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Abstract. We show that spin angular momentum (SAM) of light is transferred to matter together with 
momentum and energy, and obtain the expression for the corresponding torque. This can lead to 
appearance of spin forces, which correspond to the discrepancy between the Lorentz and Eistein-Laub 
forces. In plasmonic metals these spin forces result in a plasmogalvanic phenomenon, which is pinning of 
the plasmon-induced electromotive force to atomically-thin layer at the metal interface. 

 

The field of plasmonics studies surface plasmon polaritons (SPPs), which are elementary collective 
excitations of metal nanostructures which has attracted much attention and found numerous applications 
over the past several decades. The plasmon drag effect (PLDE), a new non-linear phenomenon, is the 
giant enhancement of photoinduced rectified electric currents in metal films and nanostructures under 
surface plasmon resonance conditions [1-13]. This phenomenon is important for applications ranging 
from plasmonic based electronics to sensing and optoelectronics. PLDE is not fully explained yet and is 
very interesting from the fundamental point of view as an example of light-matter interaction in strongly 
enhanced and specially structured plasmonic fields. Here we discuss PLDE starting from general 
relationships between the conserved quantities in electromagnetic field, such as energy, momentum, 
angular momentum and rectified responses of materials (electric currents, emf), and apply them, as a 
particular example, to surface plasmon polaritons (SPPs) in flat geometry. 

The conserved quantities have been exhaustively studied in classical mechanics and thermodynamics 
[14,15]. However the conservation laws for Maxwell equations are well established only in free space for 

energy 𝑊 = !
!!
(𝐸! + 𝐻!) [16-18], momentum 𝑺 = !

!!
𝑬×𝑯 [16-18], and angular momentum 𝑱 = 𝒓×𝑺 

[18]. Recent studies of photonic conserved quantities in free space demonstrate separation of light angular 
momentum into orbital angular momentum (OAM) and SAM [19,20], conservation laws for angular 
momentum [21], OAM, and SAM [22]. In interaction with materials, the conserved quantities of 
electromagnetic fields are not fully understood and are subjects of active debate [23]. Transition from 
photonic conserved quantities in free space to those in media is crucial and is equivalent to for example 
introducing potential energy into the full energy of a point particle 𝐸 = 𝑚𝑣!/2 + 𝑈(𝑥) [14]. Here we 
introduce a new quantity Σ and show that it is a conserved quantity of Maxwell equations in a generic 
material (including chiral, magnetic, anisotropic media, etc.). We call this conserved quantity “spin” since 
in free space limit it becomes the electromagnetic spin introduced in 2009 by M. V. Berry [19].  

Another aspect not present in free space is transfer of conserved quantities between electromagnetic fields 
and matter, which for point massive particles is equivalent to presence of Coulomb's surface friction or 
fluid resistance. Directly from the conservation laws we obtain here, one can see how the SAM of light is 
transferred to matter, i.e. via the torques provided by Eqs. (3)-(4) below. In classical metal, this torque can 
be represented in the form of extra “spin” forces applied to the material (see Fig. 1(d)). These forces enter 
the equation for transfer of the momentum (Eq. (7) below). Note that our result brings more clarity into 
Lorentz vs. Einstein-Laub forces debate [24-29] and the force distribution paradox presented by 
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Mansuripur [30], by showing that the discrepancy in the Lorentz and Eistein-Laub force distributions 
corresponds to transfer of SAM of light. 

	
Fig. 1. (a) Schematic of the absorption of an SPP quantum by an electron involving transfer of energy ℏ𝜔, momentum ℏ𝑘! and 
average SAM ℏS!, where S! is the Stokes parameter, characterizing the helicity. (b) Schematic of the plasmon drag pinning to 
the atomic layer at the metal surface due to SAM absorption. The volume spin forces practically cancel SPP pressure and most of 
the SPP momentum is deposited by the surface force at the metal interface. (c) Possible scenario when SAM absorption torque 
results in spin polarization instead of spin forces. (d) Channels for electromagnetic momentum transfer in media and 
corresponding photoinduced electric effects. 

The conserved quantities of electromagnetic fields are bilinear forms of the field vectors. This means that 
the conserved quantities of continuous wave or narrow-bandwidth pulsed fields are transferred to matter 
via rectified and second-harmonic channels. The rectified part of the transfer corresponds to the 
systematic changes in the materials induced by light and PLDE is a major example of such rectification. 
In metal nanostructures with smooth surfaces the PLDE emf is proportional to the momentum of the 
surface plasmon polaritons (SPP) and absorbed SPP energy [4]. Irregular or strongly nanostructured 
surfaces allow for additional contributions into PLDE, which we call plasmogalvanic effects [31-37]. 
Recently the subject of angular momentum of light [38] and its transfer to matter [39,40] have added to 
the list of topics which can be studied via photo-induced electric responses in metals, in particular by 
considering currents induced by circularly polarized light off surface plasmon resonance frequncy [12,13].  

The SAM of SPPs has attracted considerable attention due to the recent discovery of spin-momentum 
locking in SPP waves [41-44]. Here, considering generalized fundamental conservation laws for light in 
matter, we show that SAM of SPPs is absorbed by the metal plasma together with energy and momentum 
of SPPs (see Fig. 1(a)). From classical point of view, as discussed below, the SAM absorption torque 
corresponds to additional forces, and results in dramatic redistribution of SPP-induced forces on electrons 
with localization of those forces at the very surface of metal (Fig. 1(b)). Note that in metals with strong 
spin-orbital (SO) interaction of electrons such as gold, the SAM absorption may lead to electron spin 
polarization and corresponding magnetization of the skin-depth layer. In this scenario, the effective force 
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will be represented by the pressure force distributed over the skin-depth layer, without localization of 
forces on the metal surface (Fig. 1(c)). 

Let us start with the electromagnetic spin conservation law in a lossy material. The conservation law in a 
lossless dielectric was derived in Ref. [22]. Here, we adopt the following dual-symmetric definition of the 
SAM of electromagnetic field 𝚺 = 𝚺! + 𝚺!, where 𝚺! =

!
!"!

𝑬×𝑨 and 𝚺! = !
!"!

𝑯×𝑪 [20,22,45], where 

we define the usual vector potential as 𝑩 = ∇×𝑨 and introduce a potential according to 𝑫 = −∇×𝑪 (see 
also Ref. [46,47]), in both cases using the solenoidal nature of 𝑫 = 𝑬 + 4𝜋𝑷 and 𝑩 = 𝑯 + 4𝜋𝑴. Note 
that as was shown in Ref. [20] the requirement of the photonic spin to be gauge-invariant corresponds to 

setting ∇ ⋅ 𝑨 = 0 and ∇ ⋅ 𝑪 = 0. The potentials are related to the fields as 𝑬 = − !
!
!𝑨
!"

 and 𝑯 = − !
!
!𝑪
!"

. In 

monochromatic fields the average over an optical period SAM is 𝚺! = − !
!"#

Im{𝑬×𝑬∗} and 𝚺! =

− !
!"#

Im{𝑯×𝑯∗}. 

Consider the time derivative of the spin 𝚺 

∂𝜮
∂𝑡

=
1
4𝜋𝑐

∂
∂𝑡

𝑬×𝑨 + 𝑯×𝑪 =
1
4𝜋𝑐

∂𝑬
∂𝑡
×𝑨 +

∂𝑯
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×𝑪 +
1
4𝜋𝑐

𝑬×
∂𝑨
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∂𝑪
∂𝑡

=
1
4𝜋𝑐

𝑐∇×𝑯 − 4𝜋
∂𝑷
𝜕𝑡

×𝑨 + −𝑐∇×𝑬 − 4𝜋
∂𝑴
𝜕𝑡

×𝑪

=
1
4𝜋

− ∇×𝑬 ×𝑪 + ∇×𝑯 ×𝑨 −
1
𝑐
∂𝑷
𝜕𝑡
×𝑨 +

∂𝑴
𝜕𝑡

×𝑪 = − ∇ ⋅ 𝛿 − 𝝉 

This equation has the form of the continuity equation for electromagnetic SAM 

!𝚺
!"
+ ∇ ⋅ 𝛿 = −𝝉,      (1) 

where 𝛿 is the tensor of SAM flux, analogous to Maxwell stress tensor for the momentum flux (cf. Eq. 
(3.24) of Ref. [22]) 

𝛿 = !
!"

𝑪⊗ 𝑬 − 𝑪!⋅𝑬
!

I − !
!"

𝑨⊗ 𝑯 − 𝑨𝒄⋅𝑯
!

I .   (2) 

and 𝝉 = 𝝉𝒆 + 𝝉𝒎 is the torque volume density, which is composed from the torques associated with the 
interaction between polarization and the electric fields 𝝉𝒆 and magnetization and the magnetic fields 𝝉𝒎, 

𝝉𝒆 =
!
!
!
!"

𝑷×𝑨 + 𝑷×𝑬,   𝝉𝒎 = !
!
!
!"

𝑴×𝑪 +𝑴×𝑯.  (3) 

In monochromatic fields the first terms in Eqs. (3) result in zero time-average torque, the time-averaged 
torque density applied to matter is 

𝝉 = !
!
Re 𝑷×𝑬∗ +𝑴×𝑯∗ .     (4) 

Now let us discuss the electromagnetic torque in dispersive transparent media, which can be considered in 
a similar manner to the Brillouin internal energy stored in electromagnetic field in media or Abraham 
force [17]. The second terms in Eqs. (3) have the same form as in the monochromatic fields, and we focus 
on the first terms, which are zero in monochromatic fields but play a role in a narrow bandwidth pulse. In 

this case !𝑷
!"
= −𝑖𝜔𝜒! 𝜔 𝑬 + ! !!!

!"
!𝑬!
!"
𝑒!!"#  and !𝑴

!"
= −𝑖𝜔𝜒! 𝜔 𝑯 + ! !!!

!"
!𝑯!
!"
𝑒!!"# , 𝑬!(𝑡)  and 

𝑯!(𝑡) are slowly varying amplitudes of the fields. In this situation 
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𝝉 =
1
𝑐
𝜕
𝜕𝑡

𝑷×𝑨 +𝑴×𝑪 ==
1
4𝑐

𝜕𝑷∗
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𝜕𝑷
𝜕𝑡
×𝑨∗ +
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𝜕𝑡
×𝑪 +

𝜕𝑴
𝜕𝑡

×𝑪∗ −
1
2
Re 𝑷×𝑬∗ −𝑴×𝑯∗ = 

= !
!!

! !!!
!"

!𝑬!∗

!"
× −𝑖 !

!
𝑬! + !𝑬!

!"
× 𝑖 !

!
𝑬!∗ + !

!!
! !!!
!"

!𝑯!∗

!"
× −𝑖 !

!
𝑯! + !𝑯!

!"
× 𝑖 !

!
𝑯!
∗ = 

= −
1
4𝜔

𝑑 𝜔𝜒!
𝑑𝜔

𝜕
𝜕𝑡
Im 𝑬×𝑬∗ −

1
4𝜔

𝑑 𝜔𝜒!
𝑑𝜔

𝜕
𝜕𝑡
Im 𝑯×𝑯∗ = 2𝜋

𝑑 𝜔𝜒!
𝑑𝜔

𝜕𝚺!
𝜕𝑡

+ 2𝜋
𝑑 𝜔𝜒!
𝑑𝜔

𝜕𝚺!
𝜕𝑡

 

Which means that in narrow-bandwidth pulses in dispersive transparent media with electric and magnetic 
susceptibilities 𝜒! and 𝜒! the Eqs. (3) lead to torque according to 

𝝉 = 2𝜋
𝑑 𝜔𝜒!
𝑑𝜔

𝜕𝚺!
𝜕𝑡

+ 2𝜋
𝑑 𝜔𝜒!
𝑑𝜔

𝜕𝚺!
𝜕𝑡

. 

Below we focus on monochromatic fields. In monochromatic fields both expressions for electric and 
magnetic torques in Eq. 4 can be understood as torques acting on dipole moments in electric and magnetic 
fields. The expression for the torque 𝝉𝒆 applied to polarized matter has been used in the proposal of 
optical torque wrench devices [40], but the role of SAM absorption in matter has never been previously 
discussed (see also Refs. [48-52]). To show the relation of torque and SAM absorption explicitly, let one 
assume the material relationship of the form 𝑷 = 𝜒!𝑬 + 𝜉!𝑯 and 𝑴 = 𝜒!𝑯 + 𝜉!𝑬, and the torque in Eq. 
(4) turns into 

𝝉 = 4𝜋[𝜔𝜒!!!𝚺! + 𝜔𝜒!!!𝚺! + 𝜉!! − 𝜉!! 𝑺 + 𝜉!!! + 𝜉!!! 𝑺] ,   (5) 

where 𝑺 = 1/(8𝜋)Re 𝑬×𝑯∗  is the Poynting vector averaged over the optical period and  
𝑺 = −1/(8𝜋)Im 𝑬×𝑯∗ . Additionally, it appears that loss in bi-anisotropic media, or 𝜉! ≠ 𝜉!∗ [53], can 
result in torque. This fact is of interest due to recent investigations of optical forces applied to bi-
anisotropic particles [54-57]. 

Consider SPP propagation along a flat metal-dielectric interface with 𝜇 = 1. The complex fields of a SPP 
in the metal (𝑧 > 0) are 

𝑯 = 𝒚 𝑒!!"𝑒!(!"!!"),    𝑬 = !
!!!!

−𝒛𝑘! + 𝒙𝑖𝜉 𝑒!!"𝑒!(!"!!") ,   
!
!!
= − !!

!!
 .  (6) 

The last equation is the condition of SPP existence, ensuring the matching of longitudinal electric fields at 
the metal-dielectric interface, which leads to the dispersion 𝑘!""(𝜔)  of SPPs (see Fig. 2(a) and Ref [58]). 

If we substitute the SPP fields [Eq. (6)] into Eq. (5), which describes SAM absorption, the corresponding 
torque turns into 𝝉 = −𝜒!!Im{𝐸!𝐸!∗}𝒚. It is important to compare this torque with the energy absorption 
rate 𝑄 = − !

!
Im 𝑃!𝐸!∗  as was done in Ref. [4] for momentum. We show in Supplemental Material 1 [60] 

that the relationship between the torque and energy absorption rate is 𝝉 = ℏ!!
ℏ!
𝑄, where 𝑆! =

!!!!
!!!!!!

 is the 

Stokes parameter, characterizing the helicity (or the degree of circular polarization) in electromagnetic 
field [42,44,59]. Considering the results of Ref. [4] this means that with absorption of SPP energy 
quantum ℏ𝜔 and momentum quantum ℏ𝑘! electrons gain ℏ𝑆! amount of angular momentum on average 
due to absorption of SAM (see Fig. 1(a)).  

Electrons have two degrees of freedom, which can accumulate angular momentum: orbital (translational) 
motion and electron spin. Induction of orbital motion of electrons via absorption of SAM of SPPs 
corresponds to photoinduced electric currents. At the same time, SAM absorption can lead to change of 
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electron spin and result in spin polarization as shown in Fig 1(c). Despite large spin-orbit coupling ~ 1 eV 
[61] and a relatively long spin relaxation time ~ 50 ps [62], spintronic effects in plasmonic materials are 
not studied. Simultaneous measurement of SPP-generated emf and spin polarization (via for example, 
pump-probe magneto-optical experiments) in different plasmonic materials could show how angular 
momentum of light is distributed between the spin of electrons and their translational motion. 

Below we consider the implications of the SAM transfer from the electromagnetic field exclusively into 
the orbital motion of electrons. We start with the momentum transfer, which is described by (see 
Supplemental Material 2 [60]) 

!𝒑
!"
+ ∇ ⋅ 𝜎 = −𝒇, 

where 𝒑 = 1/ 4𝜋𝑐 𝑬×𝑯  is the momentum, 𝜎 is the Maxwell stress tensor [16], and f is the volume 
density of the effective force acting in the medium. The effective force is reminiscent of both Lorentz and 
Einstein-Laub forces [23-30,50-52,63-66], and is identical to the Lorentz force for 𝑴 = 0, which was 
previously applied to PLDE (considering only electric responses) in Refs. [2,4]. Considering separately 
volume and surface contributions, the volume density of the force 𝒇 is 

𝒇 = − ∇ ⋅ 𝑷 𝑬 + !
!
!𝑷
!"
×𝑯 − ∇ ⋅𝑴 𝑯 − !

!
!𝑴
!"
×𝑬 = 𝒇! + 𝒇!"#! + 𝒇!"#! + 𝒇!"#$!" + 𝒇!"#$!"   (7) 

where 

(Abraham force)   𝒇! =
!
!
!
!"

𝑷×𝑯 −𝑴×𝑬 + 4𝜋𝑷×𝑴  (7a) 

(orbital electric force)    𝒇!"#! = ∇𝑬 𝑷! ⋅ 𝑬     (7b) 

(orbital magnetic force)   𝒇!"#! = ∇𝑯 𝑴! ⋅𝑯     (7c) 

(spin electric volume force)  𝒇!"#$!" = −∇ ⋅ 𝑷⊗ 𝑬     (7d) 

(spin magnetic volume force)  𝒇!"#$!" = −∇ ⋅ 𝑴⊗ 𝑯     (7e) 

The surface density (after integration of the volume density Eq. (7) across the metal interface) is given by 

𝒇! = 𝑷 ⋅ 𝒏 𝑬 + 𝑴 ⋅ 𝒏 𝑯 =  𝒇!"#$!" + 𝒇!"#$!"     (8) 

(spin electric volume force)   𝒇!"#$!" = 𝑷 ⋅ 𝒏 𝑬  (8a) 

(spin magnetic volume force)   𝒇!"#$!" = 𝑴 ⋅ 𝒏 𝑯  (8b) 

Please notice the symmetry of the force Eq. (7)-(8) with respect to the electric and magnetic responses of 
materials. The Abraham force [Eq. (7a)] is zero in monochromatic fields, similarly to the first terms in 
Eqs. (4) or to the electromagnetic energy in media [17], and for pulses in 𝑴 = 0 media was considered in 
[67]. The forces in Eqs. (7b) and (7c) can be viewed as responsible for momentum transfer and change in 
the OAM [19-22] (i.e. OAM transfer with torque 𝝉!"# = 𝒓×𝒇!"# ) and can be referred to as the orbital 
force 𝒇!"# = ∇𝑬 𝑷! ⋅ 𝑬 + ∇𝑯 𝑴! ⋅𝑯  (see Fig. 1(d)). The rectified part of the orbital force can be 
represented as the sum of striction and pressure forces [2] 

𝒇!"#! = !
!
Re ∇𝑬 𝑷! ⋅ 𝑬∗ = !

!
𝜒!!∇ 𝑬 ! − !

!
𝜒!!!Im ∇𝑬 𝑬! ⋅ 𝑬∗ ,  (9a) 

𝒇!"#! = !
!
Re ∇𝑯 𝑴! ⋅𝑯∗ = !

!
𝜒!! ∇ 𝑯 ! − !

!
𝜒!!! Im ∇𝑯 𝑯! ⋅𝑯∗ ,  (9b) 
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The pressure force (the terms with 𝜒!!  in Eqs. (9)) is proportional to the wave vector of the 
electromagnetic field and is the source of the PLDE emf. Note that in the orbital force only the pressure 
force is doing work on electrons while striction is a potential force and is responsible for redistribution of 
electron density [4]. In Ref. [4] it was demonstrated that the pressure force is directly related to energy 
absorption, which is manifested in PLDE experiments [1,3].  

The remaining contributions in Eqs. (7)-(8), which are in the focus of this manuscript, can be classified as 
the spin force (see Fig. 1(d)), whose volume density is 𝒇!"#$! = 𝒇!"#$!" + 𝒇!"#$!"  and surface density is 
𝒇!"#$! = 𝒇! = 𝒇!"#$!" + 𝒇!"#$!" . As was shown in [2], the force densities in (7d) and (8a) satisfy 𝒇!"#$!" ⋅
𝑑𝑠 − 𝒇!"#$!" ⋅ 𝑑𝑉 = 0. Similarly, 𝒇!"#$!" ⋅ 𝑑𝑠 − 𝒇!"#$!" ⋅ 𝑑𝑉 = 0. This means that the spin force does not 
directly contribute to the total force acting on metal electrons and PLDE emf. Instead, these forces are 
associated with the torque (see Eqs. (4)-(5)), which can be presented as 

𝑷×𝑬 𝑑𝑉 = 𝒓×𝒇!"#$!" 𝑑𝑠 + 𝒓×𝒇!"#$!" 𝑑𝑉,   (10a) 
𝑴×𝑯 𝑑𝑉 = 𝒓×𝒇!"#$!" 𝑑𝑠 + 𝒓×𝒇!"#$!" 𝑑𝑉.   (10b) 

Indeed, one can write an identity 

𝜕! 𝒓×𝒙!𝐸!𝐴! = 𝒙!×𝒙! 𝐸!𝐴! + 𝒓×𝒙! 𝜕!𝐸! 𝐴! + 𝒓×𝒙!𝐸! 𝜕!𝐴!
= 𝑨×𝑬 + 𝒓× 𝑨 ⋅ ∇ 𝑬 + 𝒓× 𝑬 ⋅ ∇ ⋅ 𝑨 = 𝑨×𝑬 + 𝒓×{∇ ⋅ (𝑨⊗ 𝑬)}	

From this	𝑷×𝑬 = 𝜕! 𝒓×𝒙!𝐸!𝑃! − 𝒓× ∇ ⋅ 𝑷⊗ 𝑬  and after integration we get (10a). 

Note that despite the fact that the SAM absorption torque is only proportional to 𝜒!! (see Eq. (5)), the 
corresponding rectified spin forces 𝒇!"#$ have both 𝜒! and 𝜒′′ contributions 

𝒇!"#$!" = − !
!
Re ∇ ⋅ 𝑷⊗ 𝑬∗ = !

!
𝜒!!!Im{∇× 𝑬×𝑬∗ } − !

!
𝜒!!Re ∇ ⋅ 𝑬⊗ 𝑬∗   (11a) 

𝒇!"#$!" = − !
!
Re ∇ ⋅ 𝑴⊗ 𝑯∗ = !

!
𝜒!!! Im{∇× 𝑯×𝑯∗ } − !

!
𝜒!! Re ∇ ⋅ 𝑯⊗ 𝑯∗  (11b) 

The first terms of Eq. (11) !
!
𝜒!!!Im ∇× 𝑬×𝑬∗  and !

!
𝜒!!! Im ∇× 𝑯×𝑯∗  can be understood as 

absorption of the spin part of the Poynting current 𝑃!!" = Im ∇× 𝑬×𝑬∗  from Ref. [19]. 

The spin forces represent the SAM transfer from the electromagnetic field into the orbital motion of 
electrons in the absence of spin polarization. If SAM of SPPs is entirely absorbed to induce spin 
polarization, the volume density of the effective force acting on electrons is only the orbital force 
𝒇 = 𝒇!"#. But if the spin polarization is not produced, the effective force acting on electrons and inducing 
the translational motion is a combination of the orbital and spin forces 𝒇 = 𝒇!"# + 𝒇!"#$. Note that the 
difference between the effective force in Eq. (7), which for 𝑴 = 0 is equal to the Lorentz force, and the 
Einstein-Laub force is 𝒇!"#$. Therefore, coupling to an internal angular momentum degree of freedom, 
such as electron spin, determines which force drives the orbital motion of electrons. 

In SPP fields [Eq. (6)] the spin electric volume and surface force densities according to Eqs. 7(d) and 8(a) 

𝒇!"#$!" = − !
!
Re ∇ ⋅ 𝑷⊗ 𝑬∗ = − !

!
Re 𝜕! 𝑃!𝑬∗ − !

!
Re 𝜕! 𝑃!𝑬∗   (12a) 

𝒇!"#$!" = !
!
Re 𝑃!𝑬∗

!!!
      (12b) 
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The first term in the 𝒇!"#$!"  integrated over the cross-section of the metal perpendicular to SPP propagation 
gives the exact opposite of the surface force 𝒇!"#$!" . The second term integrated over the cross-section of 
the metal in the direction of SPP propagation is equal to zero assuming fields decay out for 𝑥 → ±∞. If 
the fields do not fully decay, this part of the spin force is opposite to the surface force created at the ends 
of the metal in the x-direction. In any case the second term is due to the decay of SPPs in the direction of 
propagation and does no overall work on electrons in the case of laminar current [4]. Below we consider 
only the spin force 𝒇!"#!!

!" = − !
!
Re 𝜕! 𝑃!𝑬∗  and disregard 𝒇!"#!!

!" = − !
!
Re 𝜕! 𝑃!𝑬∗ . 

The surface part of the spin force 𝒇!"#$!"  [Eq. (12b)] is localized at the surface charge layer of metal, i.e. in 
a 2d layer with thickness on the order of Ångströms. The study of the surface charge layer between metal 
and dielectric has been a major research direction of metal non-locality in the continuous model [68-70]. 
Much debate was generated by the proposal that non-local effects at the metal-dielectric interface can be 
approximated by introduction of an anisotropic transition layer [71-73]. Here we do not pursue the goal of 
modeling the non-locality as such, but would like to propose a toy-model of a transitional metal surface 
layer, which gives a visual idea of how the SAM-absorption torque affects the momentum transfer from 
SPPs to metal plasma. 

We first note that at a metal-dielectric interface the tangential component of electric field 𝐸! is continuous, 
while 𝐷! is not continuous and changes sign through the interface due to negativity of the dielectric 
permittivity of metal 𝜀!. This implies that the dielectric permittivity passes through an epsilon-near-zero 
(ENZ) transition at the metal-dielectric interface in the longitudinal direction. At the same time the 
normal component of the electric field 𝐸! has a discontinuity at the interface, such that 𝐷! is continuous. 
We assume that at the boundary the metal fraction 𝑓 𝑧  is gradually changing from 0 to 1 within a 
𝑑 = 2 Å layer (see Fig. 2(c)), which corresponds to the typical thickness of the surface charge layer [68-
73]. This way the surface charge layer becomes a distributed ENZ-ENP metasurface [74], which has 
dielectric permittivities 𝜀!(𝑧) = 𝜀!𝑓(𝑧) + 𝜀! 1 − 𝑓 𝑧  and 𝜀!!!(𝑧) = 𝜀!!!𝑓(𝑧) + 𝜀!!! 1 − 𝑓 𝑧 . 

For the ENZ-ENP model we use the following metal fraction function 𝑓 𝑧 = !
!
+ !

!!"
ln cosh𝛼𝑧 −

ln cosh𝛼 𝑑 − 𝑧 , which is shown in Fig. 2(c) (we use 𝑑 = 2 Å and 𝛼 = 10 Å!!). The TM polarized 
fields of SPP wave at the metal-dielectric boundary with such a metasurface can be written as 𝐻! =
𝐻! 𝑧 𝑒!(!"!!"), where function 𝐻! 𝑧  satisfies the following equation in the transition layer 

−
1
𝜀!
𝐻!!! − 𝐻!! ⋅ 𝜕!

1
𝜀!

= 𝑘!! −
𝑘!

𝜀!
𝐻! 

We solve this equation and match the results at the boundaries of the ENZ-ENP metasurface to get the 
wave vector of the resulting SPPs (see the dots in Fig. 2(a), which follow very closely the dispersion of 

SPPs in local model Eq. (13)). We find the electric field according to 𝐸! = − !!!
!!!!

 and 𝐸! = − !
!!

!!!

!!
. 
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Fig. 2. (a) SPP dispersion in the local model (continuous curves, Eq. (12)) and the ENZ-ENP metasurface model (dots). (b) 
Comparison of the field distributions in the local model (shown in yellow and blue color) and metasurface approximation (dashed 
cyan and purple) on the nanoscopic scale. (c) The fields and surface charges in the atomic metasurface region. The metal fraction 
function 𝑓(𝑧) is shown in red. The normal to the interface component of the electric field 𝐸! is shown in blue (metasurface model) 
and dashed magenta (local model). The surface charge density 𝜎(𝑧) is shown in green (metasurface model) and dashed orange 
(local model). (d) The effect of the spin force (blue) on the total momentum transfer from SPP to electrons (dashed green) as 
compared to considering only the plasmon pressure force (red). For comparison the surface force in the local model is shown in 
orange. Note that Fig. 2(d) has an axis break separating the surface shown on the Angstrom scale from -0.5Å to 2.2Å and the 
skin-depth layer in the metal volume shown on the nanometric scale. All of the forces are multiplied by 50 to the right of the axis 
break on the nanometric scale. 

The resulting wave vector of SPPs (dots in Fig. 2(a)) follows the local model [Eq. (12)]. The magnetic 
field distribution 𝐻! given by yellow line in Fig. 2(b) follows the local model (cyan dashed line) as well. 
The electric field distribution is shown in Fig. 2(b)-(c). The normal to the surface component 𝐸! is shown 
on the nanometric scale in Fig. 2(b) in blue and matches the local model (magenta dashed curve). In Fig. 
2(c) one can see the gradual transition of 𝐸! from the metal value to the value in the air within the 2 Å 
metasurface (blue curve) and compare it to the abrupt jump in the local model. In the metasurface model 
the oscillating surface charge in the SPP excitation 𝜎 𝑧 ≈ −𝑃!(𝑧 = 0)/𝑑  is distributed over the 
metasurface as seen in Fig. 2(c) in green. Its value corresponds to the local model with 𝜎 = −𝑃! (dashed 
orange). 

The results in Fig. 2(d) clarify the possible outcomes of the absorption of the SAM of SPPs on the 
electronic system of the metal. If the absorption results in spin polarization then the force driving the 
orbital motion of electrons is the pressure force (red in Fig 2(d)). It is localized on the skin-depth scale. In 
case the absorption of SAM drives exclusively the orbital motion of electrons, the spin force should be 



- 9 - 
 

included (blue in Fig. 2(d)). It has a large contribution within the surface charge layer which is consistent 
with the value of surface force 𝒇! in the local model (𝒇!/𝑑 is shown as orange dashed line). In the skin 
depth layer, outside of the surface charge layer, the spin force becomes considerably lower and is 
comparable to the pressure force, but is opposite in sign. Integration of the spin force over z results in no 
overall force. The total force on electrons including the spin force is shown as green dashed line and 
closely follows the surface component of the spin force in the atomic metasurface region, but is 4 times 
weaker than the pressure force in the metal volume. This shows that absorption of SAM pins the PLDE 
force to the surface charge layer, making the force in the skin-depth layer very small. 

To conclude, we have introduced and studied a new quantity, photonic spin, which is a conserved 
quantity of macroscopic Maxwell equations a generic material (including chiral, magnetic, anisotropic 
media, etc.). We showed that this spin is absorbed by media and derived the expression for the torque 
corresponding to photonic spin absorption. We demonstrated that this torque corresponds to spin forces 
applied to material, and that the spin forces correspond to the discrepancy between the Lorentz vs. 
Einstein-Laub forces. In metals the SAM transfer can lead to modifications in the orbital motion of 
electrons and/or electron spin polarization. If the orbital channel is prevailing, the action of the spin force 
in the fields of SPPs at metal-dielectric interface leads to pinning of the PLDE forces to the atomically-
thin surface charge layer at the metal interface. The approach developed in our paper for estimation of 
photonic spin transfer can bring new ideas and directions, such as plasmonic effects in materials with spin 
orbital interaction, where transfer of SAM from light to carriers can result in electron spin polarization. 
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