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Weyl semimetals (WSMs) have recently attracted a great deal of attention as they provide con-
densed matter realization of chiral anomaly, feature topologically protected Fermi arc surface states
and sustain sharp chiral Weyl quasiparticles up to a critical disorder at which a continuous quantum
phase transition (QPT) drives the system into a metallic phase. We here numerically demonstrate
that with increasing strength of disorder the Fermi arc gradually looses its sharpness, and close to
the WSM-metal QPT it completely dissolves into the metallic bath of the bulk. Predicted topo-
logical nature of the WSM-metal QPT and the resulting bulk-boundary correspondence across this
transition can directly be observed in ARPES and STM measurements by following the continuous
deformation of the Fermi arcs with increasing disorder in recently discovered Weyl materials.

Introduction. With the rapid progress at the frontier of
topological condensed matter physics, it has now become
evident that the landscape of topological states of mat-
ter extends beyond gapped systems and Weyl semimetal
(WSM) has emerged as the paradigmatic representative
of a gapless topological phase [1–4]. It features chiral
Weyl fermions as low energy excitations at pairs of points
in the momentum space where the non-degenerate va-
lence and conduction bands touch. These so called Weyl
points, due to the lack of inversion and/or time-reversal
symmetry, act as a source and sink of Abelian Berry
curvature, and the monopole charge of the Weyl nodes
defines the integer topological invariant of the system.
Consequently, WSMs possess Fermi arcs as surface states
that connect projections of the Weyl points onto the top
and bottom surfaces, as illustrated in Fig. 1.

Remarkably, a weakly disordered WSM describes a sta-
ble topological phase of matter. On the other hand, at
strong disorder, the WSM undergoes a quantum phase
transition (QPT), beyond which Weyl fermions cease to
exist as sharp quasiparticles and the system becomes a
diffusive metal, as it has been recently established using
both analytical [5–19, 21] and numerical [22–31] tech-
niques. Concomitantly, the associated wide quantum
critical regime supports a strongly coupled dirty non-
Fermi liquid (NFL). However, the fate of the Fermi arc
states in the vicinity of such QPT, a directly observ-
able imprint of the associated NFL, has remained un-
explored. We here address this problem of fundamental
importance, which is intimately tied to the question of
the topological nature of this transition, by numerically
following the evolution of topologically protected Fermi
arc states with increasing randomness in a WSM. We
focus only on random charge impurities as they are the
dominant source of elastic scattering in real materials.

We demonstrate that topologically protected Fermi arc
slowly dissolves into the emerging metallic bath accom-
modated by the bulk of a WSM as the strength of dis-
order gradually increases. At the brink of the onset of
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FIG. 1: (A) Topological origin of a Fermi arc [magenta lines
on the top (solid) and bottom (dashed) surfaces] in a Weyl
semimetal. Dispersion of one-dimensional chiral edge modes
(dark cyan) (B) on the top and (C) on the bottom surfaces,
occupying the fraction of the surface Brillouin zone in between
the projections of the left (red) and the right (blue) chiral
Weyl points, which respectively act as a source (with outward
arrows) and a sink (with inward arrows) of Abelian Berry
curvature. The red and blue dots on the top and bottom
surfaces are the projections of the bulk Weyl nodes. The
Fermi arc is a locus of the zero-energy modes (magenta dots
in B and C) of one-dimensional chiral edge states (shown in
dark green with arrow head in A).

metallicity the Fermi arc completely deliquesces, as the
number of low energy states as well as the fraction of the
wave function localized on the surface becomes extremely
small near the WSM-metal QCP, shown in Figs. 2 and 3,
which together constitute the central result of our work.
Thus, a bulk-boundary correspondence is unveiled across
the WSM-metal QPT that also establishes the topolog-
ical nature of this transition: The disappearance of the
Fermi arcs is directly related to the vanishing of the bulk
topological invariant, as the metallic phase, supporting
quasiparticles with finite lifetime and mean-free path, is
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FIG. 2: Evolution of one-dimensional chiral edge states connecting two Weyl points, located at kz = ± π
2a

in the clean system,
with increasing strength of disorder (W ). The states shown are within the energy window |E|/t ≤ 0.1 and a = 1 in the plots. As
disorder increases, more chiral edge states on the surface can be accommodated within a fixed energy window since the Fermi
velocity of bulk Weyl fermions, and consequently the velocity of chiral edge modes, gradually decreases. For weak disorder the
zero energy states can be joined to construct a sharp Fermi arc [red dotted line in C]. But, at stronger disorder the number
of states near zero energy and localized on the surface is rather sparse. In the proximity to the WSM-metal QPT that takes
place for W = Wc = 1.0± 0.1 (Fig. 4) and inside the metallic phase, the topological Fermi arc gets dissolved into the metallic
bulk and thus looses its support on the surface. The linear dimension in the x direction (thickness) is L = 300. Qualitatively
similar results are found in systems with L = 100 and 200 [see Figs. S2 and S3 [44]]

topologically trivial. The continuous dissolution of the
Fermi arc can directly be observed through ARPES and
Fourier transformed STM measurements in recently dis-
covered WSM in weakly correlated materials (TaAs, TaP,
NbP, etc.) [32–40] and possibly in proposed WSMs in
strongly correlated compounds, such as 227 pyrochlore
iridates [41, 42]. Indeed, a recent tunneling microscopy
experiment has shown robustness of the Fermi arc sur-
face states in TaAs for weak disorder [43], in agreement
with our theoretical predictions.

Model. To proceed with the numerical analysis, we
subscribe to a simple realization of a WSM from the fol-
lowing tight-binding model on a cubic lattice

H(k) = t[
∑
j=x,y

σj sin(kxa)+σz[2−
∑

j=x,y,z

cos(kja)]] (1)

that features only two Weyl nodes at momenta ±K0,
where K0 =

(
0, 0, π2a

)
, with a as the lattice spacing, σs

as the standard Pauli matrices (see Fig. S1 in Ref. [44]),
and t = 1 and ~ = 1 set hereafter. In the vicinity of
two Weyl nodes the low-energy excitations are described
by left (+) and right (−) chiral Weyl fermions with the
Hamiltonian

H±K0+q = v (∓qxσx + qyσy + qzσz) , (2)

where v = ta bears the dimension of Fermi velocity. The
low-energy dispersion around the Weyl nodes is given by

E±(q) = ±v|q|, where ± corresponds to the conduction
and valence band, respectively. Thus a WSM represents
a fixed point in d = 3 with z = 1, where z is the dynamic
scaling exponent (DSE) that defines relative scaling be-
tween energy and momentum, according to E ∼ |q|z.
Consequently, the density of states (DOS) in a WSM
scales as %(E) ∼ |E|2/v3, following the general scaling
form %(E) ∼ |E|−1+d/z.

Topology and the Fermi arc. The topological origin
of the Fermi arc surface state, illustrated in Fig. 1A,
can be demonstrated from the above tight-binding model
as follows. If we set kz = 0, the resulting two-
dimensional Hamiltonian corresponds to a lattice model
for time-reversal symmetry breaking quantum anomalous
Hall insulator, which supports a topologically protected
one-dimensional gapless edge state. Hence, a three-
dimensional WSM can be envisioned as stacked layers
of two-dimensional quantum anomalous Hall insulators
in the kz direction, within the interval − π

2a ≤ kz ≤ π
2a ,

for example, and each such layer accommodates a one-
dimensional gapless chiral edge state. Thus, the result-
ing WSM also supports gapless edge states on the sur-
face in the kz − ky plane with energy dispersion ±vky,
respectively on the top and bottom surface, as shown in
Figs. 1B and 1C. The topologically protected Fermi arc is
constituted by the locus of the zero-energy states of these
chiral modes between the two Weyl nodes, see Fig. 2A.
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FIG. 3: Fraction of the wave-function (f) localized on the surface for same set of low-energy chiral edge states shown in Fig. 2.
Even though at weak disorder the Fermi arc remains sharp [red dotted line in C], it gradually dissolves into the emerging
metallic bulk for stronger disorder. Thus, the disappearance of the Fermi arc promotes a bulk-boundary correspondence across
the WSM-metal QPT. Qualitatively similar results are found in systems with L = 100 and 200, see Figs. S4, S5 [44].

Notice that Fermi arc can also be found on the front and
back faces in the kz − kx plane. But, for concreteness,
we here focus only on the top surface and therefore im-
plement periodic boundary in the y and z directions. To
expose the Fermi arc on the kz − ky plane we impose
open boundary in the x direction, along which the linear
dimension is denoted by L.

The localization length (`) of each such copy of chiral
edge state is proportional to the bulk gap for a given value
of kz, and diverges (` → ∞) as we approach the Weyl
nodes, at ±K0, from the center of the surface Brillouin
zone (kz = 0). Consequently, the fraction of the wave-
function localized on the surface (inversely proportional
to `) decreases monotonically away from the center of the
Fermi arc, as shown in Fig. 3A.

Method. We here introduce a new technique, referred
as stacked-layer construction [see Secs. S1 and S2 of
Ref. [44] for details]: Disorder potential varies randomly
and independently within the interval [−W,W ], but only
along the x direction, while it remains completely flat in
each yz-plane. This method allows us to scan the evo-
lution of the Fermi arc with disorder in unprecedentedly
large systems of ∼ 1003 lattice sites [Figs. 2, 3, Ref. [44]],
and in turn to also probe the onset of a NFL phase.

WSM-metal QPT. To establish a bulk-boundary cor-
respondence across the WSM-metal QPT, we first study
the effects of random charge impurities in the bulk by
computing the average DOS [%(E)] in a dirty WSM with
periodic boundary conditions in all three directions, as
the average DOS at zero energy [%(0)] allows us to nu-

merically estimate the WSM-metal QCP [45]. The re-
sults displayed in Fig. 4, suggest that WSM remains
a stable phase of matter up to a critical strength of
disorder Wc = 1.0 ± 0.1, at which the system under-
goes a continuous QPT and enters into a metallic phase,
where %(0) becomes finite [44]. Such QPT is character-
ized by DSE z = 1.49 ± 0.05 [44], which matches quite
well with the results in Refs. [22, 24, 29–31] obtained by
using kernel polynomial method [46], and the one from
scaling of conductance obtained via transfer matrix for-
malism [26]. Consequently, the average DOS displays
distinct power-law behavior in the WSM %(E) ∼ |E|2
and at the WSM-metal QCP %(E) ∼ |E|, following its
general scaling form. Furthermore, the Fermi veloc-
ity of Weyl fermion vanishes as the WSM-metal QCP
is approached from the semimetallic side according to
v ∼ |δ|(z−1)ν , where δ = (W − Wc)/Wc. Such predic-
tion is consistent with the feature that with increasing
disorder a WSM becomes more metallic. Namely, DOS
near zero energy increases without altering the power-
law behavior for W < Wc, since %(E) ∼ |E|2/v3 before
entering the metallic phase, where %(0) becomes finite
[Fig. 4] and scales as %(0) ∼ δ(d−z)ν , with the correla-
tion length exponent ν = 1.02 ± 0.05 [44], which agrees
reasonably well with the ones obtained by using kernel
polynomial method [22, 24, 29–31]. Vanishing Fermi ve-
locity indicates the lack of sharp chiral excitations at the
WSM-metal QCP and the presence of a strongly cou-
pled NFL inside the entire quantum critical regime at
finite energies. We here extract these two exponents to
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FIG. 4: Average DOS [%(E)] in the bulk of a dirty WSM.
The critical strength of disorder for WSM-metal QPT is Wc =
1.0± 0.1; see Sec. S2 for details [44].

benchmark a newly developed “stacked-layer construc-
tion” methodology. Notice the dispersion of chiral edge
states E = ±vky is expected to become more flattened,
due to the decrease of the Fermi velocity in the bulk with
increasing randomness. Next we numerically establish
such qualitative change in the nature of the chiral edge
states for weak disorder and breakdown of the notion of
sharp Fermi arc states across the WSM-metal QPT.

Bulk-boundary correspondence. Fig. 2 displays the evo-
lution of one-dimensional chiral edge states within a fixed
energy window on the top surface for weak (W < Wc)
and strong (W > Wc) disorder. As the Fermi veloc-
ity of bulk Weyl quasiparticles decreases with increasing
disorder, a larger number of chiral edge states can be
accommodated within the same energy window at weak
disorder, as depicted in Fig. 2. However, as the strength
of disorder approaches the critical one for WSM-metal
QPT in the bulk, the number of low-energy states local-
ized on one surface decreases continuously. Finally, in the
close proximity to the QCP as well as inside the metallic
phase only very few low-energy states are localized on
the surface and the notion of a sharp Fermi arc becomes
moot. Thus across the WSM-metal QPT the Fermi arc
completely dissolves into the bulk metallic background.

To further anchor the topological nature of the WSM-
metal QPT, in Fig. 3 we display the fraction of the
wave-function for the same low-energy surface states as
shown in Fig. 2. With increasing disorder the fraction
of the wave function associated with the low-energy sur-
face states decreases monotonically. Close to the WSM-
metal QPT, as well as inside the metallic phase, only
a tiny fraction of the wave-function is localized on the
surface, consistent with our previous observation that at
strong disorder topologically protected Fermi arc looses
its support on the surface. Thus, our numerical analysis
unambiguously establishes a direct bulk-boundary corre-
spondence across the WSM-metal QCP and corroborates
in favor of the topological nature of this transition.

Typically we find that Fermi arc dissolves for W =
W∗ < Wc, with W∗ ≈ 0.8 [Figs. 3 and 4], irrespective
(approximately) of the system size [44]. In any finite sys-
tem arc states from opposite surfaces enjoy a finite over-
lap, which is inversely proportional to the localization
length (`) of the arc state for a given value of kz. Thus,
such an overlap is nominal at the center of the arc, but
increases monotonically as we approach the Weyl node,
where the arc states from the top and bottom surfaces
get connected via the bulk Weyl points. However, dis-
order introduces a new length scale in the system, the
correlation length (ξ), which diverges as ξ ∼ |δ|−ν in the
vicinity of the WSM-metal QCP. When ξ ∼ L the en-
tire Fermi arcs from opposite faces overlap significantly
and they loose support on the surface. Quite naturally,
in any finite system this occurs for W < Wc, and the
Fermi arc dissolves into the metallic bath of a Weyl sys-
tem for a subcritical strength of disorder. In addition, the
end points of the Fermi arc where overlap between the
two surfaces is much larger disappear for even slightly
weaker disorder (W < W∗). Hence, the dissolution of
a sharp Fermi arc at strong disorder is a precursor of
the WSM-metal QPT in the bulk, which through bulk-
boundary correspondence unveils the topological nature
of this transition. Furthermore, when ξ ∼ L the system
enters the critical regime associated with the WSM-metal
QPT that supports a strongly coupled NFL lacking sharp
quasi-particle excitations. Thus, dissolution of the Fermi
arc, besides the bulk-boundary correspondence, stands
as a fingerprint of an underlying NFL phase of matter.
At finite temperature the Fermi arc retains its sharpness
if ξ � λth, where λth ∼ ~v

kBT
is the thermal de-Broglie

wavelength. In a finite system the Fermi arc dissolves
when ξ ∼ min(L, λth). Our results regarding the disso-
lution of “shortened” Fermi arcs (now restricted within
− π

2a + |µv | ≤ kz ≤
π
2a −|

µ
v |) remain operative when chem-

ical potential (µ) is placed away from Weyl nodes.

Discussion. From the gradual disappearance of a sharp
Fermi arc on the surface of an increasingly disordered
WSM, we reveal the bulk-boundary correspondence asso-
ciated with the WSM-metal QPT as well its topological
nature that can also be observed in various Weyl ma-
terials through ARPES and STM measurements. Such
an outcome is also germane for Weyl superconductors
and superfluids, e.g. in the A phase of 3He [47], as well
as for topological Dirac semimetals, realized in Cd3As2
and Na3Bi [48–50], since they feature linearly dispersing
quasiparticles in the bulk and arc states on the surface.
Our results open up a route to investigate the fate of the
Fermi arcs in other members of the Weyl family, such as
double and triple WSMs, in the presence of randomness.
As disorder is respectively marginally relevant and rele-
vant in these two systems [29], we expect the Fermi arcs
to disappear for infinitesimal strength of disorder. Fi-
nally, our findings should motivate future investigations
on the role of other types of disorder [19], various non-
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perturbative effects [51–56], such as puddles, rare regions,
and Lifshitz tails [57], on the topological nature of WSM-
metal QPT and Fermi arcs, as well as stability of Fermi
arcs against disorder deposited only on the surface [58].

Acknowledgments. B. R. was supported by Welch
Foundation Grant No. C-1809, NSF CAREER grant
no. DMR-1552327 of Matthew S. Foster. We are thank-
ful to Matthew Foster, Pallab Goswami, Subir Sachdev,
Jay D. Sau for useful discussions. R-J. S. and B. R. are
thankful to Nordita, Center for Quantum Materials for
hospitality.

[1] C.-K Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu,
Rev. Mod. Phys. 88, 035005 (2016).

[2] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C.
Felser, R. J. Cava, and B. A. Bernevig, Science 353,
558 (2016).

[3] M.Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang,
Ann. Rev. Cond. Matt. Phys. 8, 289 (2017).

[4] N.P. Armitage, E.J. Mele, and A. Vishwanath,
arXiv:1705.01111 (2017).

[5] E. Fradkin, Phys. Rev. B 33, 3263 (1986).
[6] R. Shindou, and S. Murakami, Phys. Rev. B 79, 045321

(2009).
[7] P. Goswami, and S. Chakravarty, Phys. Rev. Lett. 107,

196803 (2011).
[8] Z. Huang,T. Das, A.V. Balatsky, abd D. P. Arovas, Phys.

Rev. B 87, 155123 (2013).
[9] B. Roy, and S. Das Sarma, Phys. Rev. B 90, 241112(R)

(2014).
[10] Y. Ominato and M. Koshino, Phys. Rev. B 89, 054202

(2014).
[11] S.V. Syzranov, L. Radzihovsky, and V. Gurarie, Phys.

Rev. Lett. 114, 166601 (2015).
[12] A. Altland and D. Bagrets, Phys. Rev. Lett. 114, 257201

(2015).
[13] T. Louvet, D. Carpentier, and A.A. Fedorenko, Phys.

Rev. B 94, 220201 (2016).
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