
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Robust operating point for capacitively coupled singlet-
triplet qubits

M. A. Wolfe, F. A. Calderon-Vargas, and J. P. Kestner
Phys. Rev. B 96, 201307 — Published 30 November 2017

DOI: 10.1103/PhysRevB.96.201307

http://dx.doi.org/10.1103/PhysRevB.96.201307


A robust operating point for capacitively coupled singlet-triplet qubits

M. A. Wolfe1, F. A. Calderon-Vargas2, and J. P. Kestner1∗
1Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA

2 Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA

Singlet-triplet qubits in lateral quantum dots in semiconductor heterostructures exhibit high-
fidelity single-qubit gates via exchange interactions and magnetic field gradients. High-fidelity two-
qubit entangling gates are challenging to generate since weak interqubit interactions result in slow
gates that accumulate error in the presence of noise. However, the interqubit electrostatic interaction
also produces a shift in the local double well detunings, effectively changing the dependence of
exchange on the gate voltages. We consider an operating point where the effective exchange is first
order insensitive to charge fluctuations while maintaining nonzero interactions. This “sweet spot”
exists only in the presence of interactions. We show that working at the interacting sweet spot can
directly produce maximally entangling gates and we simulate the gate evolution under realistic 1/f
noise. We report theoretical two-qubit gate fidelities above 99% in GaAs and Si systems.

I. INTRODUCTION

The singlet-triplet qubit1 is an attractive platform for
quantum information processing due to its fast single-
qubit operations2 and extended coherence times3,4. Volt-
age gates “detune” the DQD, i.e., adjust the energy dif-
ference ε between the two minima of the DQD potential,
driving rotations around the z axis of the Bloch sphere
via exchange interaction J(ε), and rotations about the
x axis are induced by a magnetic field difference across
the DQD, h. Two-qubit entangling operations can be
achieved via capacitive coupling5 or interqubit exchange
interaction6. Here we consider the former because it has
been demonstrated experimentally7,8 and is naturally ro-
bust to leakage outside of the logical subspace. The pri-
mary source of error is fluctuation of the detuning due to
charge noise in the device, inhibiting the singlet-triplet
qubit from performing at fault tolerant levels.

Single-qubit gates can be fast, with a π-rotation about
the z axis demonstrated in 350 ps1, and precise, with 99%
fidelity8. However, the relatively weak capacitive inter-
action generates two-qubit gates that are much slower,
140 ns for a cphase gate7, and these slow gates ac-
cumulate substantial errors in the presence of noise,
with fidelities yet to exceed 90%8. Strategies like dy-
namical decoupling9, pulse shaping10,11, composite pulse
sequences12–14, and control tuning using iterative exper-
imental feedback15 can improve the fidelity of gating in
the presence of noise. These methods are particularly ef-
fective against noise that fluctuates on timescales much
longer than the time required to complete the quantum
operation (i.e., the gate time). For the slower two-qubit
gates, however, high-frequency charge noise is difficult to
suppress. An alternative approach is to use a robust op-
erating point in control parameter space, often called a
“sweet spot,” where the Hamiltonian is insensitive to cer-
tain perturbations and hence the effect of fluctuations of
any frequency is reduced. The remarkable recent progress
of superconducting qubits can largely be attributed to
the introduction of the transmon sweet spot16. In this
work we introduce such a sweet spot for two coupled

singlet-triplet qubits.
Previous investigations of sweet spots in singlet-

triplet qubits have mainly focused on a single, isolated
qubit17–24, in which case the sweet spot previously dis-
cussed is not appropriate for capacitive coupling and the
sweet spot we present does not exist. Where the case
of interacting qubits has been considered25,26, the focus
was on the robustness of the coupling term in the Hamil-
tonian. However, the primary contribution to the error
during a two-qubit gate is from fluctuations of the strong
local terms in the Hamiltonian rather than in the weak
coupling term itself.

In the present work, using harmonic oscillator basis
functions in a Hund-Mulliken (HM) model for the singlet-
triplet two-qubit Hamiltonian27,28, we report an interact-
ing sweet spot where the local effective exchange terms
are insensitive to fluctuations in the detunings caused by
charge noise, while maintaining a nonzero two-qubit cou-
pling. Our results are meant to be taken qualitatively,
as computational methods like exact diagonalization29

or full configuration-interaction26 would be necessary for
quantitative precision. However, since anyways the ex-
perimental potential profile is typically not known pre-
cisely, a qualitative approach is not inappropriate and
provides a starting point for experimental fine-tuning.
While the sweet spot only suppresses charge noise, it
can be combined with standard echo pulses to also miti-
gate magnetic field gradient noise, thus producing high-
fidelity two-qubit entangling gates. We perform numer-
ical simulations of performance at the interacting sweet
spot in the presence of realistic noise with parameters
typical for GaAs and Si devices and find that fidelities
above 99% are achievable simply by choosing the oper-
ating parameters wisely.

II. SWEET SPOT ANALYSIS

The Hamiltonian for two capacitively coupled singlet-
triplet qubits in a linear four-dot array is written using
a HM approximation5,27,28, where the two-qubit Hilbert
space is spanned by products of the unpolarized triplet
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state |T0〉 and the hybridized singlet state |S̃〉 formed
by the lowest harmonic oscillator orbitals centered at
each minima, where the singlet contains a small ad-
mixture of a doubly occupied orbital controlled by the
detuning of the corresponding DQD, εi. In the basis{
|S̃S̃〉, |S̃T0〉, |T0S̃〉, |T0T0〉

}
,

H(ε1, ε2, h1, h2) =

2∑
i=1

[(
Ji(εi)

2
− βi(ε1, ε2)

)
σ(i)
z

+
hi
2
σ(i)
x

]
+ α (ε1, ε2)σ(1)

z σ(2)
z , (1)

where ~σ(i) are the Pauli operators for qubit i, Ji is the
local exchange splitting, and the interqubit Coulomb in-
teractions contribute both a local shift in the effective
exchange due to a monopole-diple interaction, βi(ε1, ε2),
and a non-local term due to dipole-dipole interaction
α(ε1, ε2). The magnetic field difference between the two
wells of each DQD is hi, which, in GaAs, originates from
an inhomogeneous Overhauser field, hi = h ≈ 2π× 30
MHz7, while in Si comparable values can be realized with
integrated micromagnets, hi = h ≈ 2π× 15 MHz30. We
use the convention that ε = 0 corresponds to a sym-
metric double well and ε > 0 raises (lowers) the inner
(outer) of the two dots. Pulsing both qubits to positive
ε then corresponds to tilting the DQDs away from each
other. Charge noise enters the Hamiltonian through J ,
β, and α terms since they are controlled electrically via
ε1 and ε2. It has been found empirically in single-qubit
experiments that the exchange splitting increases roughly
exponentially with detuning, Ji(εi) ∝ J ′i(εi)

9. Thus,
while large detuning generates fast gates, the sensitiv-
ity to charge noise, proportional to J ′i(εi), also increases
with detuning. However, when the Coulomb interaction
from the neighboring qubit is considered, the effective
exchange for qubit i, Jeff,i(ε1, ε2) ≡ Ji(εi)/2− βi(ε1, ε2),
can markedly deviate from simple exponential behavior
due to the monopole-dipole interaction27,28, as shown in
Fig. 1a.

To model experiments in GaAs7 we take relative per-
mittivity κ = 13.1ε0, effective electron mass m∗ =
0.067me, confinement energy of the quantum dots ~ω0 =
1meV (hence, an effective Bohr radius aB =

√
~/m∗ω0 ≈

34nm), and intraqubit distance 2a = 5aB (a denot-
ing the distance from center to minima of the DQD
in the (1,1) charge configuration). Appropriately sized
harmonic oscillator orbitals give an on-site interaction
energy U = 4.1meV. The tunneling rate, t0, is com-
puted assuming a quartic DQD potential28, resulting in
t0 = 7µeV. The resulting exchange model is near the
limit of the validity of the HM approximation, as can
be tested by checking the monotonicity of exchange with
intraqubit distance31, but the qualitative physics is still
safely captured.

In Si, recent overlapping Al gate layering techniques
have produced more densely packed dots with size aB =
29nm and spacing 2a ' 3.5aB

32. Using these param-
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FIG. 1: (Color online.) (a) Two examples of effective
exchange vs symmetric detuning ε1 = ε2 = ε for GaAs
(orange) and Si (blue) at two interqubit separations
(solid/dashed). The interacting sweet spots are located
extremely close to the zeros of J ′eff (ε). In the Si case,
we focus on the first extremum since the HM model is
more accurate at lower detunings. (b) Insensitivity
defined in Eq. (3) as a function of symmetric detuning
on the ε1–ε2 diagonal line for two examples of
interqubit separation.

eters, κ = 11.68ε0, and m∗ = 0.19me, one estimates
U = 5.3meV. Again assuming a quartic DQD potential
would produce a tunneling rate outside the validity of
HM, but since the tunneling barrier can be independently
tuned23,33, it is more reasonable anyways to directly set
the tunneling parameter to an experimentally reported
value. We take t0 = 40µeV33, which allows a good ap-
proximation for an intraqubit distance of 2a = 160nm.

The sensitivity of the Hamiltonian to charge noise is
quantified by the Frobenius norm of the gradient on the
ε1–ε2 plane,

∥∥∥~∇H(ε1, ε2)
∥∥∥ '

√√√√√ 2∑
{i,j}=1

(
∂Jeff,i

∂εj

)2

, (2)

where we have omitted the derivatives of α because
they are orders of magnitude smaller, as also noted
experimentally7, and their effect is negligible. (This
makes Eq. (2) easier to measure experimentally too.) Nu-
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FIG. 2: (Color online.) Interacting sweet spot operating
point vs interqubit distance 2R for (a) GaAs and (b)
Si. Log plot of maximally entangling gate time vs 2R
for GaAs (c) and Si (d). For GaAs, the gray region is
where the entanglement power (red) could not
consistently be optimized to within 1% of the maximum
value 2/9.

merically minimizing this function using the HM form of
Jeff,i derived in Ref. 28, we find previously unreported
minima that reduce the sensitivity by orders of mag-
nitude. The locations of these interacting sweet spots
depend on the interqubit distance 2R (i.e., the center-to-
center distance between the DQDs in the (1,1,1,1) charge
configuration), but always lie on the ε1 = ε2 diagonal
line in our search space. Therefore, from here on, we
only consider symmetric operating points ε1 = ε2 = ε
(though the fluctuations in εi are not restricted to be
symmetric). At the sweet spot, εss, J

′
eff (εss) ≈ 0 while

α (εss) 6= 034. This only occurs when interqubit interac-
tions are present and, if one stays predominately in the
(1,1,1,1) configuration, only when the qubits are tilted
away from each other (i.e., in a “breathing” mode rather
than a “sloshing” mode). Other sweet spots may exist
at larger, possibly asymmetric, detunings, but we cannot
use HM to explore those regions.

In order to capture the effect of charge noise on an
entangling gate, we define the two-qubit insensitivity in
analogy to the single-qubit case of Ref. 23 as something
roughly like the rate of entanglement divided by the rate
of decoherence,

I(ε) =
α(ε)∥∥∥~∇H(ε)

∥∥∥ . (3)

Fig. 1b shows that the insensitivity, though finite, in-
creases by orders of magnitude at an interacting sweet
spot.

The HM approximation can break down at high detun-
ing if the S(0,2) probability is large, so we restrict detun-
ings such that this probability is below ~ω0/U (which is

why the GaAs curves in Fig. 1 appear truncated). For Si,
two sweet spots are valid within this range, however, we
focus on the lower one because it is deeper in the regime
of HM applicability.

The location of the interacting sweet spot depends on
the interqubit separation, 2R, as shown in Figs. 2a and
2b. For the parameters given above, we find no inter-
acting sweet spots at interqubit distances greater than
2Rmax = 1544nm (674nm) for GaAs (Si). We do not
consider interqubit distances less than 4 times the in-
traqubit distance, 2Rmin = 4a, so as to safely neglect
tunneling between adjacent DQDs.

Operating at these new sweet spots is useful because
it generates an entangling operation while providing pro-
tection against charge noise. The entangling power can
be quantified as35

ep(U) =
2

9

(
1−

∣∣∣∣ tr2[(Q†UQ)TQ†UQ]

16

∣∣∣∣) , (4)

where Q is the transformation from the logical basis to
the Bell basis36. One can always construct a cnot from
at most two applications of any maximally entangling
gate37. We numerically search for the shortest time τ re-
quired to generate a maximally entangling gate in a single
square pulse of the detunings to the sweet spot, εss. The
results are shown in Figs. 2c and 2d. For our GaAs pa-
rameters, there is a region of interqubit distances where
no sweet spot gate can directly generate more than 99%
of the maximal entangling power. For our Si parameters,
there is no such excluded region, and gate times are gen-
erally faster in Si due to the smaller distance scale. Note
that gate time actually decreases as the qubits are moved
farther apart. Although this may seem counterintuitive
at first, it can be understood by noting that increasing
the interqubit distance moves the interacting sweet spot
to stronger detuning. Since τ ∝ 1/α(ε), and the nonlocal
coupling α(ε) increases exponentially with the detuning
(since α(ε) ∝ J1(ε1)J2(ε2) has been shown empirically7)
but, as an electrostatic term, only decreases polynomi-
ally with distance, if we restrict ourselves to operations
at the sweet spot, gate time will decrease as interqubit
distance increases.

III. SIMULATIONS

There are two main noise sources for singlet-triplet
qubits: fluctuations in the magnetic field gradient, δhi,
and fluctuations in the detunings, δεi. We now simu-
late the evolution of the two-qubit singlet-triplet system
when targeting maximally entangling gates at the inter-
acting sweet spot. The fluctuations in h are predomi-
nantly a low-frequency noise source, with its power spec-
tral density (PSD) Sh(ω) ∝ 1/ω2.638. We thus model the
noise in h as quasistatic with a standard deviation of 8
neV3 (4.2 neV30) in GaAs (Si). Detuning fluctuations
due to charge noise also contains a quasistatic contribu-

tion, δε
(QS)
i , with a standard deviation of 8µV×1eV/9.4V
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FIG. 3: (Color online.) PSDs used in the simulations
for two gate times, τ = 100ns and τ = 10µs. The noisy
thick solid lines show the 1/ω0.7 power spectral
distributions in the band 1/10τ to 10/τ calculated
numerically from a set of 100 temporal noise traces. For
clarity, outside that frequency band we plot with thin
solid lines the analytical Lorentzian behavior of these
PSDs outside the 1/f bandwidth (the numerically
calculated PSD has a slightly shifted low-frequency
plateau which is purely an artifact of the finite duration
of the time traces and it also has a white noise tail at
high frequency which is purely an artifact of the
discretization of time in the numerical integration of the
autocorrelation function). The dotted line shows 1/ω0.7

for reference.

(6.4µeV) in GaAs8 (Si30), but in addition includes higher

frequency noise, δε
(1/f)
i with a PSD Sε(ω) ∝ 1/ω0.79.

We generate this “1/f” noise by superimposing random
telegraph noise (RTN) traces with a range of switching

rates ν and varying amplitudes (1/2ν)
0.7−2

2 . The total
PSD is then computed in order to scale the noise to
the experimentally reported magnitude, 0.09 neV/

√
Hz

(10.04 neV/
√

Hz) at 1 MHz for GaAs9 (Si39). The re-
sulting PSD is shown in Fig. 3. In GaAs, the noise PSD
has been measured to be proportional to 1/ω0.7 for a
range 50 kHz < ω < 1 GHz8,9.

For ease of computation when solving for the evolution
operator, we assume that the effect of the 1/f noise on
the evolution operator of a gate of time length τ is pre-
dominantly from the frequency band ranging from 1/10τ
to 10/τ . Noise at lower frequencies we absorb into the
quasistatic contribution and noise at higher frequencies
we ignore since we confirmed numerically that it is too
fast compared to the entanglement dynamics of the evo-
lution to have a noticeable influence, essentially averag-
ing itself out. We then numerically construct the 1/f
noise from 10 RTNs with switching rates logarithmically
distributed uniformly in this range. The generated noise
is ∝ 1/ω0.7 in the relevant bandwidth and is Lorentzian
elsewhere. Fig. 3 shows an example of the noise gener-
ated in this way when τ = 100ns and τ = 10µs.

The noisy gate is constructed by computing the time

a) b)

FIG. 4: (Color online.) Infidelity of maximally
entangling gates operated at the sweet spot, with and
without an echo pulse, subject to both δh and δε(t)
noise for the range Rmin < R < Rmax in (a) GaAs and
(b) Si.

ordered exponential of Eq. (1) where εi(t) = εss+δε
(QS)
i +

δε
1/f
i (t) and hi = h + δhi, resulting in U ′. We then

compare U ′ to the same operation in the absence of noise
U using the averaged two-qubit fidelity defined in Ref. 40.

While the sweet spot provides protection against
charge fluctuations, it does not suppress δhi noise at
all. However, the quasistatic nature of the magnetic
field noise allows its effects to be suppressed with stan-
dard echo techniques. For example, a π-pulse about y
applied to both qubits halfway through the maximally
entangling gate operation suppresses (though not com-
pletely removes) the errors due to both δh and the DC
component of δJ since it anticommutes with the domi-
nant error terms produced by those noises, yet preserves
the entanglement because it commutes with the non-local
interaction. We compute gate fidelities both with and
without the π-pulses at the halfway point, assuming er-
rorless single qubit gates in our simulations, a reasonable
approximation since single-qubit fidelities near 99% are
accessible8. The results are shown in Figs. 4a and 4b.

For our GaAs parameters, the magnetic field noise is
much stronger than the residual charge noise coupled in
through higher order derivatives at the sweet spot, so un-
less a pulse sequence is used to suppress magnetic noise,
the optimal strategy is simply to use a sweet spot at the
largest possible R, resulting in the shortest gate times, so
as to reduce the accumulation of magnetic noise. How-
ever, if a simple echo is used to reduce the magnetic noise
its residual effects become comparable to the residual
charge noise. Reducing the interqubit distance decreases
higher order sensitivity to charge perturbations at the
cost of increasing the time over which the residual mag-
netic field noise accumulates, a tradeoff resulting in an
optimal distance for sweet spot operation of about 1 µm,
corresponding to a gate time of about 950ns, and yielding
a fidelity of 99.96%. For our Si parameters, due to the
generally faster gate times and larger charge noise, the
two types of error are already comparable without using
a pulse sequence, and the tradeoff results in an optimal
distance of 2R ≈ 324nm, corresponding to τ ≈ 830ns
and a fidelity near 86%. Once a pulse sequence is used
to further suppress magnetic noise, residual charge noise
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dominates and the optimal strategy is simply to use the
sweet spot at the smallest possible R, resulting in the
smallest second derivatives. Then one obtains fidelities
of up to 99.86%.

IV. CONCLUSION

Using the Hund-Mulliken model for two capacitively
coupled singlet-triplet qubits, we have found a symmet-
ric outward detuning, called the interacting sweet spot,
where the effective exchange is insensitive to charge noise.
This is particularly useful for combatting high-frequency
noise that is difficult to correct with existing standard
pulse sequences. We simulate the evolution at the sweet
spot under realistic charge and magnetic field noise and
show maximally entangling gates above the current 90%

fidelity8 are accessible. By using this new interacting
sweet spot to perform two-qubit gates and a noninter-
acting sweet spot23,24 to perform the single-qubit gates,
one can ensure that, with the exception of the ramping
times, the qubits remain protected against charge noise
for the entire duration of the computation.
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31 Q. Li, L. Cywiński, D. Culcer, X. Hu, and S. Das Sarma,
Phys. Rev. B 81, 085313 (2010).

32 D. M. Zajac, T. M. Hazard, X. Mi, K. Wang, and J. R.
Petta, Applied Physics Letters 106, 223507 (2015).

33 C. B. Simmons, M. Thalakulam, B. M. Rosemeyer, B. J.
Van Bael, E. K. Sackmann, D. E. Savage, M. G. Lagally,
R. Joynt, M. Friesen, S. N. Coppersmith, and M. A. Eriks-
son, Nano Letters 9, 3234 (2009).

mailto:jkestner@umbc.edu
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/ 10.1038/nphys1424
http://dx.doi.org/10.1038/nphys1856
http://dx.doi.org/ 10.1038/nature10707
http://dx.doi.org/ 10.1038/nature10707
http://dx.doi.org/10.1103/PhysRevB.75.085324
http://dx.doi.org/10.1103/PhysRevB.75.085324
http://dx.doi.org/10.1103/PhysRevB.90.045418
http://dx.doi.org/10.1103/PhysRevB.90.045418
http://dx.doi.org/ 10.1126/science.1217692
http://dx.doi.org/ 10.1038/s41534-016-0003-1
http://dx.doi.org/ 10.1038/s41534-016-0003-1
http://dx.doi.org/ 10.1103/PhysRevLett.110.146804
http://dx.doi.org/ 10.1103/PhysRevLett.110.146804
http://dx.doi.org/10.1038/srep12685
http://dx.doi.org/10.1038/srep12685
http://arxiv.org/abs/1703.00816
http://dx.doi.org/ 10.1038/ncomms2003
http://dx.doi.org/ 10.1103/PhysRevLett.110.140502
http://dx.doi.org/10.1103/PhysRevLett.118.150502
http://dx.doi.org/10.1103/PhysRevLett.118.150502
http://arxiv.org/abs/1606.01897
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1021/nl801282t
http://dx.doi.org/10.1103/PhysRevB.81.085313
http://dx.doi.org/10.1103/PhysRevB.82.075319
http://dx.doi.org/10.1073/pnas.1319875110
http://dx.doi.org/10.1073/pnas.1319875110
http://dx.doi.org/10.1073/pnas.1319875110
http://dx.doi.org/10.1103/PhysRevB.92.045403
http://dx.doi.org/ 10.1103/PhysRevB.91.075301
http://dx.doi.org/ 10.1103/PhysRevB.91.075301
http://dx.doi.org/ 10.1103/PhysRevLett.116.110402
http://dx.doi.org/ 10.1103/PhysRevLett.116.110402
http://dx.doi.org/ 10.1103/PhysRevLett.116.116801
http://dx.doi.org/10.1103/PhysRevB.84.121306
http://dx.doi.org/10.1103/PhysRevB.85.035319
http://dx.doi.org/10.1103/PhysRevB.85.035319
http://dx.doi.org/10.1103/PhysRevB.84.155329
http://dx.doi.org/10.1103/PhysRevB.91.035301
http://dx.doi.org/10.1103/PhysRevB.91.035301
http://dx.doi.org/10.1103/PhysRevB.90.125303
http://dx.doi.org/10.1073/pnas.1412230111
http://dx.doi.org/10.1073/pnas.1412230111
http://dx.doi.org/10.1073/pnas.1412230111
http://dx.doi.org/10.1103/PhysRevB.81.085313
http://dx.doi.org/ 10.1063/1.4922249
http://dx.doi.org/10.1021/nl9014974


6

34 Note that Ref. 27 also discusses a sweet spot resulting from
the β terms, but it is where Jeff = 0 rather than where its
derivative is zero, so it is not the same in that it is not a
robust operating point.

35 S. Balakrishnan and R. Sankaranarayanan, Phys. Rev. A
82, 034301 (2010).

36 Y. Makhlin, Quantum Information Processing 1, 243
(2002).

37 C. Williams, Explorations in Quantum Computing , Texts
in Computer Science (Springer London, 2010).
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