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Abstract 

In graphene and other massless 2D Dirac materials, Klein tunneling compromises 

electron confinement, and momentum-space contours can be assigned a Berry phase which is 

either zero or π. Consequently, in such systems the energy spectrum of circular potential wells 

exhibits an interesting discontinuity as a function of magnetic field ܤ: for a given angular 

momentum the ladder of eigen-resonances is split at an energy-dependent critical field ܤc. Here 

we show that introducing a mass term Δ in the Hamiltonian bridges this discontinuity in such a 

way that states below ܤc are adiabatically connected to states above ܤc whose principal quantum 

number differs by unity depending on the sign of Δ. In the ܤ-Δ plane, the spectrum of these 

circular resonators resembles a spiral staircase, in which a particle prepared in the |݊, ݉ۧ 
resonance state can be promoted to the |݊ േ 1, ݉ۧ state by an adiabatic circuit of the Hamiltonian 

about ܤc, the sign depending on the direction of the circuit. We explain the phenomenon in terms 

of the evolving Berry phase of the orbit, which in such a circuit changes adiabatically by 2ߨ. 
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Introduction - The light-like carriers in graphene allow optics-inspired analogies such as 

reflection, refraction, and resonators, to be realized using confining electrostatic potentials and 

magnetic fields. Tailoring electrostatic p-n junctions have demonstrated geometries with linear 

boundaries mimicking Fabry-Pèrot etalons  [1] and circular p-n junctions have demonstrated the 

classical analogy of whispering gallery modes [2–4]. A key difference between the wave 

properties of graphene carriers, and the carriers of conventional two-dimensional electron gases, 

is the associated chirality and nontrivial Berry phase of the graphene wavefunctions. Chirality 

and Berry phase in the massless Dirac Hamiltonian describing graphene was recognized in the 

first experimental papers describing the graphene quantum Hall effect  [5,6], and date back to the 

work in carbon nanotubes  [7]. In the Fabry-Pèrot geometry it was shown that the transport 

conductance underwent a phase shift with the application of a magnetic field, which is traceable 

to the graphene π Berry phase [8].  More recently, it has been shown that in circular p-n junction 

geometries, resembling quantum dots (QD), the graphene eigenstates show a discontinuity at a 

weak critical magnetic field,  ܤc, which was predicted by theory and confirmed in recent 

measurements  [4,9].  This spectral discontinuity, and its resolution with the addition of a mass 

term, Δ, is the focus of this work  We show in detail that in the three-dimensional space of B, Δ 

and energy, the spectrum resembles a continuous helical sheet, the successive energy levels of 

which can be accessed by adiabatic circuits about the discontinuity in ܤ-Δ plane.   

The electronic structure of graphene or two-dimensional (2D) Dirac quantum dots has 

been extensively studied in a wide range of models  [10–18]. The arguments given here are 

applicable to any radially symmetric, monotonic, smoothly varying potential. For concreteness, 

in the calculations we use a quadratic confining potential, which has been shown to adequately 

capture the experimental spectrum of graphene QDs measured by scanning tunneling 
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spectroscopy [2,19], including the Berry phase discontinuity [4]. The helical connectivity of the 

eigenstate structure is first shown using classical arguments, combined with a consideration of 

Berry phase. Then, we exhibit the helical spectrum using quantum-mechanical calculations along 

cuts through the ܤ-Δ plane. Finally, we calculate the eigen-resonances along an elliptical loop 

surrounding ܤ, showing how a picked quantum state would evolve from |݊, ݉ۧ to |݊ െ 1, ݉ۧ 
along an adiabatic circuit.  

Semi-classical analysis- The classical 2D relativistic Hamiltonian for a central potential ܷሺݎሻ can be expressed in polar coordinates as 

,ݎ൫ܪ                            , ߶, థ൯ ൌ േݒிටଶ  ቀഝ െ ଶ ቁଶݎ  ቀ ௩ಷቁଶ  ܷሺݎሻ,                          (1) 

where ݒி is the Fermi velocity, Δ/ݒிଶ is the mass, ܷ is the potential energy, and ݁ is the 

elementary charge. The angular momentum థ is conserved. For calculations, we take ݒி = 106 

m/s, and ܷ ൌ ߢ ଶwhereݎߢ ൌ 4 eV/µm2. The trajectories of Eq. (1) twist at a critical field  ܤ [9], 

as shown in Fig. 1(a)-(c). The transition between the left-turning particle [Fig. 1(a)] and the 

right-turning, looping particle [Fig. 1(c)] involves an intermediate state in which the particle 

must stop completely and turn back [Fig. 1(b)]. If ∆ ൌ 0, we encounter the result that 

backscattering is forbidden for massless Dirac particles: they do not orbit, but escape the well by 

Klein tunneling  [17,20–22] [Fig. 1(d)]. With finite ∆, however, the classical orbit continues  

[Fig. 1(e)], and the corresponding quantum states acquire a non-zero lifetime, which can be 

estimated from the transmission coefficient for Klein-tunneling through a sloped potential 

barrier. This being ݁ିమ  [22,23] (where ܥ is a constant that depends on the barrier slope), we 

see that while at ሺܤ, ∆ൌ 0ሻ the eigenstate spectrum must be discontinuous, for finite ∆ the 
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discontinuity is bridged by quasi-bound states [9], whose stability increases super-exponentially 

with |Δ|. (Hereafter, the ∆ൌ 0 singular point is denoted simply ܤ.) 

The helical eigenstate structure reported here arises from the fact that these finite-Δ 

“bridges” connect different eigenstates depending on the sign of Δ. This is shown directly in Fig. 

3, but can be motived classically by combining the adiabatic theorem  [24] with a semiclassical 

consideration of the Berry phase [9]. Let us start the classical particle in some Hamiltonian [Eq. 

(1)] defined by ሺܤ, Δሻ, with arbitrary initial coordinates and momenta, and adiabatically vary ܤ 

and Δ. In the volume defined by ܤ, Δ,  and the energy ܧ, the particle is constrained to move on a 

sheet defined by the condition ܬሺܧሻ ؠ ׯ  constant. The Berry phase ߮ is included = ݎሻ݀ݎሺ

via the modified Bohr-Sommerfeld quantization condition: 

ሻܧሺܬ                                                        ൌ ߨ2 ቀ݊ െ ఝಳଶగ   ቁ,                                            (2)ߛ

where ݊ is the radial quantum number and ߛ is a constant, here equal to ½ [25,26]. A consistent 

semiclassical method for calculating ߮ in this system is given in Ref.  [9], and summarized 

below: The quantum Hamiltonian ܪ ൌ ிમݒ ڄ ો  Δߪ௭  ܷሺݎሻ (where મ is the kinematic 

momentum and ો the Pauli matrices) has a monopole Berry curvature field ષሺܐሻ ൌ ଵଶ  ,ଷ݄/ܐ

where ܐ ൌ ሺΠ୶, Π୷, Δ/ݒிሻ. To each classical orbit belongs a closed ܐ-space loop Γ, and ߮ is the 

flux of ષ through Γ, in this case one-half the solid angle it subtends [27]. To calculate Γ, one 

resorts to Einstein-Brillouin-Keller (EBK) quantization [9,28,29]. This procedure defines the 

action variables ܬ as line integrals along the closed surface contours of a phase-space torus. By 

evaluating ܐ along the same contours, a closed Γ can be consistently obtained [9]. Further, ܬ 

retains the definition given above, and the resulting ߮ can be directly applied to Eq. (2). Thus it 

was found that, taking ܤ positive and Δ ൌ 0, for ܤ ൏  , Γ lies entirely to one side of the originܤ
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subtending zero solid angle and providing zero Berry phase [Fig. 2(a)], whereas for ܤ    itܤ

encircles the origin, providing a Berry phase of ߨ as in the case of pure Landau levels (LLs) [9]. 

At Δ ൌ 0, the result is a discontinuous jump of the energy levels by half a level, which was 

observed experimentally [4]. 

From the above we see that by adiabatically varying ܤ and Δ, we can manipulate Γ to 

produce an unlimited tunability of ߮ in Eq. (2). Starting for concreteness at an initial 

Hamiltonian defined by (ܤ ൏ ,ܤ Δ ൌ 0ሻ, let us see what happens as we attempt a clockwise 

adiabatic circuit about ܤ [Fig. 2]. As we pass over [Fig. 2(b)], down around [Fig. 2(c)], and 

back underneath the critical point [Fig. 2(d)], we see that Γ (thin blue line) loops over and around 

the monopole source of Berry curvature in such a way that the solid angle (light blue membrane) 

increases smoothly from zero in Fig. 2(a) to 4ߨ in Fig. 2(d), so that ߮ grows by 2ߨ. At the 

classical level, this procedure is fully reversible and repeatable: A second pass over the circuit 

would make the bubble two layers thick (8ߨ solid angle), a reverse circuit would unwrap one 

layer of the bubble, and so on. The effect of one circuit is to change the right side of Eq. (2) by 2ߨ and, the other terms being constants, the same change must appear in ܬ: an adiabatic circuit 

changes the “effective” radial quantum number by one. Thus when Berry phase is included, the 

constant-action sheet of the classical particle becomes a connected, multi-level helical manifold 

in the ܤ-Δ plane, each level of which can be accessed from any other level by repeated circuits 

about the screw dislocation at ܤ.  

Quantum simulation and results – To explore this helix structure quantitatively, we 

performed calculations based on the “spectral method” [30], adapted for 2D Dirac particles. In 

this procedure, an essentially arbitrary initial wave function Ψሺܚ, 0ሻ is evolved numerically under 
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the time-dependent Schrodinger equation. In general, Ψሺܚ, 0ሻ will have matrix elements with all 

possible solutions of Schrodinger equation: bound or quasi-bound states, and continuum states. 

During evolution, the latter quickly propagate to the edge of the simulation area, where they are 

absorbed, while the former oscillate with their characteristic frequencies ߱ ൌ െܧ/. These 

frequencies are extracted post-evolution from the power spectrum of ܥሺݐሻ ؠ  ሻۧ, andݐΨሺ0ሻ|Ψሺۦ

the eigenstates ߰ሺܚ; ,ܚ) are obtained by Fourier-filtering Ψሺܧ  ሻ at the correspondingݐ

frequency [30]. This enables us to characterize the spectrum of the 2D Dirac Hamiltonian 

without any a priori assumptions, except those which govern the form of the initial wavepacket 

(see below). Moreover, the inherently dynamic nature of the method allows us to directly enact 

the adiabatic loops discussed above by evolving a particle, prepared in some eigenstate, in a 

slowly-varying Hamiltonian .  

The time evolution is performed via the third-order [31] split-operator method  [32,33], 

using the 2D Dirac Hamiltonian 

,ܓሺܪ ሻܚ ൌ ݒி ቆ 0 ݇௫ െ ݅݇௬݇௫  ݅݇௬ 0 ቇ  ቆ ܷ  Δ െݒி݁൫ܣ௫ െ ௫ܣி݁൫ݒ௬൯െܣ݅  ௬൯ܣ݅ ܷ െ Δ ቇ       (3) 

where ܣ௫, ܣ௬, and ܷ are functions of ܓ ,ܚ ൌ  , and the vector potential is taken in the/ܘ

symmetric gauge. Because the helical spectrum is a property of ܪ at a fixed angular momentum, 

to obtain it we should choose an initial wavefunction of the form  

                                                  Ψሺܚ, 0ሻ ൌ ݁ቀିభమቁథ ൬  ሻ൰,                                              (4)ݎଵሺݑሻ݁థݎሺݑ

where ݉ is the angular momentum, ݉ is an odd-half integer, and ݑ and ݑଵ are arbitrary 

functions containing a broad spectrum of wavelengths. The energies of the spectral peaks are 
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completely insensitive to the choice of ݑ and ݑଵ within very broad limits; their amplitudes, 

however can vary considerably due to matrix element effects. A “good” choice of the ݑ provides 

distinctly nonzero matrix elements with all |݊, ݉ۧ states up to some ݊௫, determined by the 

shortest wavelength in the ݑ, for all (ܤ, Δ) which we wish to study; the spectra of Fig. 3 were 

obtained with such a function  [34]. 

In Fig. 3 we show resonance spectra of the same initial wave function, for ݉=5/2, as a 

function of magnetic field obtained at three characteristic masses less than [Fig. 3(a)], equal to 

[Fig. 3(b)], and greater than zero [Fig. 3(c)]. As a guide to the eye we include those regions of 

the (ܤ,  ሻ plane in which classical periodic motion is possible (dark red) or impossible (darkܧ

blue), determined by analyzing the function ଶሺݎሻ extracted from the Hamiltonian in Eq. (1) 

 [34]. For high positive fields [right edge of Fig. 3(a)-(c)] the spectra resemble the well-known 

quantum Hall energy spectrum: an N=0 LL at energy Δ, which at Δ ൌ 0 bridges the positive and 

negative LLs whose energies are proportional to ඥ|ܰ|. Visually, the movement of this state as a 

function of Δ is the key to the helix structure. For Δ ൏ 0 the N=0 LL attaches to the group of 

negative LLs, so that the lowest “positive energy” LL is N=1 [Fig. 3(a)], whereas for Δ  0  the 

N=0 state is the lowest positive LL [Fig. 3(c)] [35]. Following our classical discussion, we see 

that for nonzero mass all the positive-energy states are adiabatically continuous as a function of ܤ: we can re-enact the circuit of Fig. 2 by picking some initial state and sliding along the 

resonance curves. A brief inspection shows that such a circuit, beginning in state A of Fig. 3(b), 

passes to state B’ in Fig. 3(c), thence to state B in Fig. 3(a) and (b); thus it descends one level of 

the helix. 
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To make our picture more complete, we show how the wave functions evolve along a 

circuit enclosing ܤ (Fig. 4). We define the elliptical contour ܤ ൌ ܤ cos Δ ,ߠ ൌ Δ sin  Fig] ߠ

.4(a)], and in Fig. 4(b)-(l) show how a particular resonance—݊ ൌ 1, ݉ ൌ 5/2 in Fig. 4(b)—

evolves as a function of ߠ. For convenience, we use the same adiabatic circuit as in Fig. 2, where ߠ ranges from ߨ to -ߨ and the state descends the helix by one level, using ܤ = 4 T and Δ = 24 

meV. Since the radial motion for fixed ݉ is equivalent to 1D motion in a potential well, let us 

recall that for the single-component Schrodinger equation, the ݊th eigenstate is a wave function 

with ݊+1 lobes. For these Dirac wells, ݊ can be defined unambiguously only if the lowest 

positive state is independent of Δ (i.e. for ܤ ൏  ), and here the “Schrodinger pattern” isܤ

followed, in the sense that both components of the Dirac spinor have ݊+1 radial lobes [Figs. 

4(b,l)]. By contrast, for ܤ   (where ߮ܤ ൎ  and ݊ is ill-defined) the wave functions follow ߨ

the usual pattern of massless Dirac LLs [36], where the upper component has one more radial 

lobe than the lower [Fig. 4(g)] [37]. These LLs can thus be regarded as “half-integer” states, 

midway between consecutive equal-lobed states with ߮ ൌ 0.  

As we descend the helix, the resonance gradually sheds its outer lobes. In the first half of 

the circuit [Fig. 4(b)-(g)], the upper spi [34]nor component becomes stronger (as expected for Δ>0), while the lower components’s outer lobe fades in intensity and finally disappears, leaving 

at 0=ߠ the standard LL-type eigenspinor [Fig. 4(g)]. Returning with negative Δ [Fig. 4 (h)-(l)], 

the upper component weakens and similarly loses its outer lobe, so that the resulting state [Fig. 

4(l)] has one less lobe in each component. For the circuit shown here, the lobe-fading occupies a 

fairly narrow range of angles [Figs. 4(d),(e);(i),(j)] corresponding to the condition ܤ ൎ  ; weܤ

find empirically that the rate of “lobe-shedding” (or adding) along the loop is the more rapid, the 

shorter is the lifetime of the instantaneous resonance  [34]. 
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The process depicted in Fig. 4, in which the particle passes adiabatically between what 

we would normally regard as different eigenstates, deserves some discussion in connection with 

the quantum-mechanical adiabatic theorem [38,39]. For the quadratic confining potential used 

here, it was shown [18,34] that throughout the ܤ-Δ plane, the “eigenstates” have the character of 

resonances with finite lifetimes, to which the theorem does not strictly apply. At high |ܤ|, 

however, the potential could be turned off, and the states would revert to the well-known LLs of 

the symmetric gauge [36,37]. Then, by turning on the confining potential temporarily together 

with Δ, we could pass adiabatically to the next higher or lower LL by encircling ܤ. This would 

still not break the adiabatic theorem, since at ܤ the confining potential introduces a lifetime of 

the order ݁ଶ: the circuit necessarily passes through a region in which the theorem is 

inapplicable. The adiabatic time-scale could be much shorter than the lifetime, 

however [27,40,41], and in an experiment (if feasible), all but an exponentially small fraction of 

particles might traverse the circuit successfully.  

 In conclusion, we have shown that the resonance manifold of the 2D Dirac equation in a 

magnetic field and a smooth central potential, instead of consisting of a series of absolutely 

separated orthonormal states, is topologically defective: It is subtly linked together so that by 

turning on a mass term and cycling the sign of the field, a particle in one state can be 

adiabatically promoted level by level up a helical ladder, or downwards until it reaches at the 

bottom a state adiabatically connected to the N=0 LL. A direct experimental exploration of this 

helix requires a method to independently vary Δ and ܤ, which is experimentally challenging. 

Possible methods to access Δ in graphene include strain engineering  [42], or utilizing moiré 

superlattice potentials  [43,44]. More exotic experimental environments might be sought in cold 

atom systems  [45,46] or collections of mechanical oscillators [47]. Although a direct 
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experimental exploration of this helix structure may be difficult, the discontinuity at Δ=0 has 

already been observed in graphene  [4], and the physics revealed here is broadly applicable to 

electron confinement in other 2D Dirac materials. 
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Figure Captions: 

Figure 1: Classical trajectories near ࢉ. (a)-(c) Calculated trajectory of a massless, upward-
moving particle released at X=200 Å in magnetic fields slightly less than (a); equal to (b), and 
greater than (c) the critical magnetic field. In (b) the particle escapes by Klein tunneling. (d), (e) 
show the role of the mass in keeping the motion periodic at ܤ ൌ -: massless particles Kleinܤ
tunnel out of the potential well (d), while massive particles remain inside and continue to orbit 
(e). If the Hamiltonian is varied adiabatically, the path (f) must avoid ܤ.  

 

Figure 2:Adiabatic circuit of the Hamiltonian about Bc. Panels (a)-(d) schematically show the 
momentum-space contour ߁ (thin blue ring), the monopole source of Berry curvature ࢹ at the 
origin, and the solid angle subtended by ߁ (light blue sheet). During an adiabatic circuit the ring 
is pulled over the monopole, and the Berry phase increases by 2ߨ. (e), center, shows the circuit 
in the ߂-ܤ plane, with the locations of panels (a)-(d) indicated by red dots. The direction of the 
adiabatic loop is indicated by green arrows. 
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Figure 3: Screw dislocation in the m=5/2 eigenstate manifold. Panels (a),(b),(c) show the 
resonance spectrum of an ݉=5/2 wavepacket (see main text) as a function of magnetic field for Δ=-24 meV, 0, and +24 meV respectively.  Superimposed on the spectrum (dark-bright color 
scale) are the regions of phase space where classical periodic motion is possible (red) or 
impossible (blue) as determined by analysis of the classical Hamiltonian [34].  

 

Figure 4: Evolution of a resonance along an adiabatic loop.  (a) In the ߂-ܤ plane we define 
the elliptical contour ܤ ൌ ܤ ݏܿ ߂ ,ߠ ൌ ߂ ݊݅ݏ  =24 meV (for other߂ =4 T andܤ where ,ߠ
parameters of the Hamiltonian see main text). An adiabatic circuit, identical to that schematized 
in Fig. 2e, begins at state A (b) and proceeds clockwise, arriving at state B (l). The calculated 
wave functions at intermediate angles are shown in (c)-(k). At positive mass and increasing field 
(c)-(f), the lower component loses its outer lobe; at negative mass in decreasing field (h)-(k), the 
upper component loses its outer lobe. In (b)-(l) the subpanel side length is 330 nm; the upper and 
lower spinor components are shown in the corresponding subpanels. The resonance spectrum as 
a function of ߠ is shown in (m), with the path from A to B traced by green arrows.  
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