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The hour-glass-like dispersion of spin excitations is a common feature of underdoped cuprates.
It was qualitatively explained by the random phase approximation based on various ordered states
with some phenomenological parameters; however, its origin remains elusive. Here, we present a
numerical study of spin dynamics in the t-J model using the variational Monte Carlo method. This
parameter-free method satisfies the no double-occupancy constraint of the model and thus provides
a better evaluation on the spin dynamics with respect to various mean-field trial states. We conclude
that the lower branch of the hour-glass dispersion is a collective mode and the upper branch is more
likely the consequence of the stripe state than the other candidates.

I. INTRODUCTION

Extensive efforts have been attempted to under-
stand high-temperature superconductivity in cuprates for
decades1. One of the widely concerned questions is the
normal state in the underdoped regime. The t-J model,
derived from the Hubbard model in the strong correlation
limit, is considered to be an effective low-energy model
for cuprates2. Within this framework, many ordered
states have been proposed to be the ground state, e.g.,
the spin-density wave (SDW)3, d-density-wave (DDW)4,
and resonating valence bond (RVB) states5. Recently,
a charge order has been found in various cuprates6–11,
suggesting its universality. However, it is hard to de-
termine which state is actually achieved in cuprates by
the single-particle properties, such as the doping evolu-
tion of the Fermi surface topology and the quasiparticle
dispersion. Therefore, some dynamical correlations are
suggested to provide further justification. Among them,
dynamical spin correlation has been widely studied due
to its direct connection with inelastic neutron scattering
(INS) measurements.

So far, extensive INS measurements have been per-
formed on various types of cuprates12–14. They share
some common features, namely the so called hour-glass
dispersion with a structural transition of the incommen-
surability between the lower and upper branch of the
dispersion: The lower branch has dominant peaks along
the vertical direction at (π, π ± δ) and (π ± δ, π) in the
momentum space, forming the diamond shape. By con-
trast, the square shaped incommensurability with peaks
at (π + δ, π + δ) (and its equivalent points) are found in
the upper branch. At the neck, the excitation is com-
mensurate at (π, π), resulting in a resonance at the char-

acteristic energy Eres. Despite those similarities, the
differences between various types of cuprates should be
noted as follows. In optimally doped YBa2Cu3O6+x,
the hour-glass spectrum is evident in the superconduct-
ing state with the commensurate resonance at Eres and
the second incommensurate resonance at slightly higher
energy15–17. Whereas, it changes little in La1−xSrxCuO4

and La2−xBaxCuO4 below and above the superconduct-
ing critical temperature Tc. For La1−xSrxCuO4, the
hour-glass spectrum persists above Tc even at optimal
doping and there is no commensurate resonance18,19. For
La2−xBaxCuO4, the hour-glass spectrum is found in the
normal state with the static stripe order; neither the res-
onance nor the spin gap exists below Tc in the under-
doped region20,21 . We would like to point out that the
resonance discussed here differs from the superconduct-
ing resonance mentioned in many literatures, where it is
defined by the difference of spin susceptibility between
the superconducting and normal states and follows the
simple scaling rule Eres/∆H = 2 with ∆H being the
magnitude of the superconducting gap at the hot spot22.

On the other hand, the theoretical studies devoted to
understand the nature of spin dynamics in the cuprates
are generally divided into two categories: one is the
itinerant-electron picture based on the Fermi surface
topology, which is then treated within the random phase
approximation (RPA) on top of either the uniform23–29

or striped mean-field orders30–32. Some considerable suc-
cesses, for example, the structure transition in the mag-
netic excitations and resonance features, have been ac-
complished in the RPA framework. However, the RPA
treatment usually contains some phenomenological pa-
rameters in order to generate the expected results, mak-
ing the results somewhat uncertain. Furthermore, this
picture does not satisfy the local-spin sum rule and there-
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fore does not respect the no double-occupancy constraint
of the t-J model. The other category is the localized-
spin picture, where the dynamics of the doped holes is
neglected by assuming that the holes form into stripes,
such as the spin-wave theory33,34 and a coupled two-leg
ladders model35,36. This approach overemphasizes the
bosonic mode and ignores the fermionic nature of the
system. A more rigorous method for studying spin dy-
namics in the cuprates is therefore desirable.

In this paper, we numerically study the spin dy-
namics of the t-J model using the variational Monte
Carlo (VMC) method. This approach contains both
the localized-spin and itinerant-electron properties after
performing locally the no double-occupancy projection
on the electronic mean-field wavefunction in the VMC
framework exactly. It is parameter free, and therefore
provides a better evaluation on the spin dynamics for sev-
eral widely used mean-field trial states for the t-J model.
The VMC method used to calculate the dynamical spin
correlation is briefly introduced in Sec. II. The spin spec-
tra are studied based on some widely proposed trial states
in Sec. III, together with some further discussions. The
paper is summarized in Sec. IV.

II. MODEL AND METHODS

The model we adopted is the t-t′-J Hamiltonian de-
fined on the square lattice as

H =− t
∑
〈i,j〉

Pg(c
†
iσcjσ +H.c.)Pg

− t′
∑
〈〈i,j〉〉

Pg(c
†
iσcjσ +H.c.)Pg + J

∑
〈i,j〉

Si · Sj , (1)

where the Gutzwiller projection operator Pg =
∏
i(1 −

ni↑ni↓) projects out the double occupancy in Hilbert

space. c†iσ, and ciσ are the electron creation, and annihi-
lation operators at the ith site with spin σ, respectively.
t and t′ are the hopping integrals for the nearest-neighbor
and next-nearest-neighbor bonds and J is the antiferro-
magnetic superexchange coupling constant between the
nearest-neighbor spins.

The details of VMC method can be found in many
literatures (see, for example, Ref. 37 and 38). Here we
schematically present the main idea and some improve-
ments in calculation of the spin dynamics. It is conve-
nient to write down the trial wave function directly in
the real space by using Bogoliubov-de Gennes mean-field
Hamiltonian in the case of translational symmetry break-
ing state. To better account for the superconductivity,
we apply the “partial” particle-hole transformation on

spin down electrons by c†↓ → h↓ in hole representation.
The mean-field Hamiltonian is

HMF =−
∑
i,j

(t̃ij + iDij)(c
†
i↑cj↑ − h

†
i↓hj↓) +H.c.

+
∑
〈i,j〉

∆ij(c
†
i↑hj↓ + c†j↑hi↓) +H.c.

+
∑
i

mi

2
(c†i↑ci↑ + h†i↓hi↓)

+
∑
i

(ni − µ)(c†i↑ci↑ − h
†
i↓hi↓). (2)

Here t̃ij = tij+dtij , Dij , ∆ij , mi, ni and µ are variational
parameters for hopping, d-density wave, superconduct-
ing, magnetic, on-site charge density order and chemi-
cal potential, respectively. These parameters are used to
minimize the ground-state energy of the t-J model.

The variational ground state is constructed as

|G〉 = PNPg|MF 〉 = PNPg
∏

n,εn<0

∑
i

Un,i(c
†
i,↑ + h†i,↓)|0〉,

(3)
where the projection operator PN preserves the parti-
cle conservation and Un,i is the unitary matrix for Bo-
goliubov transformation. |MF 〉 =

∏
n,εn<0 γ

†
n|0〉 is the

mean-field ground state, where γ†n =
∑
i Un,i(c

†
i,↑ + h†i,↓)

creates the quasiparticle with energy εn.
The spin excitations measured by INS is directly char-

acterized by the imaginary part of the transverse spin
susceptibility χ−+(q, ω). Its Lehnmann representation is
written as

=χ−+(q, ω) =
1

〈G|G〉
∑
n

|〈n|S+
q |G〉|2δ(ω − (En − Eg)).

(4)
Here |n〉 is the excited state with energy En and Eg is
the ground state energy. Because the spin operator com-
mutes with Gutzwiller operator Pg, we have

S+
q |G〉 =

∑
k

φ0
k|k〉, (5)

with |k〉 = Pgγ
†
k+qγ

†
k|MF 〉 and φ0

k = Uk+qUk. We there-

fore define a variational space with basis |k〉, which is a
total spin-1 state. Similarly, the excited state is expressed
as |n〉 =

∑
k φ

n
k |k〉 with φnk the eigenvector.

Now we construct the excited state in this variational
space by solving the generalized eigenvalue problem of
Hamiltonian as∑

k′

〈k|H|k′〉φnk′ = En
∑
k′

〈k|k′〉φnk′ , (6)

where Hk,k′ = 〈k|H|k′〉 is the Hamiltonian matrix and
Nk,k′ = 〈k|k′〉 is the overlap matrix since the basis
is not guaranteed to be orthonormal. The matrix ele-
ments Hk,k′ and Nk,k′ can be calculated by the stan-
dard Monte Carlo procedure based on the probability
|〈G′|i〉|2
〈G′|G′〉 , where |G′〉 is an assuming spin-1 state. In prin-

ciple, |G′〉 can be chosen arbitrarily. Here, we use one
single Monte Carlo procedure based on the probability
distribution 〈G′|G′〉 =

∑
k〈k|k〉 to make the procedure

more efficient39.
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The final expression for the transverse spin suscepti-
bility is

=χ−+(q, ω) =
1

〈G|G〉
∑
n,k,k′

|φn∗k φ0
k′Nk,k′ |2δ(ω−(En−Eg)).

(7)
In practice, we replace function δ(x) with Γ

π(x2+Γ2) with Γ

the energy broadening. The present scheme satisfies the
sum rule in the sense of the excitation space |k〉 includ-
ing all states produced by S+

q |G〉 and therefore respects
the no double-occupancy constraint. At half-filling, the
approach naturally reproduces the spin-wave excitations
expected in Heisenberg model40 by assuming SDW+RVB
state. Similar approach had also been used to calculate
the single particle spectral function41. In order to guar-
antee the close-shell condition, we adjust the doping level
or the boundary condition to remove the ambiguity in-
duced by the degeneracy of the trial wave function.

III. RESULTS AND DISCUSSION

We study the spin dynamics in three widely proposed
states: the RVB state, DDW state and stripe state.
These states are often believed to be the potential candi-
dates for the pseudogap and qualitatively account for the
hour-glass feature of the magnetic excitations in cuprates
within the RPA framework. We set the model parame-
ters as t′ = −0.3t, J = 0.3t with t taken as unit. The
size of lattice is as large as 20 × 20 with the periodic-
boundary condition in the RVB and DDW state while it
is 16 × 16 with the antiperiodic along x direction in the
stripe state. The energy broadening is fixed at Γ = 0.02
unless specified.

A. RVB and DDW state

RVB state is obtained by projecting BCS mean-field
state into the no double-occupancy space. We study
the doping level x = 0.13. The resultant energy is
E = −0.432(8) with the optimized variational param-
eters ∆ = 0.20, µ = −0.78, and dt′ = −0.01. The
transverse spin susceptibility =χ−+(q, ω) as function of
momentum q and energy ω is shown in Fig. 1(a). The
maximum intensity of the spectrum locates at Q = (π, π)
with the energy about 0.1, i.e., the resonance energy. It is
consistent with the experimental data observed in most
moderately underdoped cuprates12 and the previous nu-
merical data using similar VMC method39. Below the
resonance energy, the strong intensity can be found both
along the diagonal (H,H) and the vertical (π,K) direc-
tions, though the latter has the slightly stronger intensity
and lower peak energy at q ∼ 0.8π. Therefore, the lower
branch of the hour-glass shaped magnetic excitations can
be qualitatively established within the RVB framework.
However, no visible intensity above the resonance energy
is found in the RVB framework. Beside the lower branch

of the hour-glass shaped magnetic dispersion, an outward
dispersion is evident which is similar to the spin-wave de-
scription in the local picture and may be related to the
residue of the strong antiferromagnetic background.

 0

 0.2

 0.4

 0.6

0.6 1 0.6

ω

q/π

 

 0  20  40

(a)

(H, H) (π, K)
0.6 1 0.6

 0

 0.2

 0.4

 0.6

ω

q/π

 

 0  20  40

(b)

(H, H) (π, K)

FIG. 1. (Color online) =χ−+(q, ω) along high-symmetric line
for (a) RVB state and (b) DDW state. The direction is from
diagonal (H,H) to vertical (π,K).

The projected DDW state is exactly the same as RVB
state at half-filling due to SU(2) gauge symmetry42. Al-
though it has relatively higher energy upon doping, it has
been long believed that DDW is the hidden order in the
pseudogap state of cuprates4,43 because Hamiltonian that
stabilizes the d-wave superconductivity certainly stabi-
lizes the DDW44. The competition between the DDW
and superconductivity generates the back-bending be-
havior of the characteristic temperature of pseudogap un-
der the superconducting dome45, in agreement with the
recent ARPES measurements46,47 and providing the sim-
ple explanation on the anomalous thermal evolution in
cuprates48,49. In our previous work, we obtained an effec-
tive Hamiltonian similar to the DDW mean-field Hamil-
tonian after taking into account the effects of strong cor-
relation and antiferromagnetic background50. The hour-
glass shaped magnetic excitation is well reproduced in
the DDW state under the RPA theory, providing a non-d-
wave superconductivity origin26. Here we consider DDW
as a putative state to study its spin excitations. The
only variational parameter is DDW order D which gives
the ground state energy E = −0.424(7) with D = 0.20.
The spectrum of magnetic excitations in the DDW state
exhibit the negligible difference from that in the RVB
state as shown in Fig. 1(b), though very weak intensity
is found above the resonance energy.

It is noteworthy that the dispersion of the magnetic
excitations along the vertical direction extends to the
slightly negative energy near (π, 0.7π) in both the RVB
and DDW states, similar to the previous numerical
results39,40. This indicates that the RVB and DDW trial
states are not the true ground state of the t-J model. The
corresponding energy at (π, 0.7π) seems to be more neg-
ative in the DDW state (Fig. 1(b)), which has a higher
total energy.
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B. Stripe state

Previous VMC study showed that the stripe state has
lower energy than the uniform RVB state near 1/8 dop-
ing in presence of the next-neighbor hopping51. Further
study including the density Jastrow projection revealed
a considerable small energy difference between the two
states52. More recently, the study of the t-J model based
on the tensor network algorithm also showed the two
states are energetically comparable53. From the theo-
retical perspective at this stage, it is hard to tell whether
the ground state of the t-J type model is stripe or not.

Here we study the 8a-period stripe state with both
the spin and charge density modulation, resembling the
La-, Hg- and Bi-based cuprates54–56. The size of the
matrix Hk,k′ and Nk,k′ is much expanded due to the
unit cell enlargement in the stripe state. As a conse-
quence, much more Monte Carlo steps are required in
order to obtain the meaningful results and thus it is nu-
merically more demanding. We restrict the calculation
on 16× 16 lattice with the antiperiodic boundary condi-
tion along the x direction and periodic boundary condi-
tion along the y direction, which satisfies the close-shell
condition. The explicit form for the charge, and spin or-
der is mi = ±m sin(q · ri), and ni = n cos(2q · ri) with
the variational parameter m, n, respectively. The varia-
tional parameters that minimize the energy arem = 2.43,
n = −0.20, dt′ = −0.27, µ = −1.40 at doping x = 0.125,
giving the ground state energy E = −0.433(5). The mod-
ulation of the charge and spin orders in the real space
is schematically shown in Fig. 2. The maximum mag-
netic moment is almost fully polarized in this state. The
spin modulations along the x-direction are doubly pe-
riodic compared with the charge modulations since the
spin order is anti-phased between the adjacent stripes.
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FIG. 2. (Color online) Distribution of charge and spin density
in real space. The size of grey circles indicates the charge den-
sity

∑
σ
〈c†iσciσ〉. The black arrows denote the spin moment

along z direction 1/2
∑

σ
σ〈c†iσciσ〉.

Fig. 3(a) shows the spin excitations in the 1/8-doped
stripe state. The resonance at (π, π) is still present but
with slightly weakened intensity. Compared with the
above mentioned RVB and DDW state, the outward dis-
persion is almost invisible with its intensity transferring
to the higher energy, forming the upper branch of the
hour-glass dispersion. In addition, the lower inward dis-
persion of the hour-glass remains but with much reduced
intensity along the diagonal direction, in agreement with
the structural transition from the vertical direction in

the lower branch to the diagonal direction in the up-
per branch. This feature can also be found in some
spin-wave treatments as well as RPA based Gutzwiller
approximation30,33,34, where the weight transfers from
the low-energy acoustic branch to the high-energy optical
branch as one goes away from (π, π). Due to the C4 ro-
tational symmetry breaking in the stripe state, the data
along the (π,K) direction is also shown in Fig. 3(b) for
comparison, where the upper branch exists only. In any
case, both the lower and upper branch of the hour-glass
dispersion are well reproduced in the stripe state.

As mentioned above, the hour-glass shaped spin dy-
namics is perhaps not directly related to the super-
conductivity, but rather a universal feature of the nor-
mal state. Recent experimental progresses provide
strong evidence of the tendency of the charge order
in various types of cuprates8,55–59, especially the po-
tential stripe order7,54. Similar hour-glass feature is
also discovered in the stripe ordered La5/3Sr1/3CoO4

60

and La2−xSrxNiO4
61, where no superconductivity is de-

tected, providing the compelling evidence of the stripe
origin. The upper branch of the dispersion more likely
originates from the band folding caused by the transla-
tional symmetry breaking in the stripe state. Our VMC
results therefore indicate that the hour-glass feature in
the spin dynamics of cuprates is a direct consequence of
the stripe state. For completeness, we have checked the
magnetic excitations along the (0, 0) to (π, 0) direction
as shown in Fig. 4. The paramagnon-like excitations ob-
served by the resonant inelastic X-ray scattering62 is also
reproduced in the stripe state.
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FIG. 3. (Color online) =χ−+(q, ω) for stripe state along high-
symmetric line from (a) (H,H) to (K,π) and (b) (H,H) to
(π,K).

The above mentioned negative energy found in the
RVB and DDW state does not emerge in the stripe state,
which has the lowest energy and is considered as the
possible origin of the hour-glass feature. Therefore, the
absence of negative energy spectrum in the stripe state
further supports that the hour-glass feature of the spin
dynamics is related to the stripe state.
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FIG. 4. (Color online) =χ−+(q, ω) for stripe state along (0, 0)
to (π, 0) with the broadening factor Γ = 0.1.

C. Discussion

The spin dynamics obtained by the VMC is in sharp
contrast to the RPA treatment, where the upper branch
of hour-glass dispersion is evident even in the RVB and
DDW state. The essence is that the no double-occupancy
constraint in spin correlations is treated exactly in the
present VMC calculation. To understanding the role of
the constraint, we naively release the Gutzwiller pro-

jection PG into Jastrow projection PJ = e
−α

∑
i,j
ninj

with i = j. Fig. 5(a) shows the energy dependence of
=χ−+(q, ω) at the commensurate position (π, π) in the
RVB state. The spectrum is a continuum in the non-
projected limit α → 0 and develops into sharp peak at
the resonance energy in the Gutzwiller limit α → ∞.
Similar results are also found in the DDW state. In this
sense, the resonance is a consequence of the no double-
occupancy constraint. This may be further argued in
the overdoped cuprates where the resonance peak damps
into particle-hole continuum39 due to the weakened con-
straint of no double-occupancy. In contrast, the spec-
trum at (π, 0) remains continuum even in the Gutzwiller
limit (see Fig. 5(b)), in agreement with the fractional
spin found in the Heisenberg model40.
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FIG. 5. (Color online) Value of =χ−+(q, ω) for different α.
(a) q = (π, π) and (b) q = (π, 0) for α =0, 1 and 1000. The
line of different α is shift in the vertical direction to better
distinguish with each other.

To gain further insight into the excitation spectrum,

we define M(k, ω) =
∑
n |〈k|n〉〈n|S+

q |G〉|2δ(ω − En +
Eg), which roughly extracts the contribution from dif-
ferent excited state |k〉 at given energy ω. Multiple
|k〉 states contribute to the intensity at the resonance
energy at commensurate position q = (π, π) in the
Gutzwiller limit (Fig. 6(a)), manifesting the resonance
is a collective mode, in agreement with the previous
statements23,24,27,28. In contrast, few k point contributes
to the intensity in the non-projected limit (Fig. 6(b)).
This strongly indicates that the constraint of no double-
occupancy makes the magnetic excitation more collective
and thus more resonant. This statement is also valid for q
deviating from (π, π) as shown in Fig. 7, where the collec-
tive nature remains. In some RPA calculations23,24, the
low energy incommensurability comes from the particle-
hole excitations, and the resonance is spin exciton lying
below the particle-hole continuum. Whereas, others ar-
gued that the lower branch of the hour-glass dispersion
is also a collective mode, the same as the resonance27,28.
Our results therefore support the latter statement.
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FIG. 6. (Color online) Distributions of M(k, ω) in Brillouin
zone for q = (π, π). (a) M(k, ω) at the resonance energy in
the fully projected RVB state. (b) the same but at energy of
the maximum intensity in the non-projected RVB state. The
relative value is denoted by cycle size.

 0

 5

 10

 15

 0  2  4  6  8

In
te

n
s
it
y

ω

1000

1

0

(a)

-π 0 π

-π

0

π

k
y

kx

(b)

FIG. 7. (Color online) (a) Value of =χ−+(q, ω) for different
α at q = (3/4π, π). (b) Distributions of M(k, ω) in Brillouin
zone for q = (3/4π, π) at the maximum intensity of the RVB
state. The relative value is denoted by cycle size.
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IV. SUMMARY

In summary, we have studied the spin excitations in
the t-J model using the variational Monte Carlo method.
The constructed excited states respect the no double-
occupancy constraint and satisfy the local spin sum rule.
The parameter-free results of the spin dynamics provide
a better evaluation on some potential mean-field trial
states for the cuprates. The lower branch of the hour-
glass dispersion of the spin excitations is also a collective
mode, similar to the resonance. The upper branch is es-
tablished in the stripe state only. We conclude that the

so-called hour-glass feature of the spin dynamics discov-
ered in the cuprates is related to the stripe state, which
is found to be universal in the cuprates.
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