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Breakdown of classical electrostatics in the depolarization of quantum wires and

nanotubes

L. Shan and E. G. Mishchenko
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In quantum wires, such as metallic nanotubes, the optical absorption of the transverse polariza-
tion is controlled by the depolarization effect which stems from the redistribution of conduction
electrons around the circumference of the system. The traditional electrostatics treatment of the
depolarization effect relies on approximating the system by a cylinder with some effective dielectric
permittivity. We demonstrate that this simple intuitive picture does not adequately describe op-
tical absorption near its threshold, as the depolarization effect becomes dominated by many-body
correlations which strongly modify the spectral dependence of absorption.

PACS numbers: 73.21.Hb, 73.22.-f

Introduction. Quantum wires have a limited number
of conducting channels N , which originate from confine-
ment of electrons in the transverse direction [1]. Tran-
sitions between such channels determine the response of
a wire to a transverse electric field. For example, in the
case of a carbon nanotube [2], or similarly rolled two-
dimensional hexagonal crystals, such as tungsten sulfate
and gallium nitride nanotubes, the transverse polariza-
tion induced by the electric field arises from the motion of
carriers around the circumference of the nanotube. In the
quantum picture, this motion amounts to a redistribution
of electrons between different subbands corresponding to
different values of the azimuthal angular momentum m.
According to the band structure of metallic carbon nan-
otubes, see Fig. 1, the subbands with m 6= 0 are sep-
arated by an energy gap ∆ from the gapless right-and
left-moving states with m = 0, the latter gving rise to
longitudinal dc conduction of nanotubes.

The field-driven redistribution of electrons reduces the
value of the electric field inside the wire. This phe-
nomenon, known as the depolarization effect, has first
been addressed in the context of nanotubes in Ref. 3 and
further studied in Refs. 4–6. Because of the limited num-
ber of transverse channels, the suppression is not com-
plete. In the minimal electrostatic model, one can treat
the wire as a solid cylinder with some effective dielec-
tric permittivity ε⊥. From elementary electrostatics [7]
it then follows that the electric field inside the wire is
uniform, Ei = 2E0/(1+ε⊥), and reduced compared with
the applied external field E0. In terms of the effective
transverse susceptibility α⊥ = (ε⊥ − 1)/4π, this can be
restated in the equivalent form,

Ei =
E0

1 + 2πα⊥
= E0

[

1− 2πα⊥ + (2πα⊥)
2 − ...

]

. (1)

The meaning of the consecutive terms in this geometric
series is rather transparent: the external field E0 induces
the surface charge density σ = 2πα⊥E0 cos θ, where θ is
the circumferential angle; this charge density produces
the correction E(1) = −2πα⊥E0 to the field E0. In turn,

FIG. 1: Geometry of a nanutube in a transverse electric field
(left) and the absorption transitions induced by such field:
with the increase of the azimuthal angular momentum m,
0 → +1 and −1 → 0 (center) and with the decrease of it,
0 → −1 and +1 → 0 (right).

this correction induces additional charge density, and so
on, resulting in the infinite series, Eq. (1).
The same approach can be extended to an ac field [3, 4]

as long as its frequency ω is low enough for the retarda-
tion to be disregarded: ω ≪ c/R, where R is the ra-
dius of the nanotube. Such condition is always satisfied
for optical frequencies. Above the threshold frequency
ω = ∆, the transitions between m = 0 and m = ±1 sub-
bands become possible, Fig. 1. The imaginary part of
α⊥(ω) determines the absorption spectrum. Calculating
the amount of Joule heat generated per unit length of
the tube, we can write it in either of the two equivalent
forms,

Q =
π

2
ωR2|Ei|2α′′

⊥(ω) =
πω

2
R2|E0|2

(

α⊥(ω)

1 + 2πα⊥(ω)

)′′

.

(2)

It is our main finding that such intuitively appealing
electrostatics approach nonetheless breaks down in the
most interesting situation – near the absorption thresh-
old, ω ≈ ∆. Before explaining why it fails to account
properly for the electron-electron Coulomb interaction,
let us point out that Eqs. (1)-(2) are in fact equivalent to
the Random Phase Approximation (RPA) [8]. In the lat-
ter, a system responds to a Fourier harmonic ϕm(ω)eimθ

of a weak electric potential with the variation of the par-
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ticle density,

〈ρm(ω)〉 = χm(ω)eϕm(ω), (3)

whose magnitude is determined by the polarization func-
tion

χm(ω) = −i
∞
∫

0

dt eiωt

∞
∫

−∞

dx
〈[

ρ̂m(x, t), ρ̂−m(0, 0)
]〉

,

(4)
which is a correlator of the electron density opera-
tors ρ̂m(x, t) expressed as a sum over the channels
with different azimuthal angular momenta: ρ̂m(x, t) =
∑

µ ψ̂†
µ(x, t)ψ̂µ+m(x, t).

Because the potential, ϕ = −RE0(t) cos θ, of a ho-
mogeneous external electric field E0 contains only the
dipolar Fourier harmonics, ϕ±1 = −E0R/2, only the
m = ±1 components of the charge density can be ex-
cited. From symmetry it follows that 〈ρ1〉 = 〈ρ−1〉. Uti-
lizing Eq. (3) to relate the potential to the surface charge
density, σ = e〈ρ1〉 cos θ/(πR), and then using the charge
conservation law to find the sheet electric current flow-
ing around the surface of the wire, one can calculate the
amount of Joule heat dissipated in the wire,

Q = −ω
4
R2e2|E0|2χ′′(ω). (5)

(To ease notations, we omit the subscript 1 in χ1(ω).)
When Coulomb interaction is ignored, the correlation

function (4) follows from the elementary Lindhard calcu-
lation [3] for the band structure of a nanotube, obtained
by “rolling” a π-band of graphene [2]. At zero temper-
ature, the only transitions with the change of the angu-
lar momentum +1 that are possible are those between
the gapless right-movers ǫ = vp or left-movers ǫ = −vp
subbands with m = 0 and the first gapped subbands
|ǫ| =

√

∆2 + v2p2, where ∆ = v/R is the energy gap; see
Fig. 1. All four such processes contribute equally. For
positive ω:

χ(0)(ω) =
N

π

∞
∫

0

dp

ω − vp−∆− p2/2m∗ + iη

≈ N

vπ

[

ln |Ω| − iπΘ(−Ω)
]

, Ω =
∆− ω

∆
, (6)

Absorption can only occur if the frequency of the external
field exceeds the gap, ω > ∆. In nanotubes, there are two
orbital valleys and have two spin directions, so that the
total electron flavor degeneracy N = 4.
Consider now the Coulomb interaction of electrons,

V̂ =
1

2

∑

µνm

Vm

∫

dx ψ̂†
µ+m(x)ψ̂†

ν−m(x)ψ̂ν(x)ψ̂µ(x), (7)

with the matrix elements Vm for the scattering events
that occur with the change of the angular momentum m

previously found in Ref. 9. For non-zerom, Vm = e2/|m|,
while V0 happens to be logarithmically stronger. For
examle, V0 = 2e2 ln (d/R), in a setting where a metallic
gate is located some distance d away.
Coulomb interaction strongly modifies the absorption

lineshape even though traditional exciton bound states
[10] cannot be formed. Indeed, the absence of backscat-
tering forbids velocity reversal of the gapless states. As a
result, attractive Coulomb interaction between electrons
and holes cannot confine them to a finite region of space.
Suppose first that one ignores V0 and only retains

V1 = e2 to account for the transverse polarization of the
system. Because each closed electron loop brings the fla-
vor degeneracy N , in the formal limit of N ≫ 1 one
can retain only the diagrams with the maximum possi-
ble number of the loops. This yields the RPA geomet-
ric series for the density-density correlation function (4),
which consists of consecutive loops connected by the in-
teractions V1, as shown in Fig. 2,

RPA : χ(ω) =
χ(0)(ω)

1− V1χ(0)(ω)
. (8)

This expression together with Eq. (5) reproduces the dis-
sipated power (2) as long as the transverse susceptibility
is identified with the non-interacting (V0 = 0) polariza-

tion operator: α⊥(ω) = − e2

2πχ
(0)(ω). This result predicts

that the threshold absorption at Ω = 0, rather than being
a step function, as in Imχ(0)(ω), is suppressed as ln−2 Ω.
Ignoring V0, however, can be problematic in one-

dimensional systems [11–13]. For example, in nanotubes,
the density of states of the gapless subbands has a power-
law suppression, ν0(ǫ) ∝ ǫα [14–17]. The exponent
α = (1 − g)2/2Ng is customarily expressed via the ef-
fective coupling constant g = v/u, the ratio of the band
velocity v and the velocity of the collective charged plas-
mon modes, u = v

√

1 +NV0/πv. Similarly, the den-
sity of gapped states is suppressed as well, ν1(ǫ) ∼
(ǫ − ∆)−1/2+β , compared with the non-interacting case
[18]; the suppressing exponent is β = (1 − g2)2/2Ng.
These non-perturbative renormalizations originate from
the decomposition of a single-electron state into an infi-
nite number of charged plasmon modes [19].
The modification of the polarization function (6) by

the V0 interaction was studied in Ref. 20. In contrast
to the density of states, the polarization function is en-

hanced at low Ω:

χ(0)
V

(ω) = −NΓ(γ)

vπ

[

Ω−γ − 1
]

, γ =
2− g − g3

2N
, (9)

with the subscript in χ(0)
V

indicating that the interac-
tion V0 is taken into account (the superscript reminding
that one still assumes V1=0). It is worth noting that
the gapped state created in the interband transition acts
similarly to a core-hole in the conventional X-ray edge
singularity problem studied by Mahan [21] and Nozières
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FIG. 2: First and second order corrections to the polarization
function χ1(ω) in the interaction V1 (wavy line). The inter-
action V0 (dashed line) is accounted to all orders, including
interactions between different loops (not shown in the second
order diagram). The diagrams providing the leading contri-
butions are shown. Massive gapped electrons m = ±1 are
indicated with a double line; gapless states with a single line.

and De Dominicis [22]. The one notable difference is that
in addition to the interaction with a core-hole, electrons
themselves are strongly interacting. Nonetheless, the
edge enhancement in Eq. (9) is the result of a competition
between the Mahan-type enhancement and the Nozières-
De Dominicis orthogonality catastrophe-type suppression
for a given value of the interaction strength g.
The polarization function (9) determines the response

of the nanotube to the actual electric field Ei inside it,

Q ∝ −Imχ
(0)
V |Ei|2 ∝ Ω−γ |Ei|2, cf. the first identity in

Eq. (2). However, to relate the inside field Ei to the
applied field E0 one also has to take into account the
dipolar interaction V1. It is the latter that is responsible
for the redistribution of electrons around the circumfer-
ence of the wire in response to a perpendicular electric
field.
If one used the electrostatics/RPAmean-field approach

embodied in Eqs. (2) and (8), one would arrive at the
absorption, Q ∝ Ωγ |E0|2, suppressed with the same ex-
ponent γ.
Below we show that the depolarization suppression of

the near-threshold absorption is in fact much stronger,

Q ∝ (ω −∆)3γ |E0|2, (10)

and demonstrate that the conventional electrostatics fails
because the independent-loop approximation does not
apply in the presence of V0-correlations between differ-
ent loops, as illustrated in Fig. 2.
To account for the leading interaction V0 to all orders,

we use the bosonization approach [19] wherein the right-
and left-moving gapless electronic operators are repre-

sented as the exponentials,

ψ̂r,l(t, x) =
Ûr,l√
2πR

ek̂r,l(t,x), (11)

of the bosonic phases k̂r,l with Ûr,l being the fermionic
counting operators. The inverse tube radius 1/R is cho-
sen as the ultraviolet momentum cut-off. The bosonic
phase operators are given by,

k̂r,l(t, x) =
√
π
∑

q

1± g sgn q
√

2gN |q|L

[

âqe
−i|q|ut+iqx − c.c.

]

+
√
2π

N−1
∑

i=1

∑

q

Θ(±q)
√

N |q|L

[

b̂iqe
−i|q|vt+iqx − c.c.

]

,

(12)

with the upper/lower signs corresponding to the
right/left-moving electrons, respectively. The operators
âq represent the fast charged plasmon modes of the sys-

tem, while the remaining N − 1 modes b̂iq are neutral
(arising from the spin and band degeneracy) and prop-
agating with the band velocity v; the Hamiltonian of
the interacting gapless electrons is thus simply, Ĥ =
u
∑

q |q|â†q âq +
∑N−1

i=1 v
∑

q |q|b̂
†
iq b̂iq.

Although one cannot fully bosonize massive gapped
states, it is possible to take advantage of the fact that for
optical transitions near the threshold the momenta of the
massive states are small and the electrons are virtually
stationary there, p/m ≪ v, u [23]. Accordingly, massive
states can be represented as a product [18, 20],

ψ̂1(t, x) = ψ̂
(0)
1 (t, x)eK̂(t,x), (13)

of a free fermion operator ψ
(0)
1 and the exponential of a

phase, which is a time integral of the electric potential of
the fluctuating plasmon field:

K̂(t, x) = (1− g2)
∑

q

√

π

2Ng|q|L
(

âqe
−i|q|ut+iqx − c.c

)

.

(14)

Unlike the symmetric part of the interaction V0, the
dipolar interaction V1 is not readily amenable to the
bosonization technique. We are thus going to use a “hy-
brid” approach where V1 is treated by means of the usual
diagrammatic technique. For example, the main contri-
bution to the first order in V1 (shown in Fig. 2) turns out
to be

χ(1)
V

(ω) = −V1N(N − 1)

4π2R2

∞
∫

0

dt ei(ω−∆)t

t
∫

0

dt′
〈

e−kr(t)eK(t)e−2K(t′)e2kr(t
′)eK(0)e−kr(0)

〉

, (15)
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where the averaging is performed over the Gaussian fluc-
tuations of the bosonic fields. The integrals over the coor-
dinates have already been eliminated from Eq. (15) owing
to the sharply spatially localized propagators composed

of the (slow) free fermion operators ψ
(0)
1 . As a result, all

the bosonic fields can be taken at x = 0 with only their
time arguments shown in Eq. (15). The composition of
the bosonic average in Eq. (15), as well as the signs of
the operators in the exponents, can be traced to the na-
ture and direction of the electron propagators shown in
Fig. 2.

While the four different combinations of massive and
massless propagators contribute equally to χ(1) when V0
is ignored, this is no longer the case for V0 6= 0. For
example, the first order contribution is different where
the electrons of the same chirality (left- or right-movers)
propagate around both loops. The most singular contri-
bution comes from the top diagram of Fig. 2, where both
chiralities are the same and which yields the highest neg-
ative power, ∝ Ω−3γ . Indeed, calculating the average in
Eq. (15) and imposing a small-time cut-off 1/∆ corre-
sponding to high energies, we arrive at,

χ(1)(ω) =
V1N

2

4π2v2

∞
∫

1/∆

dt

tγ
ei(ω−∆)t

t−1/∆
∫

1/∆

dt′

[(t− t′)t′]1−2γ

=
V1N

2

4π2v2γ2

[1

3

(

Ω−3γ − 1
)

−
(

Ω−γ − 1
)]

(16)

Here the integral is taken in the approximation of small
γ, which is formally realized in the limit of a large number
of channels N ≫ 1. When γ ≪ 1, it is the regions near
the integration limits that contribute the most to the
integrals.

The leading term in Eq. (16) has a greater power,
Ω−3γ , than what could be näıvely expected (Ω−2γ) from
a simple RPA product of the two loops each given by
Eq. (9). Similarly, we identify the leading contributions
to every order in V1 as those that i) contain the same
chirality (r or l) in all loops and ii) have two massive par-
ticles either created or destroyed at each V1 interaction
line. In the n-th order the leading contribution happens
to be ∝ V n

1 Ω−(2n+1)γ , which can be quickly established
from power counting. The actual integrals for the nu-
merical coefficients become very complicated in higher
orders. However, it is possible to uniquely construct a
series that obeys the following two properties: the n-th
order term is an odd-power polynomial in Ω−γ , and the
coefficients in the polynomial are chosen in such a way
that in the limit of γ → 0 the n-th order term reproduces
lnn+1 Ω, the correct non-interacting (V0 = 0) limit. This
leads to the following expression

χ(n)
V

(ω) = −N

πv

(−λ1)n
γn+1

n
∑

j=0

A
(n)
j

(

Ω−(2j+1)γ − 1
)

, (17)

FIG. 3: [Color online] Absorption lineshape for different val-
ues of V1 = 4πvλ1/N . For small V1 values (solid blue line) the
suppression (depolarization) induced by it overcomes the en-
hancement due to V0 sufficiently close to the threshold. For
larger V1 values the depolarization effect dominates every-
where.

where the effective dimensionless dipolar coupling con-
stant is λ1 = NV1/(4πv); the extra factor 1/4 originates
from the fact that only one out of four possible loops has
the strongest singularity at Ω = 0.

The coefficients of the leading j = n terms are A
(n)
n =

(n + 1)/[2n(2n + 1)]. The summation of these leading
terms can be performed exactly with the identity,

∞
∑

n=0

n+ 1

n+ 1
2

y2n+1 =
y

1− y2
+arctanh y ≈ iπ

2
− 2

3y3
, (18)

where the last approximation is valid for y ≫ 1. Accord-
ingly, we obtain that the imaginary part of the polariza-
tion operator close to the threshold is

χ′′
V
(ω) = −4Nγ

vλ21

(

ω −∆

∆

)3γ

. (19)

The obtained result means that the optical absorption
(5) close to the threshold ω = ∆ becomes suppressed
due to the depolarization effect much more significantly
than could be predicted based on the electrostatic mean
field theory, ∝ (ω −∆)γ . This can be viewed as a much
stronger Ei ∝ (ω − ∆)2γE0 suppression of the electric
field acting inside the wire, compared with Eq. (1).
The absorption lineshape is the result of an interplay

between the symmetric V0 and the dipolar V1 interac-
tions, see Fig. 3. The result (19) holds sufficiently close
to the threshold no matter how small V1 is: the latter
is always relevant at Ω → 0. The magnitude of V1 de-
termines how close to the threshold the transition to the
domain of Eq. (19) happens. If λ1 ≪ γ, the interac-
tion V1 is not important far from the threshold, where
the absorption is given by the imaginary part of Eq. (9),
χ′′

V
= −NΩ−γ/v, which increases with decreasing Ω. At

Ω2γ ∼ λ1/γ the frequency dependence of the absorption
crosses over to that of Eq. (19) and drops sharply at
the threshold. If, in contrast, the interaction V1 is not
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very small, so that λ1 >∼ γ, the expression (19) should
be used everywhere near the threshold. This is what is
expected to happen in metallic carbon nanotubes. The
absorption given by Eqs. (5) and (19) should be testable
in optical absorption measurements. Even though pre-
vious measurements of transverse absorption [24, 25] do
not provide sufficient resolution near the threshold, the
modern advances in nanotube manufacturing [26] should
make such measurement possible.
Finally, we note that although the depolarization effect

exists in both semiconducting and metallic nanotubes,
the physical mechanisms implicated in the two cases are
different. As shown above, depolarization effect in metal-
lic nanotubes is dominated by the shake-up of an infinite
number of low-lying plasmon excitations. In contrast, in
semiconducting nanotubes with no gapless states, where
conventional excitonic effects can be expected to dom-
inate, various ab initio approaches, such as the Bethe-
Salpeter method, should be used [27, 28].
Discussions with O. Starykh, S. LeBohec, and D. Pesin
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