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There is a close connection between various new phenomena in Weyl semimetals and the existence
of linear band crossings in the single particle description. We show, by a full self-consistent mean-
field calculation, how this picture is modified in the presence of long-range Coulomb interactions.
The chiral symmetry breaking occurs at strong enough interactions and the internode interband
excitonic pairing channel is found to be significant, which determines the gap-opened band profile
varying with interaction strength. Remarkably, in the resultant interacting phase, finite band Chern
number jumps in the three-dimensional momentum space are retained, indicating the robustness of
the topologically nontrivial features.

I. INTRODUCTION

The physics related to the Weyl point or Weyl node, as
the three-dimensional (3D) analog of the two-dimensional
(2D) Dirac physics1, is sparking keen interests both the-
oretically and experimentally2,3. This started from the
revival of the old concept of Weyl fermion4 in the con-
text of various condensed matter systems without time-
reversal symmetry and/or inversion symmetry5–7. Be-
sides the recent solid-state realizations in a family of
nonmagnetic and noncentrosymmetric transition metal
monoarsenides/monophosphides8, it is found or pre-
dicted as well in photonic crystals9, magnon bands10

and even photo-driven systems11. In contrast to the
real-space emergent monopole structures12, a Weyl node
has a momentum-space monopole nature5,13. Based
on this and its special Landau level formation under a
magnetic field14, many new phenomena are discussed
and experimentally investigated in this gapless quantum
phase of matter, i.e., the Weyl semimetal, including but
not limited to the anomalous Hall effect15,16, the chiral
magnetic effect17–19 and the observation of the negative
magnetoresistance20,21.

The Weyl nodes as degeneracies of codimension three
are generally stable against local perturbations unless
opposite-chirality nodes separated in the momentum
space are coupled to break the chiral symmetry. The
disorder might not open a gap either, due to the ran-
domly vanishing pinned Fourier component and the in-
adequate strength in practice. The other indispensable
aspect is the interaction effect. There are some theoreti-
cal studies with different focuses and approximations to
facilitate analytic analyses, including mean-field or renor-
malization group calculations within or beyond local
interactions22–26 and the formation of spin or charge den-
sity waves27–30 or Luttinger liquids31,32 under an external
magnetic field. On the other hand, it is well known that
an excitonic semimetal-insulator phase transition could
occur under the influence of strong enough long-range
Coulomb interaction33–37. The Coulomb interaction can
bind electrons and holes to excitons, quasi-bosonic bound
states, which can condense at low temperatures. Previ-

ous exciton condensate studies focus on semiconductor
bilayer systems35,38,39 and 2D quantum well placed in an
optical cavity40–44 because a Bose-Einstein condensate
(BEC) type low density exciton (polariton) limit exists
in these 2D systems. Can we apply some similar analysis
to a Weyl semimetal and address the natural question
that whether it is stable against the Coulomb interaction
and in what sense?

To answer this, we study a simple type-I Weyl
semimetal with vanishing density of states, i.e., the chem-
ical potential is tuned at the Weyl points, under the long-
range Coulomb interaction upon which we apply a stan-
dard Hartree-Fock approximation. The theory would be-
come less valid when the chemical potential is away from
the Weyl points due to complex interaction effects be-
yond the mean-field level, such as the strong screening
in 3D at a finite density of states which renormalizes the
interaction down to a short-range form45–48. Within the
mean-field level taking all possible electron-hole pairing
channels into account, we numerically carry out the self-
consistent calculation without any other a priori approx-
imation in order to draw unambiguous conclusions.

Our main findings are twofold. First, a strong enough
long-range Coulomb interaction connects the left and
right nodes and breaks the chiral symmetry and the
translational symmetry as well, leading to a finite gap
opening. We explain how the quasiparticle band profile
evolves using two order parameters, the dressed single
particle band energy and the internode interband cou-
pling. Second, using the self-consistent Hamiltonian ob-
tained to calculate Chern numbers of many 2D slices in
the momentum space, we find that the nontrivial topol-
ogy of the system is robust and retained despite losing the
Weyl nodes. This supports the topologically nontrivial
and axionic nature of the density wave phase23,29,30,49.

The paper is organized as follows. In Sec. II we intro-
duce our model Hamiltonian and explain how we apply
mean-field calculations. In Sec. III we present our band
structure results and Chern number calculations where
the phase transition occurs under strong enough interac-
tions. We also discuss the quasiparticle band evolution
and demonstrate that the transition is continuous. In
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Sec. IV we summarize and comment on related issues.

II. MODEL

We consider a general continuum model of a time-
reversal symmetry breaking Weyl semimetal with two

Weyl nodes located symmetrically at ± ~K = ±Kẑ (ẑ
is defined in momentum space rather than real space),
labeled as s = R/L node or interchangeably s = ±,
respectively. The Hamiltonian can be written in the
basis spanned by the state |βsσ〉 of the Weyl electron
(pseudo)spin σ =↑ / ↓ and the node pseudospin s = R/L

Ĥ0 =
∑
~k

ψ†
~k
~vF~k · ~σszψ~k + ĤI, (1)

where ~k is the reduced momentum relative to the nodes
at ±Kẑ and vF is the Fermi velocity which varies
in different materials, ~σ is the electron (pseudo)spin
Pauli matrix, ~s is the node pseudospin Pauli ma-
trix, ψ~k = (cR↑ , c

R
↓ , c

L
↑ , c

L
↓ )T , and the electron annihi-

lation/creation operator c
s(†)
σ is for the state |βsσ〉 with

|βs↑〉 = (1, 0)T , |βs↓〉 = (0, 1)T .

Taking account of the presence of Weyl nodes (Ap-
pendix A), the Coulomb interaction for this system has
the form

ĤI =
1

2Ω

∑
σσ′,ss′

∑
~k,~k′,~q

[V (~q)cs†
σ~k+~q

cs
′†
σ′~k′−~q

cs
′

σ′~k′
cs
σ~k

+V (~q + 2s ~K)sxss′c
s†
σ~k+~q

cs
′†
σ′~k′−~q

cs̄
′

σ′~k′
cs̄
σ~k

]

(2)

where Ω is the 3D system volume, V (~p) = e2/(ε0εr|~p|2)
with the vacuum/relative permittivity ε0/εr, and s̄ 6=
s. Eq. (2) includes all possible intranode/internode
scattering processes allowed by momentum conserva-
tion. This reduced momentum representation has the
merit of expressing all the mean-field interactions in
a momentum-diagonal manner. Applying the Hatree-
Fock approximation50,51 to the interaction Hamiltonian
in Eq. (2) as detailed in Appendix A, we finally get

ĤMF =
∑
~k

ψ†
~k
(H0 +HHartree +HFock)ψ~k (3)

where

[HHartree]
ss′

σσ′ = V (2 ~K)
∑
~k′

(ρss
′

σσ′ + ρss
′

σ̄σ̄′)~k′δσσ′sxss′ , (4)

and

[HFock]
ss′

σσ′ = −
∑
~k′

[V (~k − ~k′)ρss
′

σσ′~k′

+δss′V (~k − ~k′ + 2s ~K)ρs̄s̄
′

σσ′~k′
].

(5)

Here, σ̄ 6= σ, and the density matrix is defined relative
to a reference value determined by the filling of the non-

interacting ground state ρss
′

σσ′~k
= 〈cs

′†
σ′~k
cs
σ~k
〉− ρ̄ss′

σσ′~k
, where

ρ̄ss
′

σσ′~k
= δss′ 〈βsv|βsσ′〉 〈βsσ|βsv〉 (see the next paragraph).

We note that the long-range Coulomb interaction allows
for both the internode and intranode couplings. Even
though the Hartree contribution to the internode cou-
pling might be small due to the decay of the Coulomb
interaction at large momentum transfer, the Fock contri-
bution still accommodates possible strong internode cou-
pling. In our self-consistent calculation, given all nonzero
initial terms, the density matrix ρ and hence the mean-
field Hamiltonian ĤMF are iteratively updated at each
iteration using the lowest two eigenvectors until the con-
vergence. Note that the trace of ρ at each momentum is
always zero.

For each node, the noninteracting system can be diag-
onalized in the band basis representation |βsn〉 of band
n = c, v (conduction/valence band) and node s. We
have |βRc 〉~k = |βLv 〉~k = (cos θ2 , sin

θ
2eiφ)T and |βRv 〉~k =

|βLc 〉~k = (− sin θ
2 , cos θ2eiφ)T , where the momentum ~k has

polar and azimuth angle θ, φ. In order to avoid the te-
dious band states’ overlap functions, as shown above, we
formulate the interaction Hamiltonian in the spin basis
|βsσ〉 where we take care of the noninteracting ground
state using the relative density matrix ρ. Since we in-
clude all the possible interaction channels, it is funda-
mentally equivalent to work with either the spin basis
or the band basis, which are related by a unitary trans-
formation Uss

′

nσ = s0
ss′ 〈βsn|βs

′

σ 〉. For instance, we actually
determine the aforementioned reference matrix ρ̄ and the
form of HHatree using U and the overall charge neutrality

constraint
∑
n 〈c

s†
n~k
cs
n~k
〉 = 1. Especially, we will later use

the band basis density matrix and Hamiltonian (hence-
forth denoted with a tilde) of the form ρ̃ = U †T ρUT and

H̃ = UHMFU
†, whereupon more transparent physical

understandings become available.

We use a modified Rydberg unit in the calculation, set-

ting ~ = e2

2 = 4πε0 = 1 where ~ is the Planck constant, e
is the elementary charge, and ε0 is the vacuum permittiv-

ity. This leads to a characteristic velocity v0 = 4πε0e
2

2~ = 1

(10.9 × 105m/s in SI unit). Combined with the mate-
rial dependent relative permittivity εr and the Fermi ve-
locity vF , we have the quantity v0

εrvF
characterizing the

strength of the interaction. Therefore, smaller vF and εr
effectively mean stronger Coulomb interaction effects and
only the combined value of εrvF , referred to as the rela-
tive velocity vr henceforth, matters. The realistic typical
ranges are vF = 0.5–3 × 105m/s and εr = 10–2052,53,
which means about vr = 0.5–6 in our unit. Because of
the massless linearly dispersed band structure and the
long range Coulomb interaction, an important feature of
this system is the lack of an intrinsic length scale37,48,54.
Even if one sums up to a certain momentum magnitude
(a sharp ultraviolet bandwidth cutoff vrK in our case),
the obtained band energies will be just proportional to
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FIG. 1. (Color online) Quasiparticle energy bands along kz at
four relative velocities vr = 1.0, 0.9, 0.6, 0.4. The blue dots de-
note four eigenvalues of our self-consistently converged mean-
field Hamiltonian. Color lines are guide to the band profile.
Double degeneracy is lifted although too small to be visible
in (b) to (d).

that cutoff. Therefore, in our theory, the concrete pre-
dictions are the band profiles, phase transitions, topolog-
ical features rather than the exact gap or band energies.
Indeed, we observe this feature in our numerical calcula-
tions and an inspection of its self-consistency is given in
Appendix B.

III. RESULTS

Our numerical results are based on a 34× 34× 34 cu-
bic momentum grid with kx, ky, kz ∈ [−K/2,K/2]. The
momenta and energies (since v0 = 1) are thus indicated
with a unit kc = K/2 in all the figures. The minimal
momentum magnitude is therefore kΓ = K/66 and up
to this accuracy, we refer to momenta along an axis or
at the Γ-point in the following. Here we deliberately de-
tour the Γ-point to avoid the gauge choice ambiguity at
the node. In this setup, left and right nodes located at
±Kẑ are well-separated and expressed in the diagonal
blocks in the 4 × 4 Hamiltonian. Only the long-range
Coulomb interaction can induce off-diagonal terms that
lead to chiral symmetry breaking and gap opening. Tun-
ing the relative velocity vr as aforementioned and keep
Coulomb interaction in its vacuum form, we can explore
different phases and physical properties by looking at
the renormalized quasi-particle band structure and the
Chern number profile.
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FIG. 2. (Color online) Interband internode coupling magni-

tude |H̃RL
cv | and one diagonal term H̃RR

cc along the kz axis at
relative velocities vr = 1.0, 0.9, 0.6, 0.4. The blue dots and red
squares denote H̃RR

cc and |H̃RL
cv |, respectively.

A. Mean-field band profile

In Fig. 1, we plot renormalized four eigenvalues along
the kz axis. The plots along kx and ky axises are the
same for the unbroken rotational symmetry with respect
to the kz axis and their difference with Fig. 1 is insignifi-
cant. Unlike in the 2D case where arbitrarily weak attrac-
tive interaction will create bound states, a strong enough
interaction is required to create internode or intranode
electron-hole bound states, if any, in 3D Weyl semimet-
als. At a large relative velocity vr = 1, the interaction
strength is not strong enough to bind electron-hole pairs

and the band profile is unchanged, i.e., E = ±|~k| with
double degeneracy. Note that the tiny gap in Fig. 1(a)
simply comes from the momentum resolution kΓ and all
the energies have perfect linearity. To clarify whether we
have electron-hole excitonic pairs, we also plot the dom-
inant interaction induced internode electron-hole pairing
term magnitude |H̃RL

cv | along kz shown as red dots in

Fig. 2. Note that we have H̃RL
cv = H̃LR

cv due to the inver-

sion symmetry. At vr = 1, H̃RL
cv in Fig 2(a) converges to

zero everywhere, illustrating the absence of any bound
states.

Other than this case, we observe gap openings in Fig. 1
which are accompanied by the strong internode s-wave
pairings, which are nonzero at zero momentum, shown in
Fig. 2. Meanwhile, finite number of electron-hole pairs
are created by the interaction and the exciton density
reads nex = trρ̃cc/Ω =

∑
~k(ρ̃RR

cc~k
+ ρ̃LL

cc~k
)/Ω, which equals

the similar valence band trace of ρ̃vv by virtue of the
particle-hole symmetry. Because we place the Weyl nodes
on the kz axis, interaction terms containing 2Kẑ self-
consistently persist. It not only breaks the rotational
symmetry with respect to the kx or ky axes, but also,
more importantly, completely lifts the double degeneracy,
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FIG. 3. (Color online) (a) Order parameter H̃RL
cv (~k = 0)

(Red dots) and exciton density nex = trρ̃cc/Ω (Blue squares)

as a function of the relative velocity vr. H̃RL
cv (~k = 0) is av-

eraged using the eight points (±kΓ,±kΓ,±kΓ) nearest to the
Γ-point, and nex is magnified 105 times for better illustration.
Node weight of (b) the 2nd and 3rd highest bands and (c) the
1st and 4th highest bands along the kz axis after the phase
transition. Blue (Red) represents weight from the left (right)
node.

although the splitting is small due to the decay of the
Coulomb potential at large momenta. For instance, we
have ρ̃RRcc 6= ρ̃LLcc in consequence.

To clearly inspect this phase transition, in Fig. 3(a),
we plot two order parameters, the internode interband

pairing magnitude |H̃RL
cv (~k = 0)| and the exciton den-

sity nex in a small range of vr near the critical value
vcr = 0.96, which is similar to a recent study55. Both

|H̃RL
cv (~k = 0)| and nex show a typical second-order con-

tinuous phase transition that is expected from normal
exciton condensates33,35,56. Using the wavefunctions, we
also plot bands with node weight in Figs. 3(b) and (c) to
illustrate the lifting of the R/L node degeneracy and the
no longer conserved node pseudospin under strong inter-
action. One particle-hole symmetric pair of bands (2nd
and 3rd highest bands) chooses one major node while the
other (1st and 4th highest bands) chooses the opposite.
At small momenta, R/L nodes are mixed in agreement
with later discussion that the interaction induced intern-
ode pairing mainly contributes at small momenta when
the phase transition just occurs. When interaction is not
strong enough, these pairs of bands have entirely mixed
colors in calculation due to the R/L degeneracy.

When we further decrease vr, the quasiparticle gap
becomes larger and the band extrema move from zero
to finite momenta relative to the cutoff momentum.
This hump-like profile is similar to the BEC-BCS
crossover33,35,56 where exciton condensate pair-excitation
energy extrema move to finite momenta at larger exci-
ton density. To illustrate band evolution after the phase
transition, we write down a simplified Hamiltonian in the

band basis based on our mean-field result and the sym-
metry,

H̃ ′ =


vrk − ξ~k 0 0 ∆~k

0 −vrk + ξ~k ∆∗~k 0

0 ∆~k vrk − ξ~k 0
∆∗~k 0 0 −vrk + ξ~k

 ,

(6)
where we only consider the internode interband cou-
pling ∆~k and the dressed single particle energy ξ~k, i.e.,

H̃RL
cv and H̃RR

cc previously discussed, and neglect the
degeneracy-lifting effect. Both the intranode interband
and internode intraband terms are negligibly small and
dropped for simplicity. The corresponding eigenvalues
are doubly degenerate E~k = ±

√
(vrk − ξ~k)2 + |∆~k|2.

The pair-excitation gap at each momentum is 2|E~k|. At
vr = 0.9 in Fig. 1(b) where the phase transition just oc-
curs, a small amount of internode electron-hole pairs are
bound and exciton condensates form. The condensates
lead to the small but finite internode interband pairing
and the dressing of single-particle energy. As shown in
Fig. 2(b), ∆~k is maximized at k = 0 and decays with
increasing k. Since the single particle part vrk now out-
weighs ξ~k, vrk − ξ~k remains almost linearly increasing
with slope vr. The gap minimum is thus located at zero
momentum as a result of the dominant single-particle
contribution. At large momenta, since the interaction ef-
fect is diminished, the band structure resembles the non-
interacting linear one.

As vr becomes even smaller shown in Fig 2(c), ∆~k out-
weighs the diagonal part vrk− ξ~k at small momenta due
to the cancellation between vrk and ξ~k. The gap mini-
mum then moves to finite momenta because ∆~k decreases
slowly as the momentum increases. At large momenta,
noninteracting term again becomes more pronounced,
leading to hump-like bands in Fig. 1(c). For complete-
ness, we also plot the case of very small vr in Fig. 1(d) in
which the top (bottom) of upper (lower) band is at small
momenta. Unlike the previous ones, it seemingly inherits
little linear band remnants. This originates from the fact
that the single particle linear band is not strong enough
to diminish the Coulomb interaction to small values at
large momenta, which is seen from the dominance and
slow decay of the interaction induced H̃RL

cv in Fig. 2(d).
Then ∆~k and hence the gap decrease as the momentum
increases. If one were to avoid this, nonlinearity could be
introduced to the Weyl bands at large momenta, which
is, however, not within the scope of the current study.
Last but not the least, we emphasize the importance of
including ξ~k, which is from the intraband exchange inter-
action, in a full mean-field calculation in order to explain
how renormalized quasiparticle bands evolve. In some
previous studies, it was ignored to analyze the pairing
gap alone25,57, which is unjustified in a complete theory
and insufficient to capture all the physics such as hump-
like quasiparticle bands.
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B. Topological property

Many of the topologically nontrivial features of the
Weyl semimetal stem from the Weyl node as a source
or sink of the flux of the momentum-space Berry phase.
The simple and thorough way to see is to scan the Bril-
louin zone and calculate the Chern numbers slice by slice
along several directions, say, kx, ky, kz. A Chern number
jump along any direction from ± 1

2 to ∓ 1
2 clearly indi-

cates the presence of a Weyl node of charge ∓1. Here we
will answer the question over the fate of such topological
properties in the presence of the interactions. For any
continuum model, the exact quantization will never be
attainable unless one pushes the range of momentum to-
ward the infinity. Taking the kz-slice (kx-ky-plane) Chern
number C(kz) of the noninteracting Weyl semimetal as
an example, practically despite the imperfect quantiza-
tion and the decay for larger and larger |kz| as shown in
Fig. 4(a), one can still identify a sharp jump of about ±1
at the node position.

However, since one typically has to sum up the Berry
curvature over the momentum space using the TKNN-
type Kubo formula58, there lies another severe problem,
viz., the density of the sampling mesh, which is in gen-
eral very limited in 3D numerical calculations. One way
out is the Wilson loop method that counts the winding
of the Wannier center in a cylinder geometry and applies
to various distinct topological systems59. Here, to make
the most direct use of our calculated data, we adopt an-
other strategy of remarkably fast convergence even with
a 2D momentum mesh of tens or hundreds of points60.
Based on lattice gauge theory, it sums up the gauge in-
variant plaquette Berry flux, e.g., for the kx-ky plane
Chern number,

C =
1

2π
=
∑
~k

[Ax(~k) +Ay(~k + x̂)−Ax(~k + ŷ)−Ay(~k)],

(7)
where the summation is over a discrete momen-
tum mesh and the lattice Berry connection Ai(~k) =

ln[〈Ψ(~k)|Ψ(~k + î)〉 /|〈Ψ(~k)|Ψ(~k + î)〉|] with the normal-

ized Bloch state |Ψ(~k)〉 solved from our self-consistently
converged Hamiltonian.

Surprisingly, as shown in Figs. 4(b) and (c), up to a 3%
deviation from ±1, we find that each of the four bands
retain the Chern number jump along every direction at
the original node position, i.e, the Γ-point of the reduced
momentum. This appears identically in cases after the
phase transition whereas we show only the vr = 0.8 one
for simplicity. C(kx,y), unlike C(kz), has the same shape
as the noninteracting case, which is again due to the
asymmetry between kz and kx,y. Also, adjacent bands
possess opposite slice Chern number at any momentum
and hence opposite jumps. This means that, despite the
fact that R/L node is no longer a good quantum num-
ber due to the interaction induced mixing, the bands still
partially inherit the topological features. As suggested by
some previous studies, the axionic character and hence

1.0 0.5 0.0 0.5 1.00.5
0

0.5

1.0 0.5 0.0 0.5 1.0
0.5

0
0.5

1.0 0.5 0.0 0.5 1.00.5
0

0.5

𝑘𝑘𝑧𝑧/𝑘𝑘𝑐𝑐

𝐶𝐶(
𝑘𝑘 𝑥𝑥

,𝑦𝑦
,𝑧𝑧

)

(b) 𝑣𝑣𝑟𝑟 = 0.8

𝑘𝑘𝑥𝑥,𝑦𝑦/𝑘𝑘𝑐𝑐

𝑘𝑘𝑥𝑥,𝑦𝑦,𝑧𝑧/𝑘𝑘𝑐𝑐

(c) 𝑣𝑣𝑟𝑟 = 0.8

(a) Non-interacting

𝐶𝐶(
𝑘𝑘 𝑥𝑥

,𝑦𝑦
)

𝐶𝐶(
𝑘𝑘 𝑧𝑧

)

FIG. 4. (Color online) Chern number C for the lowest two
bands for (a) the non-interacting case as a function of kx,y,z
and the interacting case when vr = 0.8 as a function of (b)
kx,y and (c) kz. For the sake of comparison, we calculate the
exactly soluble case (a) under the same condition of momen-
tum cutoff and sampling mesh as (b) and (c).

the θ-term due to the chiral anomaly can survive from the
dynamical mass generation due to the chiral symmetry
breaking23,29,30,49. Here we demonstrate directly from a
topological number calculation that the band topology is
indeed more robust than the gapless Weyl nodes them-
selves. Thus, the Coulomb interaction does not necessar-
ily deteriorate the topological electromagnetic responses
such as the anomalous Hall effect and the chiral magnetic
effect in Weyl semimetals, for instance.

The nonzero Chern number jump in the absence of
band touchings exceeds the conventional picture of bulk-
boundary correspondence, where the violation of adia-
baticity is required to nullify the topological index. Only
rarely does this happen in the noninteracting picture by
reducing or enhancing the symmetry and the accompa-
nied topological class61. More relevantly, this is caused
by interaction effects62. Our case can be understood as
topological numbers of interacting Green’s functions that
surpass the single particle picture. The zeros rather than
the poles of the Green’s function play the role of generat-
ing topological numbers63. In our case, this information
is encapsulated in the complicated momentum depen-
dence of the pairings in the self-consistent Hamiltonian,
in contrast to constant gap-opening terms that cannot
lead to the above topological feature. A complementary
aspect of the robust Chern number jump is that exciton
condensates prevent the gap closing39 which is necessary
for a continuous phase transition between topologically
trivial and nontrivial states.
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IV. CONCLUDING REMARKS

We study how the long-range Coulomb interaction af-
fects the properties of a generic Weyl semimetal with
the chemical potential at the Weyl nodes. There are re-
cently some studies on the instability of Weyl semimetals
with interaction22,23,25,57. In this paper, we provide a yet
missing complete mean-field study considering all possi-
ble Coulomb interaction induced phases and let the self-
consistent procedure manifest the major channel. The
gap-opened phase has a charge density wave character
from the viewpoint of translational symmetry breaking
due to the internode interband coupling. The coherence
of this coupling is s-wave like since the Coulomb interac-
tion favors isotropic interband pairing. Our main find-
ings are that the Weyl nodes are not stable against strong
enough Coulomb interactions while nontrivial topological
Chern number jumps can survive after the gap opening.
Our model itself cannot predict directly that anomalous
Hall effect survives under strong Coulomb interaction,
but it supports from a topological number viewpoint that
topological responses are more robust than Weyl nodes
themselves. A lattice model study of strong Coulomb in-
teraction induced commensurate charge density wave or-
der could explore whether a 3D magnetic insulator with
nonzero Hall effect exists, which is beyond our current
scope.

Some interesting questions for future studies might fur-
ther include relating this topologically nontrivial state to
the axionic predictions in a more direct manner and cal-
culating the electromagnetic responses. We also expect
similar mean-field calculation could be done for the Dirac
semimetal of much interest, using a doubled Hilbert space
to account for the Kramers degeneracy. Besides the in-
ternode interband coupling dominant in this study, a in-
tranode interband coupling is also possible to invalidate
the symmetry protection and open the gap. The intra-
node coupling may not break translation symmetry but
could break an n-fold rotational symmetry which leads
to an interaction induced nematic state26,64.
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Appendix A: Mean-field approxiamtion of the
interaction

Starting from the most general form of the Coulomb

interaction ĤI = 1
2Ω

∑
~p,~p′,~q V (~q)c†~p+~qc

†
~p′−~qc~p′c~p, we ex-

pand the electron operator and make use of the reduced

momentum ~k = ~p − s ~K to get c~p = cL
~p+ ~K

+ cR
~p− ~K for

the two nodes and find six terms allowed by the momen-
tum conservation. In the spin basis, we further have
cs~k =

∑
σ=↑↓ |βsσ〉 csσ~k, then the resulting expression is

given in a compact form by Eq. (2). Performing the sum-
mation over node index s′ in Eq. (2), we in fact obtain
three terms

ĤI1 = V (~q)cs†
σ~k+~q

cs†
σ′~k′−~q

cs
σ′~k′

cs
σ~k

ĤI2 = V (~q)cs†
σ~k+~q

cs̄†
σ′~k′−~q

cs̄
σ′~k′

cs
σ~k

ĤI3 = V (~q + 2s ~K)cs†
σ~k+~q

cs̄†
σ′~k′−~q

cs
σ′~k′

cs̄
σ~k
,

(A1)

wherein we neglect the common prefactor and summa-
tions 1

2Ω

∑
~k,~k′,~q

∑
σσ′,s for simplicity. Firstly, by the Ha-

tree approximation that contracts the direct operators,
these three parts become

ĤHatree1 = V (0)ρss
σ′σ′~k′

cs†
σ~k
cs
σ~k

ĤHatree2 = V (0)ρs̄s̄
σ′σ′~k′

cs†
σ~k
cs
σ~k

ĤHatree3 = 2V (2 ~K)ρss̄
σ′σ′~k′

cs†
σ~k
cs
σ~k
,

(A2)

respectively. Note that the first two Hatree terms can-
cel out because of the charge neutrality constraint which
is reflected in the definition of the density matrices in
Sec. II. Secondly, by the Fock approximation that con-
tracts the exchange operators, the three parts become

ĤFock1 = −2V (~k − ~k′)ρss
σ′σ~k′

cs†
σ′~k
cs
σ~k

ĤFock2 = −2V (~k − ~k′)ρs̄s
σ′σ~k′

cs̄†
σ′~k
cs
σ~k

ĤFock3 = −2V (~k − ~k′ + 2s ~K)ρs̄s̄
σσ′~k′

cs†
σ~k
cs
σ′~k
,

(A3)

respectively. Combining the above, we arrive at the
mean-field Hamiltonian Eq. (3).

Appendix B: Self-consistency equations

Here we write down the mean-field self-consistency
equations of a general two-band model, which is accessi-
ble to analytic analysis. And we assign linearly dispersing
noninteracting part to it.

H =
∑
~k

(a†
c~k
, a†
v~k

)(ξ~kσz −∆~kσx)

(
ac~k
av~k

)
, (B1)
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where

ξ~k = vF k −
1

2Ω

∑
~k′

V (~k − ~k′)(1−
ξ~k′

E~k′
),

∆~k =
1

2Ω

∑
~k′

V (~k − ~k′)
∆~k′

E~k′
,

E~k =
√
ξ2
~k

+ ∆2
~k
.

(B2)

Here we assume the chemical potential at the band touch-
ing point. We can rewrite Eq. (B2) in integral form and
recognize that all terms depend on the magnitude of the

momentum only:

ξk = vF k −
e2

4πε

ˆ
(1−

ξ|~k−~q|

E|~k−~q|
) sin θdqdθdφ,

∆k =
e2

4πε

ˆ ∆|~k−~q|

E|~k−~q|
sin θdqdθdφ,

Ek =
√
ξ2
k + ∆2

k.

(B3)

The 1/q2 in Coulomb interaction cancels with Jacobian

factor q2. At ~k = 0, Eq. (B3) can be simplified

ξ0 = −e
2

ε

ˆ kmax

0

(1− ξq
Eq

)dq

∆0 =
e2

ε

ˆ kmax

0

∆q

Eq
dq

E0 =
√
ξ2
0 + ∆2

0.

(B4)

We immediately notice that if ξq,∆q, Eq ∝ q (a possible
self-consistent solution) at finite momentum, then zero-
momentum Hamiltonian terms are all linearly propor-
tional to the cutoff we choose. This reassures our dis-
cussion of the lack of intrinsic length scale in the main
text.
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