The unparticle susceptibility defined by Eq. 6 involves the fermionic Matsubara sum

Sα (ε1, ε2, iωn) = T
∑
iωm

Gα (iωm − ε1)Gα (iωm − iωn − ε2) ,
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where iωn is a bosonic Matsubara frequency. Using Cauchy’s residue theorem, we rewrite the Matsubara sum as

Sα (ε1, ε2, iωn) = − 1

2πi

˛
C

dz nF (z)Gα (z − ε1)Gα (z − iωn − ε2) ,

where nF (z) =
(
ez/T + 1

)−1
is the Fermi distribution. Since the integrand is analytic except along Imz = 0 and

Imz = iωn, we use the contour C illustrated in Fig. 7a.

Re z

Im
z

Im z=ⅈωn

Im z=0

(a)

Re z

Im
z

Im z=ⅈωn

Im z=0

(b)

Figure 7: The contours used to evaluate the Matsubara sums in (a) the unparticle susceptibility, and (b) the electron
self-energy.

The integrals along the paths at large radius vanish when α < 1/2. For α ≥ 1/2, a convergence factor ez0
+

can
be included so that the same integrals vanish. Consequently, the nonvanishing contributions to the contour integral
are those along the branch cuts:

Ib1 (ε1, ε2, iωn) = − 1

2πi

ˆ ∞
−∞

dz nF (z)
[
Gα
(
z+ − ε1

)
−Gα

(
z− − ε1

)]
Gα (z − iωn − ε2)

= − 1

2πi

ˆ ∞
−∞

dz nF (z) 2iIm
[
Gα
(
z+ − ε1

)]
Gα (z − iωn − ε2)

=

ˆ ∞
−∞

dznF (z)Aα (z − ε1)Gα (z − iωn − ε2) ,

Ib2 (ε1, ε2, iωn) = − 1

2πi

ˆ ∞+iωn

−∞+iωn

dz nF (z)Gα (z − ε1)
[
Gα
(
z+ − iωn − ε2

)
−Gα

(
z− − iωn − ε2

)]
= − 1

2πi

ˆ ∞
−∞

dz nF (z + iωn)Gα (z + iωn − ε1)
[
Gα
(
z+ − ε2

)
−Gα

(
z− − ε2

)]
= − 1

2πi

ˆ ∞
−∞

dz nF (z)Gα (z + iωn − ε1) 2iImGα
(
z+ − ε2

)
=

ˆ ∞
−∞

dz nF (z)Gα (z + iωn − ε1)Aα (z − ε2) .

Here z± = z ± iη, with η = 0+ being a positive real infinitesimal. After analytic continuation iωn → ω + iη, the
imaginary part of the Matsubara sum becomes

ImSα (ε1, ε2, ω + iη) =

ˆ ∞
−∞

dz nF (z) [Aα (z − ε1) ImGα (z − ω − iη − ε2) + ImGα (z + ω + iη − ε1)Aα (z − ε2)]

=

ˆ ∞
−∞

dz nF (z) [Aα (z − ε1)πAα (z − ω − ε2)− πAα (z + ω − ε1)Aα (z − ε2)]

= π

ˆ ∞
−∞

dz nF (z)Aα (z − ε1)Aα (z − ω − ε2)− (ε1 ↔ ε2, ω → −ω)

≡ κ̄α (ε1, ε2 + ω)− κ̄α (ε2, ε1 − ω) ,
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where we have defined

κ̄α (ε, ε′) = π

ˆ ∞
−∞

dz nF (z)Aα (z − ε)Aα (z − ε′) .

For α > 0, we can evaluate this exactly in the T → 0 limit using the unparticle spectral function in Eq. 4:

κ̄α (ε, ε′) =
1

π
sin2 (πα)

ˆ min(ε,0,ε′)

−∞
dz

1

(ε− z)1−α
1

(ε′ − z)1−α

=
1

π
sin2 (πα) 21−2α

ˆ ∞
ξ(ε,ε′)

dz[
z2 − (ε− ε′)2

]1−α
=

1

π
sin2 (πα)

1

2

[
2

ξ (ε, ε′)

]1−2α ˆ 1

0

dt
t−

1
2−α[

1− t
∣∣∣ ε−ε′ξ(ε,ε′)

∣∣∣2]1−α
=

1

π
sin2 (πα)

1

1− 2α

[
2

ξ (ε, ε′)

]1−2α
2F1

[
1− α, 1

2
− α;

3

2
− α;

∣∣∣∣ ε− ε′ξ (ε, ε′)

∣∣∣∣2
]
,

where ξ (ε, ε′) = max (|ε− ε′| , ε+ ε′), and 2F1 (a, b; c, z) is the hypergeometric function.

2. Self-energy

The electron self-energy defined by Eq. 5 involves the bosonic Matsubara sum

S̃α (ε1, ε2, ε3, iωn) = T
∑
iωm′

G0 (iωn − iωm′ − ε3)Sα (ε1, ε2, iωm′)

=
1

2πi

˛
C′
dz′nB (z′)G0 (iωn − z′ − ε3)Sα (ε1, ε2, z

′) + TG0 (iωn − ε3)Sα (ε1, ε2, 0) ,

where iωn is a fermionic Matsubara frequency, and nB (z) =
(
ez/T − 1

)−1
is the Bose distribution. Since the

integrand has a branch cut along Imz′ = 0 and a pole on a line Imz′ = iωn, we adopt the contour C ′ shown in Fig.
7b. If α < 1, the integrals along the paths at large radius vanish.

The integrals along the small circle of radius r around the origin require special consideration. Since Sα (ε1, ε2, z
′)

is analytic in the upper (lower) half plane, we see that Sα (ε1, ε2, z
′)→ Sα (ε1, ε2, 0) in the limit z′ → 0 for z′ in the

same domain. Hence, as the radius r → 0, the integral along the small circle reduces to

1

2πi

˛
|z′|=r

dz′nB (z′)G0 (iωn − z′ − ε3)Sα (ε1, ε2, z
′) ∼

[
1

2πi

˛
|z′|=r

dz′nB (z′)

]
G0 (iωn − ε3)Sα (ε1, ε2, 0)

= −TG0 (iωn − ε3)Sα (ε1, ε2, 0) ,

which exactly cancels the iωm′ = 0 term in S̃α (ε1, ε2, ε3, iωn). This cancellation can be physically motivated. First,
notice that the imaginary part of the term contains the factor δ(ω − ε3) after analytic continuation. Then, since
ω = ε3 corresponds to no energy transfer between unparticles and electrons, such a term understandably should
not contribute to the electron self-energy.

Then, the nonvanishing contributions to S̃α are simply the integrals along the lines Imz′ = 0 and Imz′ = iωn:
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Ĩb1 (ε1, ε2, ε3, iωn) =
1

2πi

ˆ ∞
−∞

dz′nB (z′)G0 (iωn − z′, ε3)
[
Sα
(
ε1, ε2, z

′+)− Sα (ε1, ε2, z′−)]
=

1

2πi

ˆ ∞
−∞

dz′nB (z′)G0 (iωn − z′, ε3) 2iImSα
(
ε1, ε2, z

′+)
=

1

π

ˆ ∞
−∞

dz′nB (z′)G0 (iωn − z′, ε3) [κ̄α (ε1, ε2 + z′)− κ̄α (ε2, ε1 − z′)] ,

Ĩb2 (ε1, ε2, ε3, iωn) =
1

2πi

ˆ ∞+iωn

−∞+iωn

dz′nB (z′)
[
G0

(
iωn − z′+, ε3

)
−G0

(
iωn − z′−, ε3

)]
Sα (ε1, ε2, z

′)

=
1

2πi

ˆ ∞
−∞

dz′nB (z′ + iωn)
[
G0

(
−z′+, ε3

)
−G0

(
−z′−, ε3

)]
Sα (ε1, ε2, z

′ + iωn)

=
1

2πi

ˆ ∞
−∞

dz′ [−nF (z′)] 2iIm
[
G0

(
−z′+, ε3

)]
Sα (ε1, ε2, z

′ + iωn)

= − 1

2πi

ˆ ∞
−∞

dz′nF (z′) 2iπA0 (−z′, ε3)Sα (ε1, ε2, z
′ + iωn)

= −
ˆ ∞
−∞

dz′nF (z′)A0 (−z′, ε3)Sα (ε1, ε2, z
′ + iωn) .

Here, A0 = − 1
π ImG0 is the spectral function of G0 , and we take principal values of the integrals in Ĩb1 due to the

cancellation mentioned above. Then, analytic continuation iωn → ω + iη gives

ImĨb1 (ε1, ε2, ε3, ω + iη) = −
ˆ ∞
−∞

dz′nB (z′)A0 (ω − z′, ε3) [κ̄α (ε1, ε2 + z′)− κ̄α (ε2, ε1 − z′)] ,

ImĨb2 (ε1, ε2, ε3, ω + iη) = −
ˆ ∞
−∞

dz′nF (z′)A0 (−z′, ε3) [κ̄α (ε1, ε2 + z′ + ω)− κ̄α (ε2, ε1 − z′ − ω)]

= −
ˆ ∞
−∞

dz′nF (z′ − ω)A0 (ω − z′, ε3) [κ̄α (ε1, ε2 + z′)− κ̄α (ε2, ε1 − z′)] ,

ImS̃ (ε1, ε2, ε3, ω + iη) = −
ˆ ∞
−∞

dz′ [nB (z′) + nF (z′ − ω)]A0 (ω − z′, ε3) [κ̄α (ε1, ε2 + z′)− κ̄α (ε2, ε1 − z′)]

=

ˆ ∞
−∞

dz′A0 (ω − z′, ε3) [nB (z′) + nF (z′ − ω)] [κ̄α (ε2, ε1 − z′)− κ̄α (ε1, ε2 + z′)] .

Finally, using A0 (ω) = δ (ω) gives

ImS̃α (ε1, ε2, ε3, ω + iη) = [nB (ω − ε3) + nF (−ε3)] [κ̄α (ε2, ε1 − ω + ε3)− κ̄α (ε1, ε2 + ω − ε3)] .
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