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The interplay of symmetry and topological order leads to a variety of distinct phases of matter, the Symmetry

Enriched Topological (SET) phases. Here we discuss physical observables that distinguish different SETs in the

context of Z2 quantum spin liquids with SU(2) spin rotation invariance. We focus on the cylinder geometry, and

show that ground state quantum numbers for different topological sectors are robust invariants which can be used

to identify the SET phase. More generally these invariants are related to 1D symmetry protected topological

phases when viewing the cylinder geometry as a 1D spin chain. In particular we show that the Kagome spin

liquid SET can be determined by measurements on one ground state, by wrapping the Kagome in a few different

ways on the cylinder. In addition to guiding numerical studies, this approach provides a transparent way to

connect bosonic and fermionic mean field theories of spin liquids. When fusing quasiparticles, it correctly

predicts nontrivial phase factors for combining their space group quantum numbers.
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I. INTRODUCTION

In contrast to conventional phases that are distinguished by

Landau order parameters, topologically ordered states with

emergent anyonic excitations remain distinct even in the ab-

sence of symmetry. However, the presence of symmetries,
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which is natural in most physical contexts, leads to further dis-

tinctions, the so called symmetry enriched topological phases

(SETs). Well known manifestations include fractional charge

of anyons in the fractional quantum Hall states (and in frac-

tional Chern insulators) and spin-charge separation in quan-

tum spin liquids. Recently, rapid progress in the theoretical

understanding of SETs is being made[1–11]. This is partly

driven by conceptual advances in the related theory of strongly

interacting Symmetry Protected Topological phases (SPTs),

where despite the absence of anyon excitations in the bulk,

nontrivial boundary excitations emerge [7, 12–18]. What

would be particularly welcome at this stage, is a physically

well motivated example of an SET. To make progress in this

direction we will need to understand how different SET phases

can be distinguished.

Further motivation for studying measurable characteris-

tics of SETs is the recent progress in the search for quan-

tum spin liquids in frustrated magnets, both in experiments

and in numerics. A number of S=1/2 quantum magnets in

2D and 3D frustrated lattice have been identified, which ap-

pear to evade magnetic order [19, 20]. These include the

S=1/2 Kagome material, Herbertsmithite, which shows no

sign of ordering down to temperatures that are a thousand

times smaller than the exchange constant[21]. Evidence for

an energy gap in these materials, [22] a requirement for topo-

logical order, is a matter of ongoing study, and is presumably

complicated by extrinsic effects due to impurities (although

other explanations have also been suggested[23–25]). Mean-

while, early density matrix renormalization group (DMRG)

simulations of the nearest neighbor Kagome Heisenberg an-

tiferromagnet (KHA) suggested (i) a gapped ground state

that respects all symmetries [26, 27] and (ii) a topological

entanglement[27, 28] entropy of log 2. In reference [29] it was

argued that the ground state must possess Z2 (toric code) topo-

logical order to be compatible with (i) and (ii). More recent

DMRG studies, however, have found evidence that the KHA

model is gapless.[30] Regardless, even if the Kagome antifer-

romagnet is gapped, identifying the precise phase of matter

realized, i.e. the SET order, remains an important open ques-

tion. While a complete solution would necessitate extensive

numerical input, and is beyond the scope of this paper, here we

will relate SET phases to physical properties that are readily

measurable in numerical simulations.

A prerequisite is a measurement of the topological order it-

self. Entanglement entropy [31, 32] provides one signature,

although it does not uniquely specify the topological order.

A complete characterization is obtained, from either the en-

tanglement spectrum [33] ( in certain cases), or the S and T

matrices [34–40] some of which are well suited to numerical

calculations [41–44]. Related techniques can be used to diag-

nose 2D SPT phases [45].

Here we discuss measurable properties that distinguish

SETs. For the reasons above we focus on the S=1/2 KHA,

assuming Z2 (toric code) topological order, which has a pair

of emergent S=1/2 spinons (one bosonic and one fermionic)

and a vortex (vison). The different SETs differ in their re-

alization of space group symmetries and their interplay with

time reversal.

We consider systems on both finite and infinite cylinder ge-

ometries, which are well suited to DMRG calculations. We

show that 1) the many-body quantum numbers of a finite-

cylinder ground state under space group symmetries such as

reflection, translation etc. provide a powerful diagnostic of the

underlying SET and 2) when viewing an infinitely long cylin-

der as a 1D spin chain, the 1D SPT order of the spin chain for

various geometries and topological sectors completely deter-

mines the SET order, at least within the space of mean-field

parton ansatz.

A reflection quantum number is a probe of quantum entan-

glement: if a state is odd under reflection, then the two halves

of the system are entangled. But how can quantum numbers

of a global symmetry, which are always integral, be related to

symmetry fractionalization? As a simple example - consider

creating a pair of identical anyons from the vacuum. Say that

the pair is related to one another by a symmetry (such as a

reflection or rotation). If the excitations carry charge, a unit

charge for this state actually implies half charge for each ex-

citation since they are constrained by symmetry. This is one

of the key ideas that we will exploit. Its implementation is

more involved when the second symmetry is not charge, but

also a space group (or time reversal) symmetry. Neverthe-

less such arguments establish the relative quantum numbers

between different topological sectors.

To relate our results to an established classification scheme,

we use a specific model of SETs obtained by a parton de-

composition of the spin operator into bosonic (Schwinger

bosons) or fermionic (Abrikosov fermions) partons. Symme-

try fractionalization is encoded in the Projective Symmetry

Group (PSG) [1, 46, 47], which determines how the partons

transform under symmetry. A parton mean field theory com-

bined with Gutzwiller projection leads to a spin wave-function

whose quantum numbers in each topological sector are com-

pletely determined, which reflects the underlying SET. In par-

ticular we show that the Kagome spin liquid SET can in prin-

ciple be uniquely determined by measurements on one ground

state in a few different finite-cylinder geometries. This infor-

mation is numerically superior to the relative quantum num-

bers between topological sectors, since DMRG numerics on

KHA do not obtain all topological sectors in the finite sized

systems studied.

A different perspective on our approach is to view it as a

‘dimensional reduction’ in which we view a 2D SET phase

on a cylinder as a 1D SPT. The nature of the 1D SPT de-

pends on the topological sector being studied, the geometry

of the cylinder, and the SET. In addition to its utility as a di-

agnostic in numerics, our approach provides a theoretical tool

to study connections between different representations of the

same SET. The 1D SPT invariants for the degenerate ground

states (which are labeled by distinct quasiparticles of the topo-

logical order) are shown to follow the same multiplicative law

as the fusion rules for the Abelian quasiparticles. This allows

us to determine from the PSGs of two anyons types in the Z2

topological order the PSG of the third anyon type, which is

found to obtain nontrivial phases in certain cases. Some of

these nontrivial phases associated with mirror reflection and

time reversal symmetries were missed in previous studies[4]



3

and serve to correctly relate bosonic and fermionic mean field

states on the Kagome lattice [5]. In particular this leads us

to equate two popular states, the Q1 = Q2 Schwinger bo-

son state [48] and the Z2[0, π]β fermionic mean field state

[5, 49, 50].

In addition, we show how dimensional reduction can be

used to completely identify the four topological sectors of a

cylinder; this is highly useful for DMRG studies, and does

not require simultaneous knowledge of all four ground states.

In particular, we have found a 1D SPT invariant that distin-

guishes between the bosonic and fermionic spinon.

Earlier work employed a similar dimensional reduction ap-

proach in the case of internal symmetries with projective

representations[51], and here we find it to be much more gen-

erally applicable in the presence of space group symmetries.

Related work specializing to the case of just translation sym-

metry has recently appeared [52]. The connection between

1D SPT invariants and global quantum numbers was previ-

ously noted [13, 53], and other works have utilized global

many-body quantum numbers to identify topological phases

[54, 55].

II. REVIEW OF Z2 SPIN-LIQUIDS

According to the arguments of Hastings, Oshikawa, Lieb,

Shultz and Mattis, [56–58] a quantum magnet with half-

integer spin per unit cell is either gapless, breaks a symme-

try, or is a gapped ‘spin liquid’ with emergent anyonic exci-

tations. In the latter case, the simplest possibility consistent

with time-reversal is the Z2 ‘toric code’-type spin-liquid. [29]

This phase has emergent S = 1/2 excitations, the ‘spinons,’

even though a truly local excitation (the magnons) must carry

S = 1. These emergent spinons are anyonic excitations with

non-trivial braiding and statistics. The Z2 spin-liquid has four

anyon types: the local excitations (‘1’); the bosonic spinon

(‘b’), which carries S = 1/2; the vison (‘v’), which be-

haves like a π-flux for the spinon; and the fermionic spinon

(‘f ’), formed from the composite of f = bv, and which

also carries S = 1/2. Each particle is its own anti-particle,

v2 = f2 = b2 = 1 (hence ‘Z2’). The braiding and statis-

tics of the Z2 spin-liquid are equivalent to Z2 gauge theory

(the ‘toric code’). In the language of Z2 gauge theory, b is the

electric charge e; v is the magnetic flux m; and f is the dyon

f = em composed of flux and charge.

The simplest SET aspect of the Z2 spin-liquid is its behav-

ior under SO(3) spin rotations: 1 and v carry integer spin,

while the spinons b, f carry half-integer spin. The half-integer

spin carried by the spinons is ‘fractionalized’ because any lo-

cal excitation of the constituent S = 1/2 spins transforms as

S = 1. We can look for additional SET distinctions based

on the transformation properties of anyons under space-group

symmetries, which is the subject of this work.

A. Minimally entangled states

The Z2 spin liquid has a 4-fold topological ground state de-

generacy on the torus or cylinder. Throughout this work we

rely on a special basis for the ground-state manifold called

the ‘minimally entangled states’ (MES).[35] To construct the

MES basis, let x run along the infinite length of the cylin-

der, and let Fa
x denote the adiabatic process in which a pair

of anyons a/ā are created from the vacuum and dragged in

opposite directions ±x̂ out to infinity. The process Fa
x re-

turns the system to the ground state, so is a unitary operation

in the ground-state manifold. We say that Fa
x ‘threads any-

onic flux a’ through the cylinder. Since the model is Abelian,

Fa
xFb

x ∝ Fa·b
x , where a · b denotes the fusion of Abelian

anyons.

The MES basis is the unique basis in which Fa
x is realized

as a permutation of the basis states for all a ∈ {1, b, v, f}. Fa
x

acts as a permutation in the MES basis because each MES has

definite topological flux threading the cylinder (its ‘topologi-

cal sector’).

In previous discussions of the MES it is often assumed

that each of the four MES can be uniquely identified with an

anyon type 1, b, v, f , so that each MES can be labeled with

an anyon type |a〉. Then threading topological flux is realized

as Fb
x |a〉 = |b · a〉. This is the case for Z2 spin-liquids on

even circumference cylinders, but for an S = 1/2 model on

an odd circumference cylinder there is a subtlety that arises

because the MES double the unit-cell along the x-direction.

The unit cell doubles because S = 1/2 models behave as if

there is a topological flux piercing each unit cell, so (as for

a magnetic field) the net topological flux through the cylin-

der changes along the direction x. [29] Strictly speaking it is

more precise to view the MES as a torsor for the fusion group,

but this subtlety does not affect the measurements proposed in

this work, so for notational simplicity we will label the MES

by anyon types.

III. SPACE-GROUP QUANTUM NUMBERS: ROBUST SET

INVARIANTS

In this section we consider the space-group quantum num-

bers of a finite length cylinder: even though the structure of

the two edges is non-universal, we argue that the space-group

quantum numbers are. In particular, consider creating a pair

of well-separated excitations from the vacuum which are re-

lated by a mirror plane, and separating them out to the edges

of the cylinder. If the reflection quantum number flips sign

after this process, the excitations must be anyons which are

connected by an invisible string which is odd under reflec-

tion. Since the pair of anyons together transforms as R = −1,

it as if R =
√
−1 acting on each anyon individually, so we

say R is ‘fractionalized.’

While global quantum numbers are only well defined for fi-

nite systems, at a later point we will show that they leave their

imprint on the bulk entanglement spectrum in a way which

can be measured on an infinitely long cylinder as well.
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A. Reflection quantum numbers

Consider a large but finite cylinder with a reflection symme-

try R̂x that exchanges its two edges. We argue that the global

R̂x quantum number of any symmetric state |Λ, a〉 with no ex-

citations in the interior of the cylinder depends only on a) the

SET order of the bulk phase of matter b) the details of the ge-

ometry, such as its dimensions, which we denote by ‘Λ’, and

c) the topological sector a of the cylinder. Throughout this

paper we will denote these global quantum numbers by Q,

R̂x |Λ, a〉 = QRx(Λ, a) |Λ, a〉 . (1)

To elaborate on c), note that an infinitely long cylinder has the

same topological ground state degeneracy as the torus. While

the edges may reduce the ground state degeneracy, we only

require that there are no excitations in the bulk of the cylinder,

so are left with the same bulk degeneracy as the torus. We

label these topological sectors of the finite cylinder by a, and

as discussed earlier we assume a indexes a special ‘minimally

entangled’ basis which has definite topological flux a thread-

ing the cylinder. This work focuses mainly on Z2 topological

order because the states |Λ, a〉 will break Rx if a is not it’s

own anti-particle.

The global quantum number QRx is insensitive to any de-

tails of the edge state or bulk Hamiltonian. To show insen-

sitivity to the edge, note that perturbing the edges amounts

to acting with unitaries UL, UR localized at the edges of the

cylinder. When UL and UR are spatially well separated, using

Rx symmetry we can require that UR = R̂xULR̂
−1
x . Since the

perturbation ULR̂xULR̂
−1
x commutes with R̂x, the quantum

number is unchanged. Q is insensitive to the bulk Hamilto-

nian because Q = ±1, so is quantized and can only change

during a bulk phase transition.

However, QRx(Λ, a) can depend on the topological sector

a, since changing the topological sector from a → b · a re-

quires separating an anyon pair b/b̄ out to the edges using Fb
x,

which is a string-like operation. We will find that the depen-

dence on Λ cancels if look at the relative quantum number

between topological sectors, [59]

Q
(b)
Rx

≡ QRx(Λ, ba)

QRx(Λ, a)
. (2)

These ratios have a particularly simple relationship to the SET

order: if Q
(b)
Rx

= −1, it implies that a pair of anyons related by

Rx each carry half the Rx = −1 quantum number, which we

consider to be ‘fractional.’ In contrast, our earlier argument

implies that a pair of truly local excitations must always have

QRx = 1.

Now suppose there is an additional reflection symmetry Ry

which does not exchange the two edges. In the absence of the

edge-exchangingRx symmetry, the Ry quantum numbers are

not robust, because nothing then prevents the perturbation UL

from being odd under Ry while UR is even. But if both Rx

and Ry are present, we can instead measure the combination

I = RxRy; since I exchanges the edges, according to our

earlier reasoning QI is also a protected invariant.

Finally, if lattice doesn’t have a C4 symmetry (as for the

Kagome model) there are distinct ways to compactify the ge-

ometry into a cylinder: for one choice, Rx exchanges the

edges, while for the second, Ry does. We can then measure

quantum numbers QRx in the first cylinder, QRy under the

second cylinder, and QI in either. This give three independent

quantum numbers for each anyon type, Q
(b/f/v)
Rx/Ry/I

, which we

will find almost fully characterizes Z2 SETs (at least within

the PSG framework). The remaining information relates to

the commutation relations of time-reversal T and the reflec-

tions R, which will lead to protected edge degeneracies we

discuss in Sec.V C.

B. Translation quantum numbers

In a magnetic field the translations Tx, Ty form a ‘magnetic

algebra’ TxTyT
−1
x T−1

y = eiΦ which is a projective repre-

sentation of the translation group. Even in the absence of a

physical magnetic field, in a topologically ordered phase the

anyons may experience an effective magnetic field. The mag-

netic field experienced by anyon a is encoded in the projective

relation (TxTyT
−1
x T−1

y )(a) = η
(a)
xy .

For an Abelian theory the above projective relations must

obey the fusion rule η
(a)
xy η

(b)
xy = η

(ab)
xy , since η

(a)
xy is the Berry

phase acquired when a circles a unit cell. For a Z2 spin-liquid

in a model with an odd number of spin-1/2 per unit cell, such

as on square, triangular and Kagome lattices, we always have

the relation η
(v)
xy = −1. This can be argued in the language

of Z2 gauge theory, where all S = 1/2 objects are the source

of Z2 electric flux (for example the spinons b, f , which map

on to the electrically charged e, f particles in the gauge the-

ory). This includes the microscopic S = 1/2 in each unit cell,

which implies that the system behaves as if there is electric

flux piercing each unit cell. Consequently under e-m dual-

ity, the flux m (the vison) experiences a background flux of

π per unit cell, so η
(v)
xy = −1. Since η

(1)
xy = 1, η

(v)
xy = −1,

and η
(b)
xy η

(v)
xy = η

(f)
xy , there is a single sign left undetermined,

which is the most basic SET distinction between Z2 spin-

liquids.

To probe ηxy , consider a cylinder of length Lx and circum-

ference Ly in topological sector a, and measure the momen-

tum quantum number QTy (Λ, a) = T̂y |Λ, a〉. Note that when

Ly is odd the MES double the unit cell in the x direction,

so we must restrict to Ly even. Ty symmetry alone does not

protect QTy , since the edge excitations can carry an arbitrary

momentum, but the combination of Tx and Ty allows us to

define a robust ‘momentum per unit length.’ Recall that in

the Landau gauge, the momentum Ty of a particle in a mag-

netic field is proportional to its position x. Since |Λ, a〉 has

an a particle localized near the edge, as we grow Lx its mo-

mentum grows linearly with x, ie, it is a momentum per unit

length of cylinder. To define the momentum per unit length

operationally, we need to grow the length of the cylinder Lx

while keeping the topological flux and edge state the same,

as otherwise QTy could contain a spurious contribution com-

ing from the changing edge state. Concretely, we require the
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reduced density matrix for the edge be kept constant as Lx

grows. The momentum per unit length η
(a)
xy is then

QTy (Λ, a) = qTy (∂Λ, a)
(

η(a)xy

)Lx

. (3)

qTy (∂Λ, a) depends on the edge, while the bulk contribution

reveals the SET invariant η
(a)
xy .

The momentum per unit length is trivial to measure in any

tensor network ansatz. For MPS, it is the invariant η
(a)
xy =

rTy defined in Eq. (48)) when viewing g = Ty as an ‘onsite’

symmetry in the 1D representation of the cylinder. rTy is a

byproduct of the algorithm used to calculate the momentum-

resolved entanglement spectrum of infinite-DMRG studies, so

presumably has already been computed in existing studies.

IV. SYMMETRY ENRICHED ORDER: DETECTING THE

PROJECTIVE SYMMETRY GROUP

The preceding discussion is independent of any classifica-

tion of space-group SETs, since we have argued on general

grounds that these quantum numbers are robust SET invari-

ants. Nevertheless, we would like to identify these invariants

within a general classification scheme. Recently it has been

proposed that distinct Z2 spin liquids that preserves symme-

try group Gs (including both onsite and spatial symmetries)

is classified by 2nd group cohomology H2(Gs, Gf )[4, 8, 10]

where Gf = Z2 × Z2 is the fusion group of Abelian anyons

in a Z2 spin liquid. While this abstract classification provides

limited insights on how to detect the SET invariants, the par-

ton construction provides a rich zoo of concrete Z2 spin liq-

uid states whose symmetry properties can be analyzed using

Wen’s ‘projective symmetry group’ (PSG)[1]. The PSG pro-

vides at least a partial classification of space-group SETs. In

this section, we show how to compute the quantum numbers

QU (Λ, a) within the parton construction, thereby identifying

them with invariants of the PSG.

A. The Parton Construction and the Projective Symmetry

Group

The resonating valence bond (RVB) picture proposed by

Phil Anderson provided the first intuition for a spin liquid

ground state as a quantum superposition of different dimer

configurations covering a lattice of spin-1/2 particles. Each

dimer (denoted by •− •) is a singlet pair formed by two spin-

1/2 particles:

| • −•〉 = | ↑〉1| ↓〉2 − | ↓〉1| ↑〉2.

The state is a ‘liquid’ because the quantum superposition of

dimer patterns restores the translational symmetry. One type

of elementary excitation in these systems is created by break-

ing a dimer into a pair of particles carrying spin-1/2 each,

which were coined spinons.

The parton construction is a systematic formalism for writ-

ing down ansatz RVB wavefunctions in which each spinon is

realized either as a fermionic parton fσ or bosonic parton bσ,

where σ =↑, ↓. In the fermionic description, each dimer is re-

alized as an s-wave Cooper pair of partons; breaking a Cooper

pair generates a pair of spinons. The microscopic spins ~Sr are

related to the partons through the bilinears

~Sr =
1

2

∑

α,β=↑,↓

f †
r,α~σα,βfr,β =

1

2

∑

α,β=↑,↓

b†r,α~σα,βbr,β .(4)

where ~σ are the three Pauli matrices. In order for this mapping

to generate a sensible S = 1/2 wavefunction, the partons can-

not be free particles: they obey the “single-occupancy” con-

straint of one parton per lattice site:
∑

σ=↑,↓

f †
r,σfr,σ =

∑

σ=↑,↓

b†r,σbr,σ = 1, ∀ lattice site r. (5)

This constraint can be implemented by a gauge field which

couples to the partons.

In practice, we use the parton construction to create ansatz

wave-functions. If |MF〉 is a ‘mean-field ansatz’ state for the

partons which need not obey the single occupancy constraint

(for example, a BCS superconductor of fermionic partons fσ),

we enforce the constraint via Gutzwiller projection to obtain

an S = 1/2 wavefunction:

〈↑1↓2 · · ·σi · · · |Ψ〉 =
〈0|fr1,↑fr2,↓ · · · fri,σi · · · |MF〉 , (6)

and similarly in the bosonic construction. Note that in the

fermionic case, we must choose and fix an ordering of sites

r1, r2, · · · in order to maintain the correct relative sign be-

tween different spin configurations. For the purposes of cal-

culation |MF〉 is usually taken to be a free wavefunction, such

as a mean-field BCS superconductor or pair-superfluid for the

fermionic / bosonic constructions considered here. Gutzwiller

projecting the creation of a single parton f †/b† results in a

highly non-trivial excitation: an S = 1/2 anyonic excitation,

the spinon.

A crucial question in the parton construction is how the

symmetries {U ∈ SG} of the S = 1/2 wavefunction (such

as global SO(3) spin rotations and space-group symmetries)

are realized in the partons and their mean-field ansatz |MF〉.
The simplest possibility is that the partons form a linear rep-

resentation of the symmetry group SG. But is this the only

option? The answer is no, because according to Eq. (4) apply-

ing a gauge transformation br,σ → e iφrbr,σ leaves the physi-

cal spin operators unchanged, and accordingly the Gutzwiller

projection in Eq. (6) is a many-to-one mapping insensitive to

U(1) gauge transformations. Consequently under a series of

symmetry operations {Ui} ∈ SG which yield the identity op-

eration e

U1U2 · · ·Un = e (7)

a single-parton operator br,σ (or f ) may acquire a nontriv-

ial phase factor e iφ 6= 1 instead of remaining invariant. In

this case the partons transform projectively, rather than lin-

early, under the symmetry group SG. The symmetry oper-

ations {U ∈ SG} are accompanied by certain gauge trans-

formations {GU |U ∈ SG} on partons, forming a “projec-

tive symmetry group” PSG ≡ {GUU |U ∈ SG} which is a
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central extension of the symmetry group SG. [1] The cen-

ter of such an extension is called the “invariant gauge group”

IGG ≡ PSG/SG. The IGG are those gauge transformations

which leave the mean-field ansatz |MF〉 invariant.

For the Z2 spin liquids which are the focus of this work, the

invariant gauge group is IGG = Z2. This means under a series

of symmetry operations {Ui} in (7), each parton acquires a

Z2 phase factor of ±1. This is consistent with the mean-field

ansatz being a singlet BCS superconductor of spinons. For

example, for symmetry a symmetry UU = e we have the

relation

(ĜU Û)2fri,σi(ĜU Û)−2 = ηfUfri,σi , ηfU = ±1. (8)

These ±1-valued ηaU for anyons a ∈ {1, b, v, f} correspond to

elements in 2nd group cohomology H2(SG, Z2 × Z2), which

are proposed to fully characterize the symmetry fractionaliza-

tion of a 2+1-D SET phase[4, 8, 10]. The primary goal of this

work is to show how to detect these ±1-valued SET invariants

associated with symmetry group SG.

B. Minimally entangled states within the parton construction

We first must review how to generate the MES within the

parton construction.

There is a two-fold degeneracy associated with threading

a vison v for both finite and infinite cylinders. In the parton

ansatz this arises because the boundary conditions of a cylin-

der of circumference Ly can be either periodic (P) or anti-

periodic (AP). At the level of the parton Hamiltonian, this is

accomplished by assigning an additional sign of −1 to all ma-

trix elements which cross a line at some fixed y = y0; the

choice of y0 is a gauge choice. When acting with Ty or Ry ,

the location of the twist y0 must be restored by an additional

contribution to the gauge transformations GTy/Ry
, leading to

new PSG relations on a cylinder:

(ĜTy T̂y)
Ly = (−1)bc

(9)

(ĜTy T̂y)
Ly/2(ĜRy R̂y)(ĜTy T̂y)

Ly/2(ĜRy R̂y)
−1 = (−1)bc

(10)

where bc = 0/1 for P/AP . The second equation should

be interpreted as relative to the PSG in the plane geometry.

Hence in all that follows the PSG implicitly depends on the

boundary condition (bc) of the mean-field ansatz |MF〉.
The two-fold degeneracy associated with threading a

spinon is a bit more subtle, as in the finite case the degeneracy

is split by the edges. If we make a bipartition of the cylin-

der at some x0, the parton parity (−1)Nb/f in the left half of

the mean-field ansatz |MF〉 fluctuates across the cut (note the

parton number itself is not conserved). After Gutzwiller pro-

jection, Eq. (6), the parton parity to the left is fixed by the

number of sites to the left. But in the infinite case there is an

ambiguity, since the number of sites is infinite. This means

that when Gutzwiller projecting we can freely choose either

the sector with even (E) or odd (O) parton parity to the left of

the cut at x0, which generates an additional 2-fold degeneracy

on the infinite cylinder.

The choice of P / AP boundary conditions combined with E

/ O parton parity generates the 4-fold degeneracy of the infi-

nite cylinder. These sectors are identified with the anyon types

in a manner that depends on the parton construction:

1, v, b, f ↔ (P, E), (AP, E), (P, O), (AP, O) (bosonic) (11)

1, v, b, f ↔ (AP, E), (P, E), (P, O), (AP, O) (fermionic)
(12)

Note that in the no-spinon sector the role of P/AP is flipped

between the two constructions.

For an even circumference cylinder the E / O parity is the

same for all cuts x0, since an even number of sites intervene

between cuts. But for an odd circumference cylinder, the E /

O assignment alternates with x0. This alternation doubles the

physical unit cell.

C. Computation of global quantum numbers from the PSG

Since the PSG determines how the partons transform under

symmetry operations, we can compute the (crystal) symme-

try quantum numbers of any projected wavefunction (Eq. (6))

constructed from a parton mean-field ansatz. If U is a space-

group operation which permutes the sites according to i →
U(i), the wavefunction transforms as

〈{σi}|UΨ〉 = 〈{σU−1(i)}|Ψ〉 = 〈0|
∏

i

fri,σU−1(i)
|MF〉 ,

(13)

and similarly for the bosonic ansatz. We can split the resulting

quantum number into two contributions. First, there is a part

QU (Λ, bc) coming from the Gutzwiller projection,

〈0|
∏

i

fri,σU−1(i)
= QU (Λ, bc) 〈0|

∏

i

fri,σiĜU Û , (14)

which depends only on the geometry Λ and the PSG (which

is modified by bc); we will show how to compute this in the

subsequent section. The second contribution comes from the

quantum number of |MF〉. Inserting Eq. (14) into Eq. (13) we

find that the total quantum number factorizes as

ĜU Û |MF〉 ≡ QU (MF) |MF〉 (15)

Û |Ψ〉 = QU (Λ, bc)QU (MF) |Ψ〉 (16)

D. Ratios of edge-exchanging quantum numbers in different

topological sectors

In the first scenario, we suppose we have access to all topo-

logical sectors on the same geometry. We find that for edge-

exchanging symmetries, the ratio between the quantum num-

ber before and after threading anyonic flux a reveals the PSG

of anyon a.



7

1. Spinon insertion

We fix the geometry Λ and compute the relative reflection

quantum number QR between two states which differ by the

insertion of a pair of spinons at the edges. To generate the

appropriate pair of mean-field ansatz |MF〉 and |c · MF〉 which

differ by spinon flux c = b/f (depending on the construction),

let c†L create an arbitrary bosonic / fermionic parton near the

left edge. To ensure that c · MF is symmetric under R we

must create a corresponding spinon on the right using c†R ≡
(ĜRR̂)c†L(ĜRR̂)−1, so

|c · MF〉 ≡ c†L (ĜRR̂)c†L(ĜRR̂)−1 |MF〉 . (17)

QU (Λ, bc) is unchanged, and it is straightforward to verify

ĜRR̂ |b/f · MF〉 = (−1)F (ĜRR̂)2QR(MF) |b/f · MF〉
(18)

where the sign (−1)F occurs for fermionic partons as we must

exchange the creation operators and we use (ĜRR̂)2 to denote

the parton PSG associated with R̂2 = e:

(ĜRR̂)2ci(ĜRR̂)−2 = ηcR ci, ∀ ci,

(ĜRR̂)2 ≡ ηcR. (19)

Consequently for any geometry the change in the quantum

number QR after inserting a bosonic / fermionic spinon is

Q
(b/f)
R ≡ QR(Λ, b/f · MF)

QR(Λ,MF)
= (−1)F η

b/f
R . (20)

Hence the spinon PSG can be recovered by measuring the rel-

ative quantum number between different topological sectors.

The relative quantum numbers can be computed for any

space-group symmetry which exchanges the edges; by us-

ing different cylinder compactifications we can measure the

Rx, Ry , and I = RxRy quantum numbers. There may be

distinct π-rotations depending on whether the rotation is site

or bond / plaquette centered; on a square lattice, for example,

I ′ = TxRxTyRy , reveals an independent PSG relation. In

TABLE I and II we tabulate the relative quantum numbers for

the square and Kagome lattices.

2. Vison insertion

We again fix Λ, and compute the relative reflection quantum

number QR between two states which differ by the insertion

of a vison. As discussed, threading a vison switches between

P/AP boundary conditions, so QU (Λ, bc) may change due to

the PSG relations of Eq. (9). The PSG relations associated

with U2 = e are only modified if U takes an odd number

of sites across the twist boundary condition modified by the

vison. For both the square and Kagome lattice, for the ge-

ometries in which U exchanges the edges of the cylinder we

a b f v Q(f) = Q(v)Q(b)

Q
(a)
Rx

ηb
Rx

−η
f
Rx

1 ηb
Rx

= −η
f
Rx

Q
(a)
Ry

ηb
Ry

−η
f
Ry

1 ηb
Ry

= −η
f
Ry

Q
(a)
Ip/b

ηb
Rx

ηb
Ry

ηb
Rx,Ry

−η
f
Rx

η
f
Ry

η
f
Rx,Ry

1 ηb
Rx,Ry

= −η
f
Rx,Ry

Q
(a)
Is

ηb
xyη

b
Rx

ηb
Ry

ηb
Rx,Ry

−ηf
xyη

f
Rx

η
f
Ry

η
f
Rx,Ry

-1 ηb
xy = −ηf

xy

TABLE I. Relative quantum numbers Q
(a)
U between topological sec-

tors a of a square lattice spin-liquid. Ip/b is a plaquette or bond

centered π-rotation, while Is is a site-centered π-rotation.

have

QRy (Λ,AP) = QRy (Λ, P) (21)

QRx(Λ,AP) = QRx(Λ, P) (22)

QIb/p(Λ,AP) = QIb/p(Λ, P) (23)

QIs(Λ,AP) = −QIs(Λ, P) (24)

where Ib/p is a is bond or plaquette centered π-rotation, while

Is it site-centered. The extra −1 sign for Is comes from the

vison string sweeping over an odd number of lattice sites (in-

cluding the inversion center) upon Is operation.

Next we argue that QU (MF) is unchanged when threading

a vison. To start, suppose |MF〉 is in the same phase as the

ground state of a BCS superconductor / pair super-fluid. In

the subsequent section, we show that QU (MF) = 1 regardless

of boundary condition, so is unchanged by vison insertion.

Now suppose we modify the ground state |MF〉 with arbitrary

U -symmetric edge perturbations of fixed parton parity. The

resulting QU (MF) can depend only on the parton parity of the

edge perturbation, but not on the boundary condition, because

the vison-modified PSGs of Eq. (9) will necessarily act on U -

related partons and the signs will cancel. This shows QU (MF)
is unchanged by vison insertion, and we conclude that

Q
(v)
Ry

= 1, Q
(v)
Rx

= 1, Q
(v)
Ib/p

= 1, Q
(v)
Is

= −1.

(25)

A possible loophole in our argument is that we assumed that

for the ground state, |MF〉 could be taken to be in the same

phase as a BCS / pair superfluid, but our result agrees with

earlier discussions.[5]

3. Fusion and unification: Q(f) = Q(v)Q(b)

Our derivation of the vison quantum numbers shows that

the relative reflection quantum numbers obey fusion, Q
(f)
U =

Q
(v)
U Q

(b)
U , because vison insertion changes the quantum num-

ber by Q(v) regardless of the parton parity at the edge. As

tabulated in Table I and Table II, we can use this fusion rule

to relate the bosonic and fermionic PSGs, unifying the two

approaches[5].
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a b f v Q(f) = Q(v)Q(b)

Q
(a)
Rx

(−1)p2+p3 −ησ 1 (−1)p2+p3 = −ησ

Q
(a)
Ry

(−1)p2 −ησησC6 1 (−1)p3 = ησC6

Q
(a)
Ih

(−1)p1+p3 −ηC6 1 (−1)p1 = −ηC6ησC6

Q
(a)
Is

(−1)p3 −η12ηC6 -1 (−1)p1 = −η12

TABLE II. Relative quantum numbers Q
(a)
U between topological sec-

tors a in a Kagome lattice spin-liquid. Ih/s is a hexagon / site cen-

tered π-rotation. The bosonic PSGs are expressed through the invari-

ants (p1, p2, p3) of Ref. [46], while the fermionic PSGs are expressed

through the invariants η of Ref. [49]. The fermionic invariants satisfy

η12ηC6ησC6 ≡ 1 tautologically.

E. The quantum numbers of the ground state

A given geometry Λ generically has a lowest energy state

which is SO(3) symmetric on both edges, and two-fold degen-

eracy for vison insertion. We can compute the quantum num-

bers for such an SO(3) symmetric state by assuming |MF〉 is

in the same universality class as a BCS superconductor / pair

superfluid in the fermionic / bosonic constructions. |MF〉 is

then invariant under any symmetry: QU (MF) = 1. This is

because in both constructions we have

|MF〉 = exp
[

∑

i,j g(i− j)c†i,↑c
†
j,↓

]

|0〉, (26)

g(i− j) = −(−1)F g(j− i)

where c = f/b and (−1)F = −1/1 for Abrikosov-fermions

and Schwinger-bosons respectively. Because |MF〉 always

contains the parton Fock vacuum |0〉 as a component in the

Taylor expansion of the exponential, and |0〉 is invariant under

any symmetry operation, |MF〉 must also be invariant. There-

fore the quantum number of the ground state depends only on

the geometry Λ and the PSG:

QU (Λ, bc,MF) = QU (Λ, bc) (27)

where bc will depend on the two-fold degeneracy associated

vison insertion and QU (Λ, bc) is defined in Eq. 14. This result

is particularly useful numerically, since by modifying Λ we

can probe the PSG using only a single topological sector.

In the following we specifically illustrate how to obtain the

eigenvalues QU (Λ, bc) of two crystal symmetry operators, in-

version I and mirror reflection R, for a projected wavefunc-

tion (6) on a finite-size lattice from parton PSGs.

1. Eigenvalue of plaquette-centered inversion Ip

First we consider an inversion symmetry Ip whose inver-

sion center lies on a plaquette. For a finite-size lattice with

plaquette-centered inversion Ip, the number of lattice sites Ns

must be even. All lattice sites must be exchanged in pairs

under inversion operation, since no lattice site remains invari-

ant under Ip operation. More specifically, spinon fri,σi must

appear altogether with its inversion counterpart fÎpri,σi
=

ĜIp Îpfri,σi(ĜIp Îp)
−1 in the many-spinon operator

∏

i fri,σi .

Note that in projected wavefunction (6) there is always a par-

ticular ordering for the real-space positions {ri} of the many-

spinon operator
∏

i fri,σi . Here we simply choose a ordering

in which a pair of spinons related by inversion show up to-

gether i.e.

∏

i fri,σi ≡
∏′

i fri,σi · ĜIp Îpfri,σi(ĜIp Îp)
−1. (28)

where ′ denotes the product over half lattice sites that are un-

related by inversion. Clearly under inversion operation Îp the

above many-spinon operator transform as

ĜIp Îp
∏

i fri,σi(ĜIp Îp)
−1 =

∏′
i ĜIp Îpfri,σi(ĜIp Îp)

−1 · (ĜIp Îp)
2fri,σi(ĜIp Îp)

−2.

By definition of PSGs we have

(ĜIp Îp)
2fri,σi(ĜIp Îp)

−2 = ηfIpfri,σi , ηfIp = ±1. (29)

since I2p = e yields the identity operation. We used ηf to

denote the PSGs for fermionic spinons (Abrikosov fermions)

and ηb for bosonic spinons (Schwinger bosons). Notice

that for Abrikosov-fermion representation, exchange of two

spinons fri and fÎpri gives rise to an extra −1 sign due to

Fermi statistics. As a result we obtain

ĜIp Îp
∏

i

fri,σi(ĜIp Îp)
−1 = (−ηfIp)

Ns/2
∏

i

fri,σi (30)

Hence the eigenvalue of plaquette-centered inversion Ip for

projected wavefunction (6) on a Ns-site lattice (Ns =even) is

QIp(Ns) = (−ηfIp)
Ns/2 (31)

for Abrikosov-fermion representation. On the other hand, in

the Schwinger-boson representation, exchange of two spinons

won’t yield a −1 sign and we have

QIp(Ns) = (ηbIp)
Ns/2 (32)

2. Eigenvalue of site-centered inversion Is

Now let’s take one more step to consider an inversion sym-

metry Is whose inversion center lies on one or more lattice

sites. Let’s assume inversion centers contain NI sites and Ns

is the total number of lattice sites. For those (Ns −NI) sites

other than the inversion centers, their contribution to the Is
eigenvalue follows exactly the same form as (31) and (32),

except that we need to replace Ns by Ns −NI .

What about the contribution from the NI inversion centers?

First of all, if there is an odd number of inversion centers

(NI =odd), the inversion eigenvalue is not a gauge invari-

ant quantity since the symmetry operations on a single spinon

can always be followed by an arbitrary gauge transformation.

In fact if NI=odd, the many-body ground states must have

a two-fold degeneracy due to Kramers theorem. In the case

whenNI =even, if the inversion centers are not related by any

other symmetry, again they can acquire extra gauge transfor-

mations independently under symmetry operations, and again

the inversion eigenvalue is not a topological invariant.
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If an even number of inversion centers are related by sym-

metry, on the other hand, one can compute their contribution

to Is eigenvalue from parton PSGs in a universal manner.

Without loss of generality, let’s consider a pair of inversion

centers related by certain crystal symmetry P̂ (e.g. it could

be a mirror reflection or a translation on a finite cylinder), this

spinon pair operator transforms under inversion Îs as

ĜIs Îs
[

fr,σ · ĜP P̂ fr,σ(ĜP P̂ )−1
]

(ĜIs Îs)
−1

= ĜIs Îsfr,σ(ĜIs Îs)
−1 · ĜIs ÎsĜP P̂ fr,σ(ĜP P̂ )−1(ĜIs Îs)

−1

= ηfIs,P ĜIs Îsfr,σ(ĜIs Îs)
−1

· ĜP P̂ ĜIs Îsfr,σ(ĜIs Îs)
−1(ĜP P̂ )−1

= ηfIs,P η
f
Is

[

fr,σ · ĜP P̂ fr,σ(ĜP P̂ )−1
]

. (33)

where we defined spinon PSGs

ĜIs ÎsĜP P̂ fr,σ(ĜP P̂ )−1(ĜIs Îs)
−1 = (34)

ηfIs,P ĜP P̂ ĜIs Îsfr,σ(ĜIs Îs)
−1(ĜP P̂ )−1,

(ĜIs Îs)
2fr,σ(ĜIs Îs)

−2 = ηfIs fr,σ. (35)

Consequently, for a Ns-site lattice with NI inversion cen-

ters (Ns, NI =even) which are pairwise related by crystal

symmetry P̂ , the inversion eigenvalue of projected wavefunc-

tion (6) is given in terms of spinon PSGs by

QIs(Ns, NI) = (−ηfIs)
(Ns−NI)/2(ηfIsη

f
Is,P

)NI/2

= (−ηfIs)
Ns/2(−ηfIs,P )

NI/2. (36)

for Abrikosov fermions and

QIs(Ns, NI) = (ηbIs )
Ns/2(ηbIs,P )

NI/2. (37)

for Schwinger bosons.

A crucial point is that the PSG ηIs,P can depend on the

boundary condition of the cylinder (for example, if P =

T
L/2
y ).

3. Eigenvalue of mirror reflection operator R

The eigenvalues of mirror reflection operatorR can be com-

puted completely in parallel to the case of inversion symmetry

as discussed previously. Again let’s assume NR lattice sites

lie on the mirror reflection axis on a Ns-site lattice. As argued

earlier, only when NR is even and these NR sites are related to

each other by other crystal symmetries, will the R eigenvalue

be a topological invariant that is fully determined by parton

PSGs. Let’s assume these NR sites are exchanged in pairs by

crystal symmetry P̂ . Similar to the case of inversion symme-

try Is we can compute the reflection eigenvalue of projected

wavefunction (6) as

QR(Ns, NR) = (−ηfR)
Ns/2(−ηfR,P )

NR/2. (38)

for Abrikosov fermions and

QR(Ns, NR) = (ηbR)
Ns/2(ηbR,P )

NR/2. (39)

for Schwinger bosons. The parton PSGs are defined as

ĜRR̂ĜP P̂ fr,σ(ĜP P̂ )−1(ĜRR̂)−1 = (40)

ηfR,P ĜP P̂ ĜRR̂fr,σ(ĜRR̂)−1(ĜP P̂ )−1,

(ĜRR̂)2fr,σ(ĜRR̂)−2 = ηfRfr,σ. (41)

for Abrikosov fermions and similarly for Schwinger bosons.

4. Unifying bosonic and fermionic PSGs

If an Abrikosov-fermion state and a Schwinger-boson state

describes the same Z2 spin liquid state, their symmetry quan-

tum numbers on any finite lattice must be the same for ar-

bitrary crystal symmetries. Therefore from the eigenvalues

of inversion and reflection symmetries summarized previ-

ously, we can achieve a unification of Abrikosov-fermion and

Schwinger-boson representation: i.e. their PSGs must satisfy

the following correspondence:

− ηfIp = ηbIp ; (42)

− ηfIs = ηbIs ; (43)

− ηfIs,P = ηbIs,P , (44)

∀ crystal symmetry P satisfying PIs = IsP ;

− ηfR = ηbR; (45)

− ηfR,P = ηbR,P , (46)

∀ crystal symmetry P satisfying PR = RP.

These relations are in agreement with our conclusions based

on the relative quantum numbers.

As pointed out in Ref.[4], the SET invariants {ηaU} must

obey the fusion rule of anyons, i.e. ηb·vU ≡ ηfU = ωt
Uη

b
Uη

v
U ,

where ωt
U = ±1 is the twisting factor associated with sym-

metry operation U ∈ SG in a Z2 spin liquid. As shown above,

here we find a nontrivial twisting factor ωt
R = −1 for the

square of any mirror reflection R2 = e, in contrast to results

in Ref.[4]. Similarly nontrivial twisting factor also shows up

for I2 = RPR−1P−1 = IPI−1P−1 = e. These twisting

factors will be elaborated in the language of 1d SPT invari-

ants in the next section.

In the next section we’ll establish the correspondence be-

tween Schwinger-boson and Abrikosov-fermion representa-

tions for those PSGs concerning time reversal symmetry. This

is achieved by relating the 2D parton PSGs to 1D SPT invari-

ants by considering projected wavefunctions on a thin but long

cylinder.

V. DIMENSIONAL REDUCTION AND ENTANGLEMENT

SIGNATURES

A 2D model defined on a cylinder can be viewed as a 1D

system by grouping one ring of the cylinder into a single

super-site. This point of view is useful because the interplay

of symmetry, topology and entanglement has been completely

understood in 1D through the recent classification of 1D SPT
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phases. [12–15] In this section we explain how 2D SET or-

der manifests itself as 1D SPT order under this dimensional

reduction. In particular, we find the Z2 PSG relations have

a one-to-one correspondence with the U(1) projective repre-

sentations that classify 1D SPT phases. While generally U(1)

projective representations are a coarse-grained version of Z2

projective representations, space-group symmetries actually

have an anti-unitary character under the dimensional reduc-

tion, and for this special case the correspondence becomes

one-to-one.

A. A review of 1D SPT phases.

While the classification of 1D SPTs can be discussed in

terms of Schmidt decomposition, the most compact treatment

uses the formalism of matrix product states. We refer to pre-

vious works for a more detailed review. [12–15]

1. Matrix product states

Let |jn〉 span the local Hilbert spaces of a spin chain with

sites at n. A MPS |Ψ〉 is characterized by a sequence of rank-

3 tensors {Γjn
αnαn+1

} and rank-1 vectors {sαn} through the

ansatz

〈{jn}|Ψ〉 =
χn
∑

αn=1

∏

n

sαnΓ
jn
αnαn+1

. (47)

The indices αn which are summed over are called the auxil-

lary indices, with dimension χn. We have assumed the MPS

is in the ‘canonical form,’ which means that each sαn is the

set of Schmidt weights for a bipartiton of the system between

sites n− 1, n.

The MPS ansatz includes both finite and infinite spin

chains. In the finite case with L sites, χ1 = χL+1 = 1. In the

infinite case with a unit cell of length L, we can always choose

the tensors to share this unit cell: Γ
jn+L
αn+Lαn+1+L = Γjn

αnαn+1

and likewise for s and χ.

2. Onsite symmetries

If a spin chain is invariant under an onsite symmetry g ∈ G
(e.g. a spin rotation) , it is natural to ask how the symmetry

is encoded in the tensors Γ. The representation of the onsite

symmetry decomposes into its action on each site, ĝ = ⊗nĝn.

For notational simplicity, we will drop the site index n. An

MPS is symmetric under g if and only if the Γ and s transform

as [60]

∑

k

gjkΓ
k
αβ = rg

∑

α′,β′

Ug;αα′Γj
α′β′U

†
g;β′β (48)

Ug;αβsβ = sαUg;αβ (49)

where the Ug are unitary matrices and rg ∈ U(1).

The phases rg form a U(1) representation of the group, and

encode the g-charge per unit length. But for the unitaries Uh

there is another possibility: Ug may be a projective represen-

tation, meaning that the requirements of a group representa-

tion are satisfied only up to U(1) phases. This subtlety arises

because the phase of Ug isn’t fixed by the transformation law

of Eq. 48. Arbitrarily fixing the phase of each Ug , the U(1)

phases ω are encoded in the relations

UgUh = ω(g, h)Ugh, ω(g, h) ∈ U(1). (50)

The phases ω are called cocycles, or the factor set. If we con-

sider the phase ambiguity Ug → θ(g)Ug, θ(g) ∈U(1) to be a

‘gauge transformation,’ we see that ω is not gauge invariant.

The classification of gauge-inequivalentω is given by the 2nd

group cohomology [ω] ∈ H2[G,U(1)], resulting in a classifi-

cation of 1D phases symmetric under G. Note that for sym-

metry group G = ZN , there are no projective representations,

and hence no 1D SPT phases.

An important physical signature of an SPT phase under on-

site G is degenerate edge states. It can be shown there are

edge states which transform under G with the same projective

representation [ω] as the Ug; if [ω] is non-trivial, the projective

representation must be multi-dimensional, implying a degen-

eracy.

3. Time-reversal symmetry

The transformation laws are modified for time-reversal

T = ⊗nûT K because of the complex conjugationK . Similar

to before, the MPS can be taken to transform as
∑

k

uT ;jkΓ̄
k
αβ =

∑

α′,β′

UT ;αα′Γj
α′β′U

†
T ;β′β (51)

UT ;αβsβ = sαUT ;αβ (52)

(note we can remove rT by redefining the U(1) phase of the

state). But for an anti-unitary symmetry like time-reversal T ,

the projective relations are modified to

UT U
∗
h = ω(T , h)UT h, (53)

UhUT = ω(h, T )UhT ω ∈ U(1) (54)

In contrast to an onsite G = Z2, for the anti-unitary time-

reversal (G = Z
T
2 ) we can form the gauge-invariant relation

γT ≡ UT U
∗
T = ±1. (55)

This γT gives a Z2 SPT classification.

There is also an interplay between the other symmetries and

T . If G contains H × Z
T
2 ⊂ G as a subgroup, where H is

onsite, for h ∈ H there is a projective relation

UT U
∗
hU

−1
T =

ω(T , h)

ω(h, T )
Uh (56)

For our purposes it will be sufficient to understand H2[Z2 ×
ZT
2 , U(1)] = (Z2)

2; since hT is itself anti-unitary Z2 sym-

metry we can form another gauge-invariant relation

UhT U
∗
hT = γhT = ±1, (when h2 = 1), (57)
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an additional Z2 invariant. Alternatively, we have the relation

(U2
h)(UT U

∗
hU

−1
T U−1

h ) = γhT γT (58)

4. Reflection symmetry

Finally, consider a reflection R which spatially inverts the

1D chain, R |jn〉 = uR;jn,k−n |k−n〉. The unitary matrix uR

encodes any internal rotation in the definition of the reflection.

The transformation law is [13]

∑

k

uR;jk

(

ΓT
)k

αβ
= rR

∑

α′,β′

UR;αα′Γj
α′β′U

†
R;β′β (59)

UR;αβsβ = sαUR;αβ (60)

where rR = ±1 provides the first Z2 invariant, the ‘parity per

unit length.’ Somewhat surprisingly, combining this transfor-

mation law with those of an onsite h we find the projective

relations are the same as those of a anti-unitary symmetry:

URU
∗
h = ω(R, h)URh, (61)

UhUR = ω(h,R)UhR ω ∈ U(1). (62)

The origin of this similarity is that transposition T and com-

plex conjugation behave analogously when acting on the uni-

tary Uh. This point is important, as it implies inversion has

the same Z2 invariants as time-reversal T :

URU
∗
R = γR = ±1 (63)

UhRU
∗
hR = γhR = ±1 (when h2 = 1) (64)

(U2
h)(URU

∗
hU

−1
R U−1

h ) = γhRγR = ±1 (65)

B. Identification of 1D SPT order and the space-group PSGs

Earlier we argued that space-group quantum numbers are

topological invariants in the presence of reflection symme-

tries, and calculated these quantum numbers using the PSG.

We now show that under the dimensional reduction these

quantum numbers can be calculated from the 1D SPT invari-

ants rR, γR, γhR. This clarifies the origin of their stability,

since 1D SPT phases are robust in the presence of symme-

tries, and provides a dictionary between the 2D SET and 1D

SPT order.

To equate the 2D SET order with the 1D SPT invariants,

we must compute the quantum numbers of a finite chain given

the infinite chain 1D SPT invariants. For notational simplicity,

we will assume the dimensional reduction results in a one-site

1D unit cell. The notation is more complex for the Kagome

model, since under the dimensional reduction it is more con-

venient to use a unit cell of two, so we delay the discussion

of this case. Since the system is a 2D cylinder, in addition to

a reflection R which exchanges the edges of the chain, there

may be an orthogonal reflection R′ which does not exchange

the edges, but instead behaves as an ‘onsite’ symmetry under

the dimensional reduction. We combine these two reflections

to form a 180 degree inversion I = RR′, which again ex-

changes the edges. Consequently there are Z2 1D SPT invari-

ants γR, γI = γRR′ .

For any R/I symmetric state on a finite chain with L sites

(L-odd implies a site-centered inversion) it can be proven that,

independent of any details of the edge, the quantum numbers

of the chain are

QR(L) = γR (rR)
L

(66)

QI(L) = γI (rI)
L

(67)

where γ, r are the 1D SPT invariants of the bulk phase.

To relate the 1D SPT invariants to the PSG, fix the trans-

verse geometry Λ⊥ of the cylinder (such as the circum-

ference), and find the four ground states of the infinite

cylinder. Each topological sector a has 1D SPT invariants

γU (Λ⊥, a), rU (Λ⊥, a).
Following our earlier discussion, we first compute the ratio

of quantum numbers after threading a spinon b/f :

Q
(b/f)
U =

QU (Λ, b/f · a)
QU (Λ, a)

=
γU (Λ⊥, b/f · a)

γU (Λ⊥, a)
(
rU (Λ⊥, b/f · a)

rU (Λ⊥, a)
)L

(68)

Since the result is independent of the geometry, we have the

following:

Q
(b/f)
U =

γU (Λ⊥, b/f · a)
γU (Λ⊥, a)

(69)

rU (Λ⊥, b/f · a) = rU (Λ⊥, a) (70)

We find that the ratio of 1D SPT invariants γU between the

topological sectors of an infinite cylinder reveals the PSG

relation Q
(b/f)
U . Furthermore, the parity per unit length is

unchanged by threading a spinon.

We then compute the ratio of quantum numbers after

threading a vison v:

Q
(v)
U =

QU (Λ, v · a)
QU (Λ, a)

=
γU (Λ⊥, v · a)
γU (Λ⊥, a)

(
rU (Λ⊥, v · a)
rU (Λ⊥, a)

)L

(71)

When U is not site-centered, our earlier discussion found that

Q
(v)
U = 1, so by comparison we expect

γU (Λ⊥, v · a) = γU (Λ⊥, a) (72)

rU (Λ⊥, v · a) = rU (Λ⊥, a), U ∈ {R, Ih/p}. (73)

On the other hand, the site-centered inversion Is requires odd

L, and from Q
(v)
Is

= −1 we find

rIb(Λ⊥, v · a)
rIb (Λ⊥, a)

= −1 (74)

1. Translating between the Z2 PSG and the 1D SPT U(1) PSG

The bosonic Z2 PSG is encapsulated by the projective rela-

tions

X · Y = ωb(X,Y )(XY ) (75)
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where ωb ∈ Z2. The 1D SPT relations are similar, but

ω ∈ U(1), which is in general a much coarser classification

as there are more phase ambiguities. Yet we have shown that

the 1D SPT relations recover the 2D PSG. So how do the 2D

PSG relations ‘descend’ to the 1D SPT relations? The key

point is that if the symmetry R exchanges the edges of the

cylinder, we can transcribe the 2D PSG relations into 1D SPT

relations if we remember that reflection / inversion becomes

anti-unitary in the 1D SPT realization:

R2 = ηbR ⇒ URU
∗
R = γR (76)

Due to the anti-unitary nature, the U(1) phase ambiguity does

not affect the robustness of γR. In general, the 2D PSG

relations descend to 1D SPT relations if we treat edge-

exchanging symmetries as anti-unitary. This explains the

equality of the quantum numbers found in Eq. (69).

C. Identification of 1D SPT order and the RTR−1T−1 PSGs

In the fermionic parton construction there is an additional

fermion PSG associated with the interplay of time-reversal T
and a reflection R:

ηfRT = R−1T−1RT (77)

Viewing R as on-site, under the dimensional reduction we

have a similar 1D relation

URUT =
ω(R, T )

ω(T,R)
UTU

∗
R (78)

But ω(R, T ) is not U(1) gauge invariant. Instead, we may

consider the 1D SPT invariant defined by Eq. (57). Comparing

the 2D and 1D SPT PSG relations,

(R2)(R−1T−1RT ) = ηfRη
f
RT 2D PSG (79)

(UR)
2(U−1

R UTU
∗
RU

−1
T ) = γRT γT 1D SPT (80)

we obtain the following 2D PSG to 1D SPT reduction:

ηfRη
f
RT → γRTγT . (81)

This identification can be verified by checking for the physical

signature of ηfRη
f
RT = −1. The fermionic spinon always has

a 2-fold degeneracy associated with it’s Kramer’s degeneracy

ηfT = −1, but when ηfRη
f
RT = −1 the spinon excitation is at

least four-fold degenerate, as this is the minimal dimension of

these projective relations. The 1D SPT relation γT = −γRT

implies precisely this additional two-fold degeneracy.

In summary, we can determine ηfRη
f
RT by computing the

change in the 1D SPT invariant γTγRT (with R onsite) when

the topological flux changes by f . In Ref. 5 it argued that

when ηfR = −1, ηfRT = 1 (where R = σ in the notation of

the Kagome model), there may be gapless edge modes pro-

tected by a non-trivial vison PSG R−1T−1RT = −1 (as-

sociated with topological superconductivity in the fermionic

mean-field ansatz). Presumably the vison PSG can also be

computed from the change in the 1D SPT invariant γRT (

γT = 1 for the vison) when threading a vison.

VI. INTRINSIC TOPOLOGICAL ORDER: DETECTING

THE TOPOLOGICAL FLUX

It is important to have a method for measuring the topolog-

ical flux a of an MES independent of the SET order; in the

finite cylinder, we must detect whether a vison v threads the

cylinder, and for a torus / infinite cylinder we must distinguish

between all of 1, b, v, f . It has previously been shown that the

topological S and T matrices can be calculated from the MES

on both the torus and infinite cylinder, which can then be used

to label the MES.[35] In practice this is not so simple as all

four-sectors must be found on a finite circumference cylin-

der, which is frustrated by finite size effects which lead to a

sizable splitting of the topological degeneracy. However, for a

Z2 spin-liquid we find there is a simpler procedure to uniquely

label the MES individually.

Note that an S = 1/2 model must have finite topological-

flux per unit cell [29], so the topological flux through an entan-

glement cut depends on the location of the cut. So to simplify

the discussion, we restrict to even circumferences Ly ∈ 2Z,

which contain an even number of S = 1/2 within each ring of

the cylinder, and always consider ’vertical’ entanglement cuts

which lie between 1D super-sites under the 2D to 1D dimen-

sional reduction.

A. {1, v} vs {b, f}

The first distinction detects the fractional S = 1/2 spin

carried by the spinons b and f . Under the dimensional re-

duction, an even circumference cylinder is an SO(3) invariant

integer-spin chain, which has a Z2 1D SPT classification as-

sociated with the emergence of two-fold degenerate S = 1/2
edge states (protected either by time-reversal or SO(3) ). The

simplest non-trivial example is the S = 1 AKLT state. In

2D, when topological flux b or f terminates at the edge of the

cylinder it also produces a spinon excitation near the edge car-

rying S = 1/2. If the system is SO(3) symmetric, this emer-

gent edge spin carries a two-fold degeneracy. Hence under the

dimension reduction, the b, f sectors are non-trivial 1D SPT

states under SO(3), while 1, v are trivial.

We conclude that the 1, v sectors will have an entangle-

ment spectrum that transforms under integer representations

of SO(3), and hence will have singlets in the entanglement

spectrum, while the entanglement spectrum of the b, f sectors

will transform under half-integral representations of SO(3),

leading to a minimum two-fold entanglement degeneracy.

B. 1 vs v

In an SO(3) symmetric spin liquid, threading a vison v
through the system is topologically equivalent to threading

2π - flux with respect to Sz spin-rotations. To distinguish

between the 1 and v sectors we can detect the change in mo-

mentum induced by the flux threading. Viewing a cylinder of

length Lx and circumference Ly as a spin chain on a periodic

ring of length Ly, the unit cell of the chain contains integral /
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half-integral spin when Lx is even / odd. In the half-integral

case, threading flux with respect to Sz spin rotations is known

to increase the y-momentum by eiπ = −1.[56] In the integral

case, the threading flux will not change the momentum.

We conclude that threading a vison through the system will

increment the y-momentum by π when Lx is odd, and by 0
if Lx is even. This increment is simply the y-momentum per

unit length η
1/v
xy introduced in Sec. III B. Hence for the vac-

uum, η1xy = 1, while for the vison, ηvxy = −1. This result is

straightforward to check in any parton construction.

We know ηbxy = −ηfxy, since they differ by vison insertion,

but which of the two carries ηaxy = −1 will in fact depend on

the PSG relation (TxTy)
a = ηaxy(TyTx)

a.

C. b vs f

A fermionic anyon has topological spin θf = −1, which

we can use to distinguish between the b and f spinons. We

will show that the fermion’s topological spin is encoded in an

additional 2x degeneracy in the entanglement spectrum (ES);

combined with the 2x spin degeneracy, the fermionic spinon

ES if 4x degenerate. Intuitively, the ES of the fermionic sector

should have anti-periodic boundary conditions, meaning that

the momenta k are quantized as k ∈ 2π
Ly

(Z + 1
2 ). With ei-

ther time-reversal or reflection symmetry, the momenta k and

−k will be degenerate, so there is a 2x degeneracy. We will

show this 2x degeneracy arises from non-trivial 1D SPT order

under a combination of ZLy rotational symmetry and either

reflection or time-reversal.

1. Review of momentum polarization

Momentum polarization is a procedure to detect topological

spin using a translation Ty that rotates a cylinder of circum-

ference Ly. [38, 39] To review, each left Schmidt state |α〉 of

the Schmidt decomposition {e−Eα , |α〉} can be assigned def-

inite momentum eikα , meaning that Ty |α〉 = eikα |α〉. In a

convention in which kα ∈ 2π
Ly

Z, the momentum polarization

is

(

∑

α

e−Eα+ikα

)Ly

= Ta e−(α−iηH )L2
y +O(e−Ly/ξ),

(82)

Ta = e2πi(ha−c/24). (83)

Here α is non-universal real constant related to the area-law

fluctuation of momentum of the cut; ηH is the ‘Hall-viscosity’

(which isn’t quantized on a lattice), and Ta = e2πi(ha−c/24) is

the desired entry of the modular T -matrix.

The momentum polarization is not necessarily a 1D SPT

invariant, since there are no 1D SPTs associated with an onsite

ZLy symmetry. As a consequence, generally the momentum

polarization only becomes quantized in the Ly → ∞ limit,

and a scaling analysis is required.

2. A 1D SPT invariant for detecting fermionic topological flux

However, in the presence of a mirror reflection y ↔ −y or

time reversal, we can prove that the momentum polarization

is a Z2 1D SPT invariant that detects whether the topological

flux is bosonic or fermionic. Consider a cylinder of even cir-

cumferenceLy with a mirror reflectionRy : (x, y) → (x,−y)
that acts as an onsite symmetry in the 1D picture (the result

for time reversal is analogous). When acting on the entangle-

ment spectrum, a π-rotation (translation by Ly/2) may anti-

commute with the inversion Ry:

URy (UTy )
Ly/2 U−1

Ry
= (−1)F (UTy )

Ly/2, F = 0, 1 (84)

giving a 1D Z2 invariant F = 0, 1. To show F is a 1D SPT

invariant, note the symmetry group generated by Ty, Ry is

G = ZLy ⋊ Z2 (for even Ly). The cohomology classifica-

tion is

H2[ZLy ⋊ Z2, U(1)] = Z2. (85)

The relation F of Eq. (84) is a gauge invariant, so must label

these two possibilities.

To relate the SPT invariant F to the anti-periodic bound-

ary conditions of the entanglement spectrum, suppose we

redefine the phase of UTy to ensure the expected relation

U−1
Ry

UTyURy = (UTy )
−1. With this gauge choice Eq. (84)

requires
(

UTy

)Ly
= (−1)F . For F = 1, the diagonal basis

UTy = eikα requires kα ∈ 2π
Ly

(Z+ 1
2 ).

We note that the most general commutation relation is

URyUTyU
−1
Ry

= γF U−1
Ty

(86)

with γ
Ly/2
F = (−1)F .

3. Quantization of momentum polarization by the 1D SPT

invariant

We now prove that the momentum polarization is quantized

to be (−1)F ; this confirms the interpretation that F detects the

topological spin θf = −1 of the fermionic spinon.

Since URy commutes with the entanglement spectrum

e−Eα , we have

λ = Tr(e−EαUTy ) = Tr(e−EαU−1
Ry

UTyURy) (87)

= Tr(e−EαγFU
−1
Ty

) = γF Tr(e−EαU∗
Ty
) = γFλ

∗ (88)

Using this relation, for even Ly the momentum polarization is

λLy = λLy/2(γFλ
∗)Ly/2 = γ

Ly/2
F |λ|Ly = (−1)F |λ|Ly .

(89)

So long at |λ| 6= 0, the momentum polarization is equivalent

to the SPT invariant. The SPT invariant is even more robust

since it is well defined even when |λ| = 0.
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VII. DETECTING SET ORDER ON THE KAGOME

LATTICE USING CYLINDER-DMRG

We now propose a procedure to determine the Kagome

PSGs which is practically adapted to the constraints of cylin-

der DMRG. The results of this analysis will be reported in a

subsequent work.[61]

Following the notation of the earlier analysis, [49] within

the fermionic parton construction we must determine the five

invariants {ησ, ηC6 , ησC6 , ησT , ηC6T , η12 = ηC6ησC6}, com-

bined with a possibility of mirror-symmetry-protected gapless

edge states.[5]

A. Finite DMRG

We first consider a technique for finite length cylinders. By

finding the SO(3) invariant ground state after adding or re-

moving an extra spin at each edge of the geometry, DMRG

studies can reliably obtain two topological sectors that differ

by threading a spinon through the bulk. At the circumferences

that can currently be well converged (such as YC8 and XC8),

the other two topological sectors are not generally observed.

Even without determining whether these two sectors are 1/v ,

b/f , the ratio of Rx, Ry, Ih quantum numbers before and after

adding the extra sites (i.e. a spinon) will determineQ
(b/f)
Rx,Ry,Ih

,

and referring to Table II, three of the PSG invariants. Since the

symmetries must be edge-exchanging, on the YC type cylin-

ders we obtain Q
(b/f)
Rx

and hexagon centered Q
(b/f)
Ih

. On the

XC type cylinders, we obtain Q
(b/f)
Ry

and hexagon centered

Q
(b/f)
Ih

, the latter serving as a double check on the YC data.

There is a simple algorithm for measuring space-group quan-

tum numbers in finite DMRG.[61]

To determine η12 one must first determined whether the

topological sector of the spinon is b/f . To distinguish b/f ,

we check if there is a 4-fold degeneracy in the entanglement

spectrum as predicted by Eq. (84), which would imply the

sector is f . Knowing the sector b/f , we know the correct

boundary condition for the parton ansatz, and following the

techniques of Sec. IV E we can predict the site-centered inver-

sion QIs(Λ, b/f). The details depend on the cylinder used,

but the result always reveals η12.

Once we know the topological sector of the sample, we

can further check these results by comparing the absolute

quantum numbers under Rx, Ry, Ih/s with the computation

of Sec. IV E; there are many different cases depending on the

sample.

B. Infinite DMRG

An infinitely long cylinder can be studied using iDMRG,

which has certain numerical advantages due to the absence of

edge effects and the reduced computational costs. iDMRG

also reliably finds two topological sectors which differ by a

spinon. Here we discuss only even-circumference cylinders.

As discussed, the Z2 1D SPT invariants for SO(3) / T de-

termine which state has the spinon. The fermionic 1D SPT

invariant distinguishes between b/f . The momentum per unit

length ηaxy is trivial to compute in iDMRG, so we distinguish

between sectors 1/v using 1 = η1xy = −ηvxy. The momen-

tum per unit length of the spinon sector determines either

η12 = ηfxy (if the sector is f ) or −η12 = ηbxy (if the sector

is b).
To measure the reflection PSGs, one can in principle

detect the 1D SPT reflection invariants using established

methods.[62] This can be a bit unwieldy in 2D DMRG, as

the ordering of the DMRG ‘snake’ breaks the reflection sym-

metries. A simpler procedure is to generate a finite cylinder

wavefunction by projecting the left / right regions of the in-

finite cylinder onto reflection related classical product states,

leaving behind a finite segment of spins.[61] Regardless of

projection used, the resulting state is a reflection symmetric

finite cylinder wavefunction. One can then measure the space-

group quantum numbers of the resulting finite cylinder wave-

function in order to determine Q
(b/f)
Rx,Ry,Ih

C. Determining RTR−1T−1

As discussed in Sec. V C, the remaining invariants are re-

lated to the onsite 1D SPT invariants γRT for R = Rx, Ry,

which can be measured on YC and XC type cylinders respec-

tively using known methods for detecting 1D SPTs. [62] The

most obvious signature is the 4-fold degeneracy in the ES re-

quired to realize the projective relations UTU
∗
T = γT = −1

and (UR)
2(U−1

R UTU
∗
RU

−1
T ) = γTγRT = −1. The fermionic

PSGs are related to the relative 1D SPT order γ(f) between

the 1 and f sectors via

γ
(f)
T γ

(f)
RxT

= ησT ησ (90)

γ
(f)
T γ

(f)
RyT

= ησT ηC6T ησησC6 (91)

Of course γ
(f)
T = −1, as it is a spinon.

If the DMRG obtains sectors which differ by f , we are

done. If DMRG obtains sectors which differ by b, the analysis

depends on whether the vison has a non-trivial RTR−1T−1

PSG. If the vison PSG is trivial, there are no gapless edge

states and the boson will have the same RTR−1T−1 PSG as

the fermions, so the bosonic relative SPT order γ(b) again re-

covers the fermionic PSG invariants. If the vison PSG is non-

trivial, there are gapless edge states, and ησT ησ = −1 for the

Rx edge and ησT ηC6T ησησC6 = −1 for the Ry edge regard-

less.

VIII. CONCLUSIONS

We argued that the many-body symmetry quantum numbers

are a robust global property ideally suited to detecting distinc-

tions between SETs, and calculated these for several SETs

described by slave-particle mean field theories with different

projective symmetry groups.
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More generally, the SETs may be diagnosed from the 1D

SPT invariants in the cylinder geometry. These invariants for

different topological sectors (which are labeled by the quasi-

particles) combine together in a way that reflects the fusion

rules. In contrast, combining PSGs for a pair of quasiparticles

to predict the PSG for the fusion product needs to be carefully

considered in the case of internal symmetries.

The knowledgeable reader may be puzzled by this corre-

spondence between PSGs and 1D SPTs. The latter is deter-

mined by projective representations modulo a phase, or tech-

nically H2(G, U(1)), where G is the symmetry group, while

the former is a projective representation modulo Z2 ×Z2 (the

fusion group of Abelian anyons), H2(G, Z2 × Z2), for toric-

code-type Z2 topological order. That is, we represent group

elements by matrices, whose product satisfies the group multi-

plication, up to either a U(1) phase or just an overall sign (Z2)

of the matrices . This is because the physically observable

quantities are made by combining two identical quasiparticles

and so we can only change the overall sign of the matrices.

For example, if X is a Z2 symmetry, then ‘half charge’ of a

quasiparticle corresponds to the PSG X2 = −1. However,

this is not a 1D SPT invariant. How is this discrepancy recon-

ciled?

The key observation is that if inversion, I , or a equally a re-

flection is present, these act like anti-unitary symmetries when

restricted to the Schmidt states on one side of a bipartition.

Thus, while I2 = −1 may again seem to be a PSG relation,

regarding it as an antiunitary symmetry turns it into a projec-

tive representation even with U(1) phase factors and hence a

1D SPT invariant [13, 53]. Similarly, for a global Z2 sym-

metry, X , while by itself X2 = −1 does not produce a 1D

SPT invariant, when combined with the effective antiunitary

inversion symmetry XIX−1I−1

X2 is a 1D SPT invariant and the

denominator is the fractional charge we are interested in. This

type of reasoning has been repeatedly used in this work.

Our procedure is expected to be complete for Z2 spin liq-

uids, but for more complicated topological orders, such as say

Z3 topological order, there is a Z3 invariant associated with a

C3 rotation symmetry. Taking into account certain subtleties,

global C3 quantum numbers detect this topological invariant,

but the simplest cylinder dimensional reduction will not work.

Extensions are left to future work.

Detailed comparison between our predictions and DMRG

numerics on the Kagome quantum antiferromagnet will re-

quire some care. First, isolating the role of finite size effects

is important as the ground state quantum numbers can change

with system size. Also, the response of the Kagome model

to twisting boundary conditions is significant and has been in-

terpreted as a signal of gapless behavior in recent numerical

work[30]. For these reasons, a comparison with numerics will

be deferred to a separate publication.
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