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We study the ground states of 2D lattice bosons in an artificial gauge field. Using state of the art
DMRG simulations we obtain the zero temperature phase diagram for hardcore bosons at densities
nb with flux nφ per unit cell, which determines a filling ν = nb/nφ. We find the bosonic Jain
sequence (ν = p/(p + 1)) states, in particular a bosonic integer quantum Hall phase (BIQH) at
ν = 2, are pretty robust in the hard-core boson limit, In addition to identifying Hamiltonians whose
ground states realize these phases, we discuss their preparation beginning from independent chains,
and ramping up interchain couplings. Using time dependent DMRG simulations, these are shown
to reliably produce states close to the ground state for experimentally relevant system sizes. Our
proposal only utilizes existing experimental capabilities.

The two-dimensional Bose-Hubbard model is one of
the simplest many body systems that exhibits nontriv-
ial physics. Initially proposed as a model for the super-
conductor insulator transition in solid state system1,2, it
was later realized most cleanly in optical lattices of ul-
tracold atoms3,4. It has been widely studied by varying
the ratio of hopping to interaction strength t/U , and the
filling nb of bosons per site. A third natural parameter is
the magnetic flux nφ, tuning of which has been demon-
strated recently in ultra-cold atomic systems in period-
ically driven optical lattices5. The phase diagram as a
function of magnetic flux through the unit cell is less
understood. This is the bosonic analog of the Harper-
Hofstadter problem of free electrons in a tight binding
model with magnetic flux6. However to realize interest-
ing phases, the bosonic problem is necessarily interacting
(also see related study of fermions7–11).

At finite flux density, quantum Hall phases (QH)12–14

of bosons might appear if the filling factor ν = nb/nφ
is appropriate. One interesting state corresponds to
ν = 2, it is called bosonic integer quantum Hall state
(BIQH)15,16. It belongs to the newly discovered sym-
metry protected topological (SPT) phase17–19, different
from all other fractional quantum Hall states that are
intrinsically topologically ordered. This BIQH state was
theoretically found before, e.g. two-component bosons or
higher Chern number flat bands model20–27. The BIQH
indeed can be constructed using the well-known compos-
ite fermion approach28. Specifically one can first attach
one flux quantum to the bosons, converting them into
composite fermions, and letting them form a νCF = p in-
teger quantum Hall state. This construction gives the so
called Jain sequence states at filling factor ν = p/(p+ 1),
taking p = −2 gives the BIQH state29.

For a given filling factor ν, there could be different
competing phases (e.g. different QHs, ordered states).
Which phase is the groundstate is an energetic problem
that usually differs case by case, but it is very useful if
one can learn some general knowledge about the appear-
ance of Jain’s composite fermion states. For fermions,
it is found that the Jain sequence state systematically

appears in the lowest Landau level. However, bosons be-
have quite differently: the half of the Jain sequence (the
hole part with p < 0) is missing in the continuum limit
with the lowest Landau level of bosons (U � tφ) (e.g.
see a review30 for numerics and Ref.31,32 for analytical
results). Therefore it is interesting to pass to the lattice,
on which one can achieve the infinite interaction limit
U/t → ∞ that may not be continuously connected with
the continuum limit. Indeed, early work motivating the
search for lattice effects reported a candidate BIQH at
low densities (n = 1/7, 1/9)29. Also, previous ED calcu-
lations on small system size found several Jain’s compos-
ite fermion states with p = 1, 229,33–35. In this paper, we
systematically show that the full Jain sequence (at least
up to p = ±5), in particular the BIQH state, appears in
the U →∞ limit.

Even if a quantum Hall state is the groundstate of a
simple Harper-Hofstadter model, it remains challenging
for cold-atom experiments to realize. Cooling into a non-
trivial ground state poses special challenges particularly
in the context of driven systems such as the Floquet en-
gineered optical lattice systems5,36–44. We need a cooling
scheme to overcome this issue. One way of cooling, called
adiabatic preparation45–49, begins with a trivial state
with low entropy, which is then slowly ramped to the
desired final state. Such adiabatic preparation schemes
in general require a continuous phase transition between
the initial state and the final state. For a quantum Hall
state, an adiabatic preparation scheme is even more dif-
ficult, since usually an exotic phase transition e.g. de-
confined phase transition) will be involved48. Finding an
appropriate adiabatic preparation scheme for optical lat-
tice quantum Hall states is the second question on which
we will make progress, and in particular our scheme ap-
pears to work for most quantum Hall phases, at least for
the system sizes relevant for experiments.

We will first present our DMRG simulation50–52 which
numerically finds robust Jain sequence states p/(p + 1)
(e.g. p = 1,±2, · · · ,±5) on the lattice with a relatively
high particle density. In particular, the BIQH state (at
p = −2) is found robust with a short correlation length
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FIG. 1. Harper-Hofstadter model on (a) square lattice with
flux φ = 2πnφ on each square plaquette, (b) triangular lattice
with flux nφ/2 on each triangle plaquette.

and quantized Hall conductance. A related state was
observed in the low density limit in Ref.29. Next we
use time-dependent DMRG simulations53–56 as well as
exact diagonalization to discuss the adiabatic prepara-
tion scheme for quantum Hall phases, focusing on the
BIQH state. The basic idea is beginning with the inde-
pendent chain limit of 1D Luttinger liquids, and ramping
up interchain couplings that also introduce the flux. To
benchmark the effectiveness of our preparation scheme,
we utilize the wave-function overlap between the state
generated by the time ramp and the true ground state as
an indicator. We also discuss a physical diagnosis using
two-point correlation function to detect the gapless edge
state of quantum Hall phases.

Model and Phases.—We consider the Bose-Hubbard
model (Harper-Hofstadter model) on a square (triangu-
lar) lattice,

H = −J
∑
〈ij〉

eiAija†iaj + U
∑
i

ni(ni − 1) (1)

The first term is the nearest neighbor hopping subject to
a background flux Aij , with

∑
A = φ = 2πnφ on each

square plaquette (or nφ/2 on each triangle). The second
term is the on-site Hubbard interactions, and we mainly
consider the limit U →∞ that gives the hard-core boson
constraint n = 0, 1. Numerically we confirm the phases
also survive under finite U .

One may expect quantum Hall phases for certain fill-
ing factor ν = nb/nφ, where nb is the boson density per
site. The simplest possibility is the Jain sequence with
ν = p/(p + 1) = nb/nφ from the composite fermion ap-
proach28. First, one can attach one flux quantum to the
boson, yielding the composite fermion. The composite
fermions still have density nb and see an effective flux
nφ − nb = nb/p, then naturally they will form an integer
quantum Hall state with νCF = p. Naively, the contin-
uum limit, which can be formulated as lowest Landau
level with contact Haldane’s pseudo-potential V δ(r−r′),
is the most ideal platform for quantum Hall phases. In
that limit, however, several states particularly the BIQH
state (p = −2) were not found in the extensive study
(e.g. see a review30).

In this paper, we focus mainly on the limit with
U →∞. Unexpectedly we numerically find that the Jain
sequence states (p = 1,±2, · · · ,±5, · · · ) systematically

TABLE I. A brief summary of Jain’s sequence on the square
lattice with small p = 1,±2 obtained in our DMRG simula-
tions. nb is the density per site. nφ is the flux per square
plaquette. The simulations are mainly carried on an infinite
cylinder with circumference L = 6, · · · , 12.

σxy = p
p+1

nφ nb

p = 1

σxy = 1/2

Laughlin State

1/4 1/8

1/5 1/10

1/6 1/12

· · · · · ·

p = 2

σxy = 2/3

Halperin’s (221) State

1/4 1/6

1/5 2/15

1/6 1/9

· · · · · ·
p = −2

σxy = 2

Bosonic Integer

Quantum Hall

1/6 1/3

1/8 1/4

1/10 1/5

· · · · · ·

appear in this limit. We also note that even if nφ � 1,
the system we consider here is still different from the
continuum limit. It is because the infinite on-site interac-
tion U will be much larger than the Landau level spacing
(∼ nφJ), making the simple Landau level physics invalid.
Theoretically the flux attachment requires the boson to
be a hard-core object, hence the infinite U may energet-
ically help the flux attachment to happen. This may be
an intrinsic mechanism for our numerical observation.

Several methods were applied to study this problem
before29,33–35,57–61, here we will use the infinite DMRG
simulation52 to tackle it. We numerically observe Jain
sequence states of bosons at filling factor ν = p/(p + 1)
for p = 1,±2, · · · ,±5. Generally the instability of the
Jain’s states grows with p. A consequence is that, to re-
alize a larger p one needs a more dilute density (meaning
a smaller nφ and nb). On the other hand, we also find
that the Jain sequence states are more stable on the tri-
angular lattice62. Here and the following we mainly focus
on small p = 1,±2 on the square lattice as summarized
in Table I. The results of larger p are summarized in the
supplementary materials62. We study infinite cylinder
with circumference Lc = 6, · · · 12 and different sizes give
consistent results. For a smaller flux density nφ than we
show in the Tables, we expect the same quantum Hall
state still exists. A particularly interesting state corre-
sponds to p = −2, that is the BIQH state at ν = 2.
Unlike fractional QH, BIQH doesn’t possess topological
order, instead it is a SPT (protected by the U(1) charge
conservation). So here our results provide a very simple
setting for experimentally realizing the putative interact-
ing SPT phase in spatial dimension higher than d = 1.

We numerically diagnose those quantum Hall phases
through their quantized Hall conductance (many-body
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FIG. 2. Numerical diagnosis of quantum Hall states ν =
2, 1/2, 2/3, Lc is the circumference. (a) Quantized Hall con-
ductance measured from flux insertion on an infinite cylin-
der. Charge transfer as a function of flux: 〈Q〉 = −σxy θ

2π
.

(b) The correlation length ξ of quantum Hall state versus
bond dimension m in DMRG simulations showing conver-
gence. The truncation error of DMRG simulation is around
10−8 ∼ 10−10. The correlation length is small compared with
the circumference, indicating that our DMRG simulation is
reliably producing 2D physics.

Chern number). To measure the Hall conductance, we
wrap the system on a cylinder, and measure the charge
pumping by threading 2π flux63,64. The pumped charge
is exactly the Hall conductance σxy65. As clearly shown
in Fig. 2 (a), the Hall conductance is precisely σxy =
1/2, 2/3, 2 for three quantum Hall states. Also we find
that the states have a short correlation length (Fig. 2
(b)), indicating a fully gapped state.

Adiabatic preparation from the 1D phase.—One im-
portant challenge for cold atom experiments is to cool
into the ground state. We now discuss one preparation
scheme for preparing quantum Hall phases using adia-
batic preparation starting from decoupled 1D wires. The
idea is that we first turn off hopping along one direction
(say Jy = 0). In this limit, we get decoupled 1D Luttinger
liquids with density nb. Then we slowly turn on the hop-
ping Jy (that also introduces the flux), which eventually
yield a 2D bosonic quantum Hall phase at the isotropic
limit Jy = Jx. The adiabatic preparation schemes by
coupling smaller sub-systems have also been used else-
where66.

Numerically we find this scheme can achieve the adi-
abatic preparation for bosonic (both fractional and inte-
ger) quantum Hall phases. One piece of numerical ev-
idence is the properties of the groundstate as we ramp
the system from 1D wires to a 2D quantum Hall state.
First we find the physical quantities (e.g. the energy
and entanglement entropy) evolve continuously as we
change the parameter (Jy). Second we observe that
the wave-function of the groundstate of the system is
changing smoothly, namely the wave-function overlap
|〈ψ(Jy)|ψ(Jy + dJy)〉| → 1 as dJy → 0.

To make a more direct contact with experiments,
we also simulate the preparation scheme as the non-
equilibrium process. It can be generally described by

|ψf 〉 =
∫ T
0
dte−itH(t)|ψ0〉. H(t) is the time-dependent
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FIG. 3. Non-equilibrium dynamics simulation of the prepa-
ration scheme with different ramp time T , and we define
J = Jx. We show the results of the BIQH state at nφ = 1/6,
nb = 1/3 of a square lattice placed on both the Lc = 6 in-
finite cylinder (a), (c) and the 6 × 6 square geometry (b),
(d). (a), (b) shows the time evolution of entanglement en-
tropy, where the solid line represents the entanglement en-
tropy of the groundstate versus Jy/Jx, the dots represent
the entanglement entropy from the time evolution. (c), (d)
shows the wave-function overlap per-site between the ground-
state ψ(Jy) and the state from time evolution ψ̃(Jy(t)). In-
triguingly TJ = 20 seems to give a better groundstate than
TJ = 100, the physical reason is unclear.

Hamiltonian that will be tuned experimentally,

H(t) =− Jx
∑
〈ij〉x

eiAija†iaj − Jy(t)
∑
〈ij〉y

eiAija†iaj

+ U
∑
i

ni(ni − 1) (2)

with time-dependent hopping on the y direction, Jy(t) =
Jxt/T . ψ0 is the initial state, that is the groundstate
of the starting Hamiltonian H(0). Numerically we first

discretize the time-evolution operator,
∫ T
0
dte−itH(t) ≈∏m

n=0 e
−i(tn+1−tn)H(tn+1), with tn = nT/m, m � 1, and

the final Hamiltonian H(tf = T ) is the one in Eq. (1).
Following the method introduced by Zaletel, et al.56, we
then rewrite the operator e−i(tn+1−tn)H(tn+1) as a matrix
product operator, and apply it to the wave-function suc-
cessively.

Fig. 3 shows the numerical results for the preparation
scheme. We carry out simulations for i) the infinite cylin-
der geometry (y direction is taken to infinite); ii) the fi-
nite square geometry that has open boundary condition
on both the x and y direction. To quantify how good
the adiabatic preparation is, we compare the state from
the time-evolution (ψ̃(Jy(t))) with the true groundstate
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(ψ(Jy)) of the static Hamiltonian. Specifically, we com-
pare the entanglement entropy and wave-function over-
lap between two states. Clearly the adiabatic prepara-
tion works well for both schemes, and the quality of the
adiabaticity increases as the preparation time becomes
longer. In particular the wave-function overlap (per site)
can reach 0.9999, which is a strong proof for our adiabatic
preparation scheme.

The finite square geometry works worse than the in-
finite cylinder geometry (e.g. see Fig. 3(c)-(d)). Such
behavior is expected since the quantum Hall state on a
finite square geometry has gapless edge modes. The gap-
less modes will inevitably lead to some undesired exci-
tations in an adiabatic preparation scheme. Fortunately,
the experimental study as well as our numerical simu-
lations are carried out on a finite system, which has a
finite gap ∆E ∝ 1/L. Therefore as long as the ramp-
ing time is long enough, the adiabatic preparation can
be ideally achieved. The preparation scheme can be fur-
ther optimized by adding a second tuning parameter, the
magnetic flux φ = 2πnφ

47. Tuning of φ has recently been
realized using quantum gas microscopes5. More details
can be found in the supplementary materials62.
Physical diagnosis of quantum Hall state.— Finally we

study a simple correlation function based method to di-
agnose quantum Hall states in mesoscopic geometries.
Although it is presently unclear how to directly measure
this quantity in experiments, this will serve as a proxy
for other correlation function based approaches to study
quantum Hall states. The QH state has a gapped bulk
but a gapless edge. To observe this property, one can

measure the correlation function 〈a†0(x)ay(x)〉 along one
direction as shown in Fig. 4(a). x represents the posi-
tion on the ~x direction, and a0(x) is always placed on
the edge. When x ∼ 0, the two-point correlation func-
tion is always measured on the edge, hence will give a

power law decaying behavior 〈a†0(x)ay(x)〉 ∝ 1/yα. On
the other hand, when x is placed in the middle of the

sample (x ∼ Lx/2), 〈a†0(x)ay(x)〉 is measuring the cor-
relation function in the bulk yielding an exponentially
decay behavior e−y/ξ. However, once ar(x) hits the edge

(r ∼ Ly), 〈a†0(x)ay(x)〉 will follow a power law decay
again. In summary, the two-point correlation functions
behave as (we consider x ≤ Lx/2 due to the symmetry),

〈a†0(x)ay(x)〉 ∝


1/yα, x ∼ 0

e−y/ξ, x ∼ Lx/2, y < Ly

1/(y + 2x)α, x ∼ Lx/2, y ∼ Ly
(3)

Fig. 4(b) shows data of two point correlation func-
tions of the bosonic integer quantum Hall state on a
large system, 9 × 12 cluster (from DMRG). It is con-
sistent with the above scaling behavior, Eq. (3). In par-
ticular, when x ∼ Lx/2, the correlation function shows
a non-monotonic behavior, it at first decays fast, but
then suddenly increases as ay hits the edge. Such scal-
ing behavior is also visible on a small system size, e.g.
6 × 6 cluster in Fig. 4(c). In contrast, a superfluid
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FIG. 4. Diagnosis of quantum Hall state by measuring two
point correlation function |〈a†0(x)ay(x)〉|. (a) The cartoon pic-
ture for a quantum Hall state on a finite Lx×Ly cluster. For
a quantum Hall state, x = 0, 1 corresponds to the edge on
which the correlation function decays algebraically. x > 1
corresponds to the bulk where the correlation function de-
cays exponentially, however if ay(x) hits the edge (y ∼ Ly),
the correlation function obeys power law. Numerical results:
(b) 9 × 12 cluster, nφ = 1/6, nb = 1/3, ν = 2 quantum Hall
state. (c) 6 × 6, nφ = 1/6, nb = 1/3, ν = 2 quantum Hall
state. (d) 6 × 6, nφ = 0, nb = 1/3, superfluid. (e) 6 × 6,
nφ = 1/6, nb = 1/2, staggered potential ∆ = 2, charge den-
sity wave.

(Fig. 4(d)) and a charge-density-wave (Fig. 4(e)) does
not show any non-monotonic behavior. The state from
our adiabatic preparation protocol also admits such non-
monotonic correlations (see supplementary materials62)
demonstrating that it retains physical characteristics of
the ground state.

Conclusion and outlook.—We study quantum Hall
phases and their adiabatic preparation scheme in the
Harper-Hofstadter model with hardcore bosons. Our the-
oretical study lends support to Jain’s composite fermions
picture in a regime where lattice effects play an impor-
tant role. We note a recent work finds another setting
for Jain’s composite fermions states of bosons67. On the
other hand our work indicates a way forward for the ex-
perimental study of quantum Hall phases in optical lat-
tices. It is interesting to understand the nature of the
phase transition from the 1D wires to 2D quantum Hall
phases. Other interesting problem is to come up with
experimental measurement protocols such as measuring
the Hall conductance38 or detecting edge state (e.g.68,69).
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29 G. Möller and N. R. Cooper, “Composite fermion theory
for bosonic quantum hall states on lattices,” Phys. Rev.
Lett. 103, 105303 (2009).

30 N. R. Cooper, “Rapidly rotating atomic gases,” Advances
in Physics 57, 539–616 (2008), arXiv:0810.4398 [cond-
mat.mes-hall].

31 Fenner Harper, Steven H. Simon, and Rahul Roy, “Per-
turbative approach to flat chern bands in the hofstadter
model,” Phys. Rev. B 90, 075104 (2014).

32 Thomas Scaffidi and Steven H. Simon, “Exact solutions
of fractional chern insulators: Interacting particles in the
hofstadter model at finite size,” Phys. Rev. B 90, 115132
(2014).

33 Anders S. Sørensen, Eugene Demler, and Mikhail D.

mailto:Corresponding author: yinchenhe@g.harvard.edu
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/ 10.1038/nature22811
http://dx.doi.org/ 10.1038/nature22811
http://arxiv.org/abs/1612.05631
http://arxiv.org/abs/1612.05631
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/ 10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1103/PhysRevX.1.021014
http://dx.doi.org/10.1103/PhysRevLett.106.236802
http://dx.doi.org/10.1103/PhysRevLett.106.236802
http://dx.doi.org/ 10.1103/PhysRevLett.112.156801
http://dx.doi.org/ 10.1103/PhysRevLett.112.156801
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/ 10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/ 10.1103/PhysRevB.86.125119
http://dx.doi.org/ 10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevLett.110.046801
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/ 10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevLett.111.090401
http://dx.doi.org/ 10.1103/PhysRevB.88.161106
http://dx.doi.org/ 10.1103/PhysRevB.88.161106
http://dx.doi.org/10.1103/PhysRevB.87.245123
http://dx.doi.org/ 10.1103/PhysRevLett.115.116802
http://dx.doi.org/10.1103/PhysRevLett.115.116803
http://dx.doi.org/10.1103/PhysRevLett.115.116803
http://dx.doi.org/10.1103/PhysRevLett.115.126401
http://dx.doi.org/10.1103/PhysRevB.93.195121
http://dx.doi.org/ 10.1103/PhysRevLett.63.199
http://dx.doi.org/10.1103/PhysRevLett.103.105303
http://dx.doi.org/10.1103/PhysRevLett.103.105303
http://dx.doi.org/10.1080/00018730802564122
http://dx.doi.org/10.1080/00018730802564122
http://arxiv.org/abs/0810.4398
http://arxiv.org/abs/0810.4398
http://dx.doi.org/ 10.1103/PhysRevB.90.075104
http://dx.doi.org/10.1103/PhysRevB.90.115132
http://dx.doi.org/10.1103/PhysRevB.90.115132


6

Lukin, “Fractional quantum hall states of atoms in optical
lattices,” Phys. Rev. Lett. 94, 086803 (2005).

34 Rebecca N. Palmer, Alexander Klein, and Dieter Jaksch,
“Optical lattice quantum hall effect,” Phys. Rev. A 78,
013609 (2008).

35 M. Hafezi, A. S. Sørensen, E. Demler, and M. D. Lukin,
“Fractional quantum hall effect in optical lattices,” Phys.
Rev. A 76, 023613 (2007).

36 M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes, and I. Bloch, “Realization of the hofstadter
hamiltonian with ultracold atoms in optical lattices,” Phys.
Rev. Lett. 111, 185301 (2013).

37 Marcos Atala, Monika Aidelsburger, Michael Lohse,
Julio T Barreiro, Belén Paredes, and Immanuel Bloch,
“Observation of chiral currents with ultracold atoms in
bosonic ladders,” Nature Physics 10, 588–593 (2014).

38 Monika Aidelsburger, Michael Lohse, C Schweizer, Mar-
cos Atala, Julio T Barreiro, S Nascimbene, NR Cooper,
Immanuel Bloch, and N Goldman, “Measuring the chern
number of hofstadter bands with ultracold bosonic atoms,”
Nature Physics 11, 162–166 (2015).

39 Dieter Jaksch and Peter Zoller, “Creation of effective mag-
netic fields in optical lattices: the hofstadter butterfly for
cold neutral atoms,” New Journal of Physics 5, 56 (2003).

40 Jean Dalibard, Fabrice Gerbier, Gediminas Juzeliūnas,
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