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Charge transport is crucial to the performance of hybrid halide perovskite solar cells. A theo-
retical model based on large polarons is proposed to elucidate charge transport properties in the
perovskites. Critical new physical insights are incorporated into the model, including the recogni-
tions that acoustic phonons as opposed to optical phonons are responsible for the scattering of the
polarons; these acoustic phonons are fully excited due to the “softness” of the perovskites, and the
temperature-dependent dielectric function underlies the temperature dependence of charge carrier
mobility. This work resolves key controversies in literature and forms a starting point for more
rigorous first-principles predictions of charge transport.

PACS numbers: 72.10.Di, 72.10.Fk, 72.40.+w, 72.20.Jv

I. INTRODUCTION

Organic-inorganic hybrid perovskites represent a fas-
cinating class of materials poised to revolutionize op-
toelectronic, in particular, photovoltaic applications1–3.
These materials possess a set of unusual transport prop-
erties crucial to their photovoltaic performance. Essen-
tial to the transport properties is charge carrier mobility
µ, which exhibits following behavior unique to this fam-
ily of materials: (1)µ ∝ n−1 where n is charge carrier

concentration4; (2)µ ∝ I
−1/2
0 where I0 is incident pho-

ton flux5; (3)µ ∝ T−3/2 where T is temperature5–9; and
(4)µ is insensitive to defects10,11. There is great inter-
est to understand and control the transport properties
of the perovskites, further propelling the development of
perovskite-based solar cells. However, no complete phys-
ical picture has emerged so far to fully account for the
experimental observations on charge transport and the
nature of charge transport remains a subject of intense
debate10–13.

In this paper, we propose a theoretical model to eluci-
date the charge transport behavior in the perovskites. In
this model, the charge carriers are characterized as large
polarons, resulted from the carrier interaction with op-
tical phonons10. Hence the residual interaction between
the polarons and the optical phonons is much weaker
than the interaction with acoustic phonons. The charge
transport is determined by the scattering of the polarons
by themselves, defects and longitudinal acoustic (LA)
phonons and is governed by Boltzmann equation. These
interactions are screened by a temperature-dependent di-
electric function as a result of spontaneous polarization
in the perovskites at low temperatures. Owing to the
“softness” of the perovskites, the LA phonons are fully
excited, interacting strongly with the polarons. The con-
stant carrier concentration n leads to an equilibrium dis-
tribution function of the polarons that is proportional to
n, resulting in n-dependent carrier mobilities.

II. NATURE OF CHARGE CARRIERS

In the following, we take MAPbI3 [MA+=(CH3NH3)
+]

as a representative of ABX3 perovskite family to illus-
trate the general physical picture of charge transport.

A. Properties of of large polarons

In MAPbI3, the interaction between a free carrier and
longitudinal optical (LO) phonons (i.e., Pb-I stretching
modes) is stronger than that between the carrier and
the acoustic phonons14, supported by the emission line
broadening experiment12. According to the theory of
large polarons15, the binding energy, radius and effec-
tive mass of a large polaron can be expressed as EP =
V 2
L/4Te, RP = 2Tea/VL, and mP = V 4

L [4ω
2
LOa

2T 3
e ]

−1, re-
spectively. Here ωLO is the frequency of the LO phonon
and a is the lattice constant of MAPbI3; Te ∼ ~

2/(2mr2)
is the kinetic energy of the conduction electrons, where
m is the mass of the electron, r is the characteristic
length-scale over which the wave-function of the conduc-
tion electron changes substantially, taken as the mean
value between the radius of Pb2+ ion and Pb atom16,17,
i.e., r ∼1.675 Å. VL represents the interaction between
the carrier and the LO phonon-induced electric field,

VL ∼
1

4πǫ0

e2

2
(
1

ε∞
−

1

ε0
)
1

r
, (1)

where ε0 and ε∞ are static and optical dielectric con-
stant. Using both experimentally measured18,19 and
first-principles computed20,21 parameters of MAPbI3, we
estimate EP ∼ 67 - 112 meV, RP ∼ 22 - 28 Å and
mP ∼ 4.1 − 12 m. Since EP is much higher than
the room temperature, these polarons are thermally sta-
ble, in line with the large polaron hypothesis for charge
transport10,11,13,20,22–24. We can also estimate the crit-
ical concentration of the polarons as nc = (2RP)

−3
∼

5.5 × 1018cm−3; beyond this critical value, neighboring
polarons would overlap. In normal operating conditions
of the solar cells, the free carrier concentration n is 6,9
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less than 1018cm−3 and nc, thus the large polarons could
avoid each other in MAPbI3.

B. Distribution function of polarons

The Fermi-Dirac distribution of polarons can be ap-
proximated by the Boltzmann distribution25 if

(
2π~2

mPkBT
)3/2n ≪ 1. (2)

Under the normal operating conditions, this equation
is satisfied, thus the photo-generated electrons are non-
degenerate and one can replace the Fermi-Dirac distribu-
tion by the Boltzmann distribution. Later we will show
that the polaron state can be characterized by its mo-
mentum p, and the energy of the polaron state |p〉 is
thus denoted as εp.
In an intrinsic or lightly doped MAPbI3, the carriers

are generated primarily by photo- as opposed to ther-
mal excitations. Thus n is determined by I0, and largely
independent5,26 of T . Hence, we can express the occu-
pation number f0(εp) per spin for polarons of energy εp
as:

f0(εp) =
4π3/2

~
3e−εp/kBT

(2mPkBT )3/2
n. (3)

As will be shown later, the linear n dependence of the po-
laron distribution function gives rise to the n dependence
of carrier mobility.

C. Formation free energy of polarons

To further establish the fact that the polarons are ther-
modynamically stable than free electrons in MAPbI3 un-
der the normal operating conditions, we next estimate
the formation free energy of the polarons relative to that
of the free electrons. There are two major contributions
to the entropy of the polarons. Once a polaron is formed,
it acquires an excluded volume and increases its effec-
tive mass, leading to higher translational entropy. At
the same time, the induced lattice distortion due to the
polaron increases the vibrational frequencies and lowers
the vibrational entropy. In the following, we will estimate
these competing contributions to the entropy.

1. Change in translational entropy

It is known that the translational entropy for non-
degenerate free electron gas of N electrons occupying a
volume of V , is

Sg = NkB[ln
V

N
(
2πmkBT

h2
)3/2 +

5

2
], (4)

where h is the Planck constant.27

If all electrons become polarons, the free volume Vf for
the polarons is reduced to Vf = V −N4πR3

P/3, and their
corresponding translational entropy SP becomes27

SP = NkB [ln
Vf

N
(
2πmPkBT

h2
)3/2 +

5

2
], (5)

where mP is the polaron mass. Thus, the change in en-
tropy ∆se per electron is

∆se = (SP − Sg)/N = kB ln(1− n
4πR3

P

3
)(
mP

m
)3/2, (6)

where n = N/V is the number of free electrons per unit
volume. From Eq. (6), one can see that (i) ∆se does not
depend on temperature; (ii) the larger the mP, the higher
the entropy; (iii) the finite size of the polarons decreases
their entropy relative to the electrons. Under the normal
conditions, the concentration n of the polarons is much
less than nc, therefore the translational entropy of the
polarons is higher than that of the free electrons, i.e.,
∆se > 0.

2. Change in vibrational entropy

The entropy S1 of a harmonic oscillator with frequency
ω is given by25:

S1 = −kB ln(1− e−~ω/kBT ) +
~ω

T

e−~ω/kBT

1− e−~ω/kBT
. (7)

In a undeformed crystal, the entropy S10 due to a single
LO mode can be obtained from Eq. (7) by letting ω =
ωLO, where ωLO is the frequency of the LO mode. In each
primitive cell of MAPbI3, the vibrational frequencies of
three stretching modes (Pb-I bonds) are increased due to
the lattice distortion. Hence, the vibrational entropy is
decreased.
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FIG. 1. (a) Formation free energy as function of temperature;
(b) The ratio of number of electrons (Ne) to the number of
polarons (NP ) vs. temperature.

Comparing to free electrons in a undeformed lattice,
the change in the vibrational entropy ∆sv per polaron is:

∆sv = −3
4
3
πR3

P

a3
(S1 − S10), (8)

where 4
3
πR3

P/a
3 accounts for the number of the primitive

cells occupied by a large polaron, and the factor of 3 rep-
resents the three Pb-I stretching modes. If temperature
is higher than 50 K, the decrease of the vibrational en-
tropy dominates the change in the translational entropy,
cf. Fig.1(a).
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3. Relative contributions to conductivity from polarons and

electrons

The change in entropy ∆s in forming a polaron is

∆s = ∆se +∆sv. (9)

The formation free energy ∆f per polaron is thus

∆f(T ) = −EP − T∆s, (10)

which is plotted as a function of temperature in Fig.1(a).
The shallow minimum in Fig.1(a) is due to the larger
effective mass mP of polarons and n ≪ nc. With the
increase of temperature, |∆f(T )| is decreased, i.e., po-
larons become less stable at a higher temperature.
At temperature T , the ratio between Ne(T ) (the num-

ber of electrons) and NP(T ) (the number of polarons) is
given by25

[
Ne(T )

NP(T )
]2 = e

2
∆f(T )
kBT , (11)

where we assume that the formation free energy of hole
polarons is the same as that of electron polarons. We
can see from Fig.1(b) that the below 140 K, the number
of electrons is negligible. At 300 K, Ne(T )/NP(T ) ∼ 0.1.
Therefore, the dominant carriers in MAPbI3 are large
polarons, as opposed to electrons and holes.

III. DIELECTRIC SCREENING

There is a misconception in literature which attributes
the temperature dependence of carrier mobility, i.e., µ ∝
T−3/2 entirely to the scattering of acoustic phonons. This
misconception counters the fact that many non-polar
semiconductors do not exhibit the same T−3/2 depen-
dence as the perovskite materials although their carri-
ers are scattered primarily by acoustic phonons28. We
believe that the perovskites possess a unique but often
overlooked feature, i.e., the existence of a spontaneously
polarized phase at low temperatures, which is responsible
for the unique temperature dependence of carrier mobil-
ity. More specifically, we will reveal in following that it
is the temperature dependence of the dielectric function
that among other factors, yields the temperature depen-
dence of carrier mobility in the perovskites.
Recent molecular dynamics simulations indicate that

there exists a super paraelectric phase in MAPbI3 below
1000K [20]. It is known that the super paraelectric phase
emerges from a spontaneously polarized phase with in-
creased temperature. For ABX3 perovskites, the critical
polarizability αc above which a spontaneous polarization
takes place is given by αc = (a/2)3/0.383 [29]. For
MAPbI3, αc = 8.16× 10−29 m3. On the other hand, the
polarizability of MAPbI3, αdis is mainly induced by the
displacements of Pb2+ and I− ions and can be estimated
as αdis = 2.73× 10−28m3 > αc [30]. Hence, below a cer-
tain temperature, MAPbI3 is spontaneously polarized.

For a super paraelectric phase, one can express its di-
electric function as follows:29,31–33

ε(ω, T ) = ε∞ +
1

3

ndp
2

kBT ǫ0

1

1− iωτ(T )
(12)

+
9

β(T − θ)

ω2
ip

ω′2 − iγ′ω − ω2
.

The first term represents the contribution from the bound
electrons at the optical frequencies and room tempera-
ture and it is taken from an experimental measurement
(ε∞ ≈ 6.5)18. The second term stems from the rota-
tions of MA ions. The dipole moment of the MA cation
is p = 7.64 × 10−30C·m and the number density of the
cations is nd ≈ 4 × 1027m−3 [34]. τ(T ) is the tempera-
ture dependent relaxation time of the MA ions32 which
is about 0.2 -14 ps32,35,36. The third term represents
the contribution of the displacements of Pb2+ and I−

ions, and the factor 9/β(T − θ) account for the static
susceptibility29,37. ωip is the frequency of ionic plasmon;
ω′ and γ′ are the eigenfrequency and friction coefficient
of the Pb-I stretching mode31. β is a constant29 with
a dimension of inverse temperature (K−1). It turns out
that in MAPbI3, θ ∼ 0K is a small number30 compared
to T . If the spontaneously polarized phase below the
critical temperature is ferroelectric, θ > 0. If the phase
is anti-ferroelectric, θ < 0 [33].
If the frequency ω is so low (ω ≪ 7× 1010Rad/s) that

the product ωτ(T ) ≪ 1, [1 − iωτ(T )]−1
∼ 1. Hence the

second term reduces to ndp
2/(3kBT ǫ0). Specifically, at T

= 300K and ω = 0, the second terms becomes a constant
( 2). Therefore, the second term and the third term scale
approximately as 1/T , and Eq.(12) becomes

ε(ω, T ) = ε∞ + C(ω)/T, (13)

where C(ω) is a materials constant, independent of tem-
perature. This result agree very well with the experi-
mental data at ω/2π = 1KHz above 160K (cf. Fig. 3 of
[19]) as shown in Fig. 2. Note that this 1/T dependence
is analogous to Curie-Weiss law due to magnetic phase
transitions.
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FIG. 2. Static dielectric constant as function of temperature
in MAPbI3. The experimental data (squares) are taken from
[19], and the solid line is a fit from Eq. (13).

If ω is 7 × 1010 − 1012Rad/s, ωτ(T ) ∼ 1. In this
frequency range, the second term becomes a dominant
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contribution. As a result, ε(ω, T ) deviates from the 1/T
behavior, as found experimentally in the case of ω/2π =
90GHz in [32].
As will be shown later, the screened polaron-LA

phonon interaction is responsible for charge transport
in the perovskites. The characteristic acoustic phonon
frequency is ωb = clπ/a, where a is the lattice con-
stant and cl is the speed of longitudinal sound wave.
In MAPbI3, ωb ∼ 1013Rad/s [30]. For such a high fre-
quency, ωτ(T ) ≫ 1, the second term can be ignored, and
Eq.(12) is reduced to Eq.(13) again.
It is experimentally observed that below 150 -160 K,

ε(ω, T ) deviates from the 1/T behavior19, giving rise
to contrasting transport behaviors9. This deviation is
caused by structural phase transition from tetragonal to
orthorhombic phase.

IV. CHARGE TRANSPORT AND CARRIER

MOBILITY

A. Polaron-LA phonon vs. polaron-LO phonon

interaction

It is generally accepted that as quasiparticles,
large polarons result from the interaction between
electrons (or holes) with optical phonons in ionic
perovskites10,11,13,20,22. However, it is often mistakenly
assumed that the same optical phonons must also be
principally responsible for scatting of the large polarons.
This assumption would yield incorrect temperature de-
pendence of carrier mobility, which is the source of confu-
sion and debate in literature10–13. Here we demonstrate
that much of the electron-LO phonon interaction he-LO

is involved in the formation of large polarons, thus the
residual interaction hP-LO is substantially weaker than
the interaction between the polaron and the LA phonon,
hP-Aph in MAPbI3. Based on Born-Huang model of
electron-optical phonon interaction, we can show

he-LO/he-LA ∼

3
2
~ωLO(

~

2mωLO
)1/4[4πα]1/2

1
ε

√

~

2Mjclkb
2 e2

ǫ0
n
1/2
cell

. (14)

Here ncell is the number of primitive unit cells in a unit
volume. One can see that a softer lattice (smaller sound
speed cl), larger primitive unit cell (smaller kb and ncell)
and smaller ωLO will increase the relative importance of
he-LA. Since the electronic part of the polaron wave-
function is similar to the free electron wave-function,
hP-LA ≈ he-LA. On the other hand, according to the
Feynman model of large polarons,

hP-LO ∼ (α/10)4he-LO, (15)

where α is a dimensionless coupling constant38. Combin-
ing Eq.(14) to Eq.(15), one has

hP-LO

hP-LA

∼ (α/10)4
3
2
~ωLO(

~

2mωLO
)1/4[4πα]1/2

1
ε

√

~

2Mjclkb
2 e2

ǫ0
n
1/2
cell

. (16)

With the material parameters for MAPbI3, we find
hP-LO/hP-LA ∼ 0.12. This result is supported by the
experiments which reported12,39 hP-LO/hP-LA ∼ 0.1.
Therefore, the acoustic phonons are chiefly responsible
for the scattering while the optical phonons are respon-
sible for the formation of the large polarons in MAPbI3.
Recent experiments also suggest that the e-LO phonon
interaction is primarily responsible for the line-width of
photoluminescence (PL) spectrum of the perovskites12,
which is consistent with the preceding analysis. As men-
tioned earlier, since electrons and holes are stabilized by
the interaction with the optical phonons, they have to be
“activated” prior to recombination, by absorbing opti-
cal phonons. After the annihilation, the optical phonons
have to be emitted to restore the deformed lattice. The
energy of the absorbed and emitted phonons is responsi-
ble for the PL line-width.

B. Scattering mechanisms

The Hamiltonian of the system can be written as

H = KP +HPP +HP-def +HP-LA +HLA, (17)

where KP denotes the sum of single polaron Hamil-
tonians, and HPP is the Coulomb interaction between
the polarons. HP-def represents the interaction between
the polarons and defects whereas HP-LA is the interac-
tion between the polarons and longitudinal acoustic (LA)
phonons; HLA is the Hamiltonian of LA phonons. The in-
teraction between the polarons and transverse phonons,
and the residual interaction between the polarons and
LO phonons are small, and can be neglected. Note
that HPP, HP-def and HP-LA represent dressed or ef-
fective interactions and are related to the correspond-
ing bare interactions via the dielectric function, e.g.,
HPP = Hbare

PP /ε(ω, T ).
We next apply the Boltzmann equation to elucidate the

transport behavior of large polarons in the perovskites.
The key physical quantity of interest is distribution func-
tion of the polarons, whose temporal rate change is
given by total collision frequency νt, including scatter-
ing contributions of polaron-polaron, polaron-defect and
polaron-LA phonon. νt is related to the charge carrier
mobility µ by µ = e/mPνt. We show that the large po-
larons are stable against the three collision processes in
Supporting Information and to a good approximation,
we can describe the translational motion of the polarons
by plane-waves. Thus the energy of the polaron is given
as εp = p2/2mP, where p is the plane-wave momentum.
We denote the non-equilibrium distribution function of
polarons in state |p〉 as fp(t), and the distribution func-
tion of the LA phonons as Nk(t) (k is the wave vector of
the phonons) and their corresponding equilibrium coun-
terparts are given as f0 and N0.
The change rate of fp(t) due to the polaron and LA

phonon collision is given by νP-LA = (∂fp/∂t)P-LA and is
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calculated in the following.

(
∂fp
∂t

)P-LA = −
∑

k

∂N0(ωk)

∂~ωk

[f0(p
′)− f0(p)] (18)

{w(p′,k;p)(ϕp′ − ϕp + χk)δ(εp − εp′ − ~ωk)

−w(p′;p,k)(ϕp′ − ϕp − χk)δ(εp − εp′ + ~ωk)}.

Here ϕ and χ describe the deviations of fp and Nk from
their equilibrium values: fp − f0(ε) = −ϕ∂f0(ε)/∂ε,
and Nk −N0(k) = −χ∂N0(ωk)/∂~ωk. w(p′,k;p) is the
probability amplitude defined as w(p′,k;p)(Nk + 1) =
2π|〈p′,k|HP-LA(emission)|p〉|2/~, w(p′;p,k) is defined
by w(p′;p,k)Nk = 2π|〈p′|HP-LA(absorption)|p,k〉|

2/~
[40]. Similar rate equations can be obtained for νP-def

and νPP and their expressions are given in Supporting
Information.
The characteristic frequency of the LA phonons is

ωb = cskb, where cs is the average sound speed in the
longitudinal direction. kb = π/a is the wave-vector at
the Brillouin zone boundary14. Because the elastic con-
stants of the perovskites are relatively small, cs and ωb

are also small. In the tetragonal phase41,42 of MAPbI3,
cs ≈ 2147 m/s, and ωb ∼ 82 K. In the pseudo-cubic
phase41,42, cs ≈ 2824 m/s, ωb ∼ 107 K. Thus at room
temperature, kBT & ~ωb and the LA phonons are fully
excited9. These fully excited LA phonons increase the P-
LA scattering probability and are principally responsible
for polaron scattering. In addition, the phonon distri-
bution function N0(ωk) in Eq. (18) can be reduced to
N0(ωk) ≈ kBT/~ωk.
We can now derive an analytical expression for the

change rates ∂fp/∂t induced by the three collision pro-
cesses HPP, HP-def and HP-LA. More specifically, change
rate due to the polaron-polaron scattering is given by30,43

νPP = (∂fp/∂t)PP:

νPP ∼

[

T

300εs1 + (T − 300)ε∞

]2

n (19)

4π3/2
~
3e−3/2

(2mPkBT )3/2
1

~

d4

a6
(
e2

ǫ0
)2
(kT )2

D3
,

where the dielectric function εs1 = ε(ωb, 300); D ∼ 3
eV is the conduction band width21,22,44 of MAPbI3 and
d = 2RP is the diameter of the polaron. The change
rate due to the polaron-defect scattering is14,30,40 given
by νP-def = (∂fp/∂t)P-def :

νP-def ∼

[

T

300εs1 + (T − 300)ε∞

]2

C
2π

~
(20)

(

e2∆z

ǫ0

)2
1

D2a3
~
4

(2mPkBT )2
kBT,

where C is the number of defects per cubic meter and
∆z is the effective charge of the defect. The change rate
due to polaron and LA phonon scattering is given by
νP-LA = (∂fp/∂t)P-LA:

νP-LA ∼

[

T

300εs1 + (T − 300)ε∞

]2
π

Mωbk2ba
3

4π

3
k3b (

ze2

ǫ0
)2(

kBT

~ωb
)2n

4π3/2
~
3e−3/2

(2mP)3/2(kBT )5/2
, (21)

where z is the weighted nuclear charges of the ions and
M is the reduced mass of Pb and I ions.
It is known that dominant defects in halide perovskites

are not particularly harmful to charge transport because
they do not create detrimental deep levels within the
band gap45–47. Therefore, in our model, only shallow
defects are considered, which could induce lattice defor-
mation and charge states at the defect center. Because
polaron scattering due to the former is much smaller than
the latter, we can approximate HP-def by Coulomb inter-
action between the point charges at the defect center and
the polarons.
To compare the relative importance of the scattering

processes, we evaluate the three terms by taking I− va-
cancies as an example of defects in MAPbI3. We assume
a moderate defect concentration at C = 4.0 × 1020cm−3

and ∆z = 1.22. The consideration of other point de-
fects will only change ∆z by a small amount (∆z =
1 - 3). The three contributions as a function of tem-
perature are plotted in Fig. 3. We find that at room
temperature νP-Aph ≫ νP-def ≫ νPP. Therefore, the
polaron-LA phonon scattering dominates charge trans-
port in MAPbI3, and µ would appear insensitive to the
defects.
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FIG. 3. (a) The polaron-polaron collision frequency as a func-
tion of T determined by Eq.(19); (b) The polaron-I− vacancy
collision frequency (circles) and the polaron-LA phonon col-
lision frequency (solid line) as functions of T determined by
Eq. (20) and (21). ε0 = 70 and ε∞ = 6.5 [18] are used in the
plot.

C. Concentration dependence of mobility

If we ignore νP-def and νPP, we arrive at the key result
of the model:

µ ∝ n−1m
1/2
P T−3/2. (22)
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First, we find that the mobility is inversely proportional
to the carrier concentration n, and this finding is con-
sistent to the experimental measurements4 in p-doped
MAPbI3. In Fig. 4(a), we compare the experimental hole
mobility µh (squares) with the theoretical values (solid
line) as a function of n−1 where a good agreement is
found.
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FIG. 4. (a) Hole mobility µ vs. n−1

h
for p-doped MAPbI3.

The experimental data (squares) are taken from [4]; the solid
line is a fit of Eq. (22). (b) The logarithm of the effective
carrier mobility, log10φΣµ is plotted as a function of the loga-
rithm of incident photon flux, log10I0. The experimental data
(circles) are taken from [5], and the solid line is a fit of Eq.
(23).

Let γ be the electron-hole recombination coefficient,
κ the generation probability per impinging photon and
G the volume density of photons in the sample, we can
express n = (γ−1κG)1/2 by assuming n is much larger
than the trap center concentration. Here, G = I0/labs,
I0 is the incident photon flux and labs is the absorption
length26. Substitute the expression of n into Eq. (22),
one obtains:

µ ∝ (labsγ)
1/2(κI0)

−1/2T−3/2. (23)

The circles in Fig. 4(b) are experimental data5 for effec-
tive mobility φµ vs. incident flux I0, and the solid line is
a fit based on Eq. (23). Here we have to adjust the inter-
cept due to a lack of experimental values of κ, labs and
γ in [5], nevertheless the agreement in the slope between
the theory and the experiment is very good.

D. Temperature dependence of mobility

Finally, we compare the theoretical prediction with ex-
perimental data on carrier mobility as a function of tem-
perature making use of Eq. (21) and µ(T ) = e/mPνP-LA.
Because the values of ε0, ε∞ and n are not available in the
experiments6,7, we have to use n as a fitting parameter in
the comparison. By taking ε∞ = 4.5 and ε0 = 24.5 from
first-principles calculations20,21, we can fit the theoretical
mobility to the experimental data in Fig. 5. For the first
experiment6, n = 2.3× 1017cm−1 was used in the fitting
while for the second experiment7, n = 8.3 × 1017cm−1

was used in the fitting. Both values of n are reasonable26

and for both cases, satisfactory agreements to the exper-
imental data are obtained.
In a recent experiment by Hutter et al., the temper-

ature dependence of carrier mobility in MAPbI3 was
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160 200 240 280
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FIG. 5. The carrier mobility µ as a function of temperature.
The solid curves are obtained from Eq. (21) with fitting a
parameter of n. (a) The experimental data (crosses) is from
[6], and n = 2.3 × 1017cm−3. (b) The experimental data
(squares) is from 7, and n = 8.3× 1017cm−3.

shown to exhibit two regimes of contrasting behaviors9.
Above 150 K, carrier mobility µ(T ) ∝ T−3/2 while be-
low 150 K, the mobility drops precipitately, decreasing
with decreased temperature. Using the experimental di-
electric function ε(ω, T ) for ω/2π = 1KHz as obtained
in19, our analytical expression in Eq. (21) can repro-
duce the experimental data of Hutter reasonably well in
both regimes, as shown in Fig.6. In the tetragonal phase
(T > 150 K), the mobility behaves as µ(T ) ∝ T−3/2,
while in the orthorhombic phase (T < 150K), the mobil-
ity decreases with decreasing temperature with a sharp
drop around 150 K. We further speculate that the reason
that the earlier experiments observed only the regime of
µ(T ) ∝ T−3/2 is due to the presence9,48 of the tetragonal
phase at T < 150 K.
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20

40
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FIG. 6. Product of generation yield φ and mobility Σµ
as function of temperature. Circles (diamonds) are mea-
sured during the heating (cooling) process [9]. The dash line
is calculated from the experimental dielectric function [19]
and the solid line is obtained by shifting the the tetragonal-
orthorhombic transition temperature from [19] to [9].

V. SUMMARY

In conclusion, we proposed a theoretical model that
can elucidate key experimental observations on charge
transport in hybrid perovskite materials. Essential to the
model is improved understanding crucial to charge trans-
port, including that the acoustic phonons as opposed to
the optical phonons are responsible for the scattering of
large polarons, the acoustic phonons are fully excited due
to the “softness”of the perovskites, and the temperature
dependent dielectric function is the key contributor to
the temperature dependence of the mobility. Analytic
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expressions were given for various contributions to the
carrier mobility and compared to the experimental mea-
surements with good agreements. By directly relating
the carrier mobility to material parameters, the present
work may provide guidance for materials design and form
a starting point for more rigorous first-principles predic-
tions of transport properties.
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