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We use determinant Quantum Monte Carlo (DQMC), in combination with the principal
component analysis (PCA) approach to unsupervised learning, to extract information about phase
transitions in several of the most fundamental Hamiltonians describing strongly correlated materials.
We first explore the zero temperature antiferromagnet to singlet transition in the Periodic Anderson
Model, the Mott insulating transition in the Hubbard model on a honeycomb lattice, and the
magnetic transition in the 1/6-filled Lieb lattice. We then discuss the prospects for learning finite
temperature superconducting transitions in the attractive Hubbard model, for which there is no
sign problem. Finally, we investigate finite temperature charge density wave (CDW) transitions in
the Holstein model, where the electrons are coupled to phonon degrees of freedom, and carry out
a finite size scaling analysis to determine Tc. We examine the different behaviors associated with
Hubbard-Stratonovich auxiliary field configurations on both the entire space-time lattice and on a
single imaginary time slice, or other quantities, such as equal-time Green’s and pair-pair correlation
functions.

I. INTRODUCTION

Deep connections between neural networks, statistical
physics, and biological modeling were established
beginning more than three decades ago. Hopfield, for
example, proposed1 a description of “neurons” whose
stable limit points could be used to store specific
“memories”, and whose structure was basically that of an
Ising model with symmetric, long range interactions. A
central result was the emergence of collective properties
such as the ability to “generalize” to related memories.
Concepts from spin glass theory and frustrated order
were shown to have close analogues with neural networks,
including limitations on the ability to store competing
memories; the existence of critical temperatures for
the stability of specific spin patterns (memories), with
additional mixed patterns becoming stable at yet lower
temperature; the role of asymmetric exchange constants
(synaptic strength); and so forth2–7.

Over the past several years, the use of neural
networks and learning algorithms has been revisited
with fresh perspectives and, in particular with a focus
on the possibility that appropriately defined networks
might be useful in locating phase transitions. For
instance, self-learning algorithms can strongly reduce the
autocorrelation from the critical slowing down in second
order phase transitions8–10. Furthermore, it was shown11

that PCA could provide a useful diagnostic of the phase
transition in an Ising model in the zero magnetization
sector, where two ferromagnetic domains dominate the
partition function at low temperature. An extention of
this PCA analysis had been done to several other classical
models, e.g. the Blume-Capel model, which have first
order transitions and tricritical points12. Recently, PCA
also has been shown relevant for the investigation of the
nature of frustrated classical spin models13.

The well-known exact mapping between the 2D
classical Ising model and the 1D quantum Ising model

in a transverse magnetic field immediately implies that
this ability to distinguish a finite temperature transition
in the former case implies that the zero temperature
quantum critical point (QCP) can be determined in
the latter. However, while it is true that all quantum
models can be mapped to classical models in one higher
dimension, in most cases the equivalent classical is very
complex, for example, for fermions typically depending
on a determinant whose entries include the degrees of
freedom in the simulation. It thus remains an open
question whether a QCP can be located by learning
methods, although certainly the allowed presence of long
range connections in networks suggests they might be
promising.

There have been several recent attempts to combine
machine learning techniques and DQMC. Ch’ng etal14

have shown that convolutional neural networks (CNN)
can successfully generalize the Neél temperature TN of
the three dimensional Hubbard model at half-filling.
That is, a network trained at weak (U/t = 5) and strong
(U/t = 16) coupling can predict TN at intermediate
U/t, and make inferences concerning the AF transition
when the system is doped (a parameter regime for which
the sign problem prevents direct DQMC simulations
at low temperature). Meanwhile, Broecker etal15 have
also used DQMC for the Hubbard model together with
CNN with a focus on understanding if the sign problem
can be circumvented. Learning about the sign problem
is also implicit in machine learning studies of the
nodal surfaces of many-electron wave functions16. A
particularly intriguing proposal uses a machine-learned
effective bosonic action to guide proposed moves at a
much lower cost than the usual cube of the system
size17–19.

Neural networks have also been used in combination
with QMC to provide information of quantum
phase transitions20–22, topological states23–26, many-
body localization22,27 and entanglement properties28.
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Furthermore, neural networks are useful to fit functional
forms for potential energy surfaces which are then used
in subsequent simulations29. In contrast to the situations
described above, where DQMC is applied to tight-
binding Hamiltonians and the energy scales U, t, T, µ are
unambiguously known, in these studies the network is
used to avoid complicated and somewhat arbitrary fits
to the functional form of the potential energy, allowing
for more robust molecular dynamics simulations.

Much of the work described above has utilized
‘supervised’ learning approaches in which the nature
of the phases is provided in certain parameter regimes
with the goal of extrapolating the properties of the
patterns to other regimes. Unsupervised methods have
also been used to investigate properties of quantum
systems30,31. Here we study the ability of unsupervised
learning methods to determine the location of the QCP
in several models of interacting, itinerant electrons, when
provided with data from DQMC simulations. Using
PCA, we analyse five cases, including spin, charge
and pair ordering. Concerning magnetic transitions,
we investigate (i) the antiferromagnetic(AF)-singlet
transition in the Periodic Anderson Model (PAM), a
Hamiltonian which describes the coupling of a non-
interacting (‘metallic’) fermionic species with a strongly
correlated (‘localized’) one; (ii) the paramagnetic metal
to insulating antiferromagnet QCP which occurs at
a non-zero Uc in the repulsive Hubbard model on a
honeycomb lattice32–36; and (iii) the AF ground state for
the Hubbard model on the “Lieb lattice” at electronic
density ρ = 1/3, which is closely related to the AF
phase in non-doped cuprates. We likewise study pair
ordering in (iv) the attractive Hubbard model in the
square lattice, which exhibits a finite temperature phase
transition to a s-wave superconducting state. Finally,
charge ordering is investigated in (v) the Holstein model,
one of the simplest Hamiltonians to take into account
electron-phonon coupling. Periodic boundary conditions
have been used throughout this paper. Our methodology
focusses on determining whether the signatures of the
transitions occur through an examination of the principle
components of matrices constructed from snapshots of
the degrees of freedom during the course of a simulation.

This paper is organized as follow. The DQMC method
and the PCA procedure are introduced in Section II. The
PCA analysis of the PAM is presented in Section III,
while the results for Hubbard model on honeycomb
and the Lieb lattices are exhibited in Sections IV and
V, respectively. The attractive Hubbard and Holstein
models are left to Sections VI and VII. The Sections are
self-contained, with the individual models being briefly
introduced in each.

II. METHODOLOGY

DQMC37 is an approach for solving interacting fermion
Hamiltonians exactly (to within statistical error bars)

on lattices of finite size. The central observation of the
method is that the partition function Z for two fermionic
species σ =↑, ↓ interacting with a space and imaginary
time dependent bosonic field S(iτ), but not with each
other, can be written as

Z =
∑
{S(iτ)}

∏
σ

det
(
I +Bσ(1)Bσ(2)Bσ(3) · · ·Bσ(L)

)
(1)

Here the identity matrix I and the matrices Bσ(τ)
have dimension the spatial lattice size N , and L is the
number of imaginary time slices into which the inverse
temperature β is divided. The sum is over configurations
of the bosonic field. Each Bσ(τ) is the product of
the exponential of the kinetic energy matrix K, which
is usually independent of σ, and a diagonal matrix
Vσ(τ) whose entries are Vii σ(τ) = gσλS(iτ)38. Here
λ is the coupling constant between the fermionic and
bosonic variables and gσ = ±1 depends on the model.
For Hamiltonians with repulsive interactions, gσ most
commonly has opposite sign for the two spin species,
while for Hamiltonians with attractive interactions, gσ is
the same for both σ. (It is possible to choose gσ to have
the same sign for repulsive interactions, at the expense
of introducing an imaginary coupling constant λ.) The
separation into exponentials of K and V necessitates an
inverse temperature discretization ∆τ = β/L. This is
taken small enough so that systematic ‘Trotter errors’
are smaller than statistical error bars.

The Holstein Hamiltonian (see Sec. VIB) immediately
satisfies the description above. The field S(iτ) is
comprised of the space-imaginary time values arising
from a path integral expression for the quantum phonon
variables. For the Hubbard model, S(iτ) are the space-
time components of a Hubbard-Stratonovich (HS) field
introduced to decouple the fermion-fermion interaction.
In this paper we employ the discrete version of the
HS transformation introduced by Hirsch39. Hirsch has
shown39,40 that the correlation functions of the HS
variables are directly related to spin-spin correlations of
the fermionic degrees of freedom, suggesting that success
with using magnetic configurations in PCA studies of
classical transitions11,12 might be replicated with HS
configurations.

Principal Component Analysis41–43 is an unsupervised
learning technique in which, for the implementation here,
configurations of the HS field configurations generated in
the course of a set of DQMC simulations are assembled
in the rows of a matrix F. The number of columns of
F is the dimension of the HS field (either the spatial
lattice size N or the full space-time lattice size NL. See
below.) The number of rows of F is the number of
configurations. Typically we will input l configurations
for each of t different simulations which might correspond
to different values of an energy scale in the Hamiltonian,
the temperature, or the density. Thus the number of
rows of F is M = lt. The mean values of each column of
F are subtracted to produce a ‘data centered’ matrix X.
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The most straightforward description of the PCA
procedure is that the eigenproblem of the real symmetric
matrix XTX is solved, yielding eigenvalues λn and
eigenvectors wn. The distribution of the ‘relative

variances’ λ̃n = λn/
∑N
i=1 λi, and in particular the

existence of a gap separating a few ‘dominant λ̃n from
the others, provides information about possible phase
transitions. Following the work of Wang11, we will plot
the ordered pairs of the first two ‘principle components’,
the inner products of the eigenvectors of X with the
two largest eigenvalues, and the individual HS field
configurations, and also study the ‘quantified principle
components’ which are the averages of the principle
components over the l configurations of a particular
simulation.

The above presentation of PCA has the virtue of being
brief, but does not provide a detailed look at what the
PCA is actually extracting from the data. For a more
complete exposition see 41–43.

There are several possible implementations of PCA
within the context of DQMC. Here we will, for
example, examine whether any differences arise between
constructing the PCA matrix X from the bosonic field
configuration S(iτ) allowing i to vary over all N spatial
sites at a single fixed τ , as opposed to using S(iτ) for all
i and also all τ = 1, 2, · · ·L. We will also, as previously
explored by Broecker etal15 for the repulsive Hubbard
model, compare training of a network with the fermionic

Greens function, G =
(
I +B(1)B(2) · · ·B(L)

)−1
rather

than the HS field configuration.

III. RESULTS: AF-SINGLET TRANSITION IN
THE PAM

We first consider the AF-singlet transition, commonly
observed in heavy-fermion materials44, in which two
species of electrons, conduction (d) and localized (f)
electrons, experience a hybridization V which can be
tuned by adjusting external parameters, such as pressure.
At low V , the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction leads to long range magnetic order (LRO),
while for large V local singlets form, usurping LRO. A
quantum phase transition (QPT) occurs for a critical
hybridization Vc separating these distinct ground states.
The signature of this QCP is observed even at finite
temperature, with the appearence of non-Fermi liquid
behavior.

The standard models for heavy-fermion materials are
the Kondo lattice model (KLM)45–49 and the Periodic
Anderson model (PAM)50–53. We consider the latter,
which Hamiltonian is

H = −t
∑
〈i,j〉σ

(
d†iσdjσ + H.c.

)
− V

∑
iσ

(
d†iσfiσ + H.c.

)
+U

∑
i

(
nfi↑ −

1

2

)(
nfi↓ −

1

2

)
. (2)
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FIG. 1. PCA results for the PAM, with lattice size N =
12 × 12, inverse temperature β/t = 24 and on-site repulsion

U = 4. (a) Relative variances λ̃n obtained from the raw
HS field configurations, with the horizontal axis indicating
corresponding component labels. (b) Projection of the raw
HS field configurations onto the plane of the two leading
principal components. Data points are color-coded by the
value of the hybridization V (bar at far right). For large
V (i.e. in the singlet phase), the pairs form a single small
structure centered at (0, 0). For small V (i.e. in the AF phase),
the pairs spread out around the origin. (c) The quantified
first leading component as a function of V . The dashed line,
corresponding to the steepest transition, indicates the QCP
at Vc ≈ 1.0. (d) The weight vector corresponding to the first
leading component, which shows a clear AF pattern. .

Here i runs over sites in a two-dimensional square
lattice, with 〈i, j〉 denoting nearest neighbors. t is the
hopping integral of conduction d-electrons, and U the
on-site Coulomb repulsion in the f -band, while their
hybridization is V . The fermion creation (annihilation)
operators of conduction and localized electrons with

spin σ on a given site i are d†iσ(diσ) and f†iσ(fiσ),
respectively. As written, the PAM in Eq. (2) has particle-
hole symmetry (PHS) so that the density of each electron

species obeys 〈ρdiσ〉 = 〈ρfiσ〉 = 1/2 at all t, U, V and
temperatures. At this ‘half-filling’, the AF-singlet QCP
occurs at Vc ≈ 0.99 t for U = 4 t53. Hereafter we set t = 1
as the scale of energy.

Providing the PCA procedure with the full space-
time HS fields for a simulation on an 12 × 12 lattice at
U = 4 and β = 24 (i.e. L = 192 and ∆τ = 1/8) for
different values of V , we obtain the results exhibited in
Fig. 1. For each hybridization we provided l = 1000
independent configurations. The relative variance λ̃n
for different components n are displayed in Fig. 1 (a),
in which the first component is dominant. It has been
suggested12 that the appearance of sharp falloff from
dominant relative variances (e.g. λ̃1) is indicative of a
single dominant spin pattern, e.g. AF order. Figure 1 (b)
presents the projection of the two leading principal
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components, with the data points of large hybridization
localized around the origin. For low hybridization the
collection of points bifurcates, i.e. it appears two separate
clusters indicating the presence of two separate broken
symmetry ground states. This change is similar to what
is seen in finite temperature transitions in classical spin
models. Here we interpret the analogous behavior as
signaling a QPT at a critical Vc.

The position of the QCP can be roughly inferred via
the behavior of the quantified first leading component
as a function of V , as displayed in Fig. 1 (c). For
low hybridizations 〈|p1|〉 is large, while it is suppressed
at large hybridizations, behaving similar to the AF
structure factor. One can estimate the QCP location
at the inflection point, Vc ≈ 1, where the 〈|p1|〉 is
most rapidly changing. This Vc is in agreement with
conventional approaches based on finite size scaling of
the AF structure factor50,53, Vc ∼ 0.99 t, although at
present the PCA analysis is clearly considerably less
accurate. That order at wavevector q = (π, π) is
demonstrated by the structure of the first eigenvector,
Fig. 1 (d), which has an obvious alternation in sign for
sites on the two sublattices. In classical transitions12, the
quantified leading components mimic physical quantities
such as magnetization and susceptibility. Interestingly,
the quantified first leading component of the PAM also
resembles the mean field magnetization, as shown in
Fig. 2 of the Ref. 53.

Notably, it has been suggested12 for classical models
that the number of distinct groupings of the (p1, p2)
distributions reflects the degeneracy of the ground state:
two groups in the Ising case where spins can order either
up or down, a continuous ring around the origin for the
XY model, and four peaks for a biquadratic Ising model
which possesses four ordered phases. The AF order in the
PAM, and in the Hubbard and Lieb models below, has a
continuous symmetry similar to the XY case. However,
the HS transformation used here, and in many DQMC
simulations, couples preferentially to the z component
of the fermion spin. This choice does not represent
any approximation in the results for physical observables
obtained by DQMC, but is known to break symmetries in
quantities like error bars which are algorithm-dependent.
The (p1, p2) distributions, shown in Fig. 1 (b), are more
symmetrically distributed about (0, 0) than for the Ising
model11, because the system size is still relative small
and the temperature is low but not zero.

If a rotationally invariant HS decoupling is performed,
and the resulting configurations are fed into the PCA,
symmetry is preserved and similar results to the XY
model are expected. There are very significant drawbacks
to this approach. The two spin species are mixed by
coupling of a HS field Sx to the x component of the

fermion spin, i.e. Sx ( c†i↑ci↓ + c†i↓ci↑). As a consequence,
the two independent spin up and spin down Greens
functions (and fermion determinants) become a single
matrix with double the dimension. This fundamental
change in the algorithm, which several groups have

attempted, including ourselves54,55, is known (in the
case of the Hubbard model) to worsen the sign problem.
In the present case of the Holstein model, there is no
sign problem precisely because there are two separate
determinants whose square is always positive. In
addition, execution time is significantly increased by the
necessity of inversion of a larger matrix.

IV. RESULTS: AF-PM TRANSITION ON A
HONEYCOMB LATTICE

We next investigate the Hubbard Hamiltonian,

H = −t
∑

<i,j>σ

(
d†iσdjσ + d†jσdiσ

)
+U

∑
i

(
ndi↑ −

1

2

)(
ndi↓ −

1

2

)
, (3)

on a honeycomb lattice. Unlike the square lattice, in this
geometry a critical value Uc is required in order to obtain
an AF ground state at half filling32–36. A metal-insulator
transition also occurs at Uc, in contrast with the PAM,
where both AF and singlet phases are insulators.

Here we examine the use of the PCA to discern the
finite Uc required to induce AF order. We performed
simulations on a 12 × 12 lattice at β = 20 (i.e. L = 160
and ∆τ = 1/8), and providing l = 1000 independent
configurations for each value of U . In Fig. 2 (a) we
observe, as for the PAM, a single dominant relative
variance. The pairs of the two largest components are
shown in Fig. 2 (b), and provide information about the
QCP: A group of points centered around the origin for
small U spreads out rapidly for large U . An estimation
of the QCP is obtained from the quantified first leading
component as a function of U , exhibited in Fig. 2 (c).
For a better determination of the inflection point one can
perform a numerical fitting of the DQMC data, with its
differentiation providing a maximal value for d〈| p1 |〉/dU
at U ≈ 4.4, as displayed in the inset of Fig. 2 (c). This
result is reasonably close to the critical value obtained by
conventional methods, where Uc ≈ 3.8536. However, the
evolution of 〈| p1 |〉 is quite gradual. The estimation of
Uc will likely be improved with the analysis of different
lattice sizes12; e.g. see Section VII. It appears the
determination of the QCP is less accurate using the PCA
than from conventional scaling methods on lattices of
the same size, as was also seen in the preceding Section
for the PAM. Examination of the eigenvector [Fig. 2 (d)]
reveals a staggered pattern which indicates the ordering
is AF.

V. RESULTS: LIEB LATTICE AT 1/6 FILLING

As a final illustration of magnetic transitions in
the ground state, we study the repulsive Hubbard
Hamiltonian on the “Lieb lattice”. In contrast to the
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FIG. 2. PCA results for the honeycomb lattice (single band)
Hubbard model, with the lattice size N = 12×12, the inverse
temperature β/t = 20. (a) Relative variances λ̃n obtained
from the raw HS field configurations. (b) Projection of the
raw HS field configurations onto the plane of the two leading
principal components. Data points are color-coded by the
value of the onsite repulsion U (bar at far right). For small U
(i.e. in the paramagnetic phase), the pairs are localized near
(0, 0). For larger U (i.e. in the AF phase), the pairs spread
out around the origin. (c) The symbols corresponds to the
quantified first leading component as a function of U , while
the dash (red) curve is just a guide to the eyes. The vertical
(black) dotted line, corresponding to the steepest transition,
indicates the QCP at Uc ≈ 4.4. The inset displays the
numerical derivative. (d) The weight vector corresponding to
the first leading component, which shows a clear AF pattern.

two previous cases, where energy scales V and U are used
to tune through the QCP, the transition is explored as a
function of filling. The Lieb lattice describes a three band
model formed by an underlying square lattice which is
then decorated with additional sites on each bond. The
Lieb lattice is bipartite, but has a different number of
sites on the two sublattices. An interesting feature of
this geometry is the presence, in the noninteracting limit,
of a perfectly flat energy band, sandwiched between two
dispersing bands, which can lead to ferromagnetism when
U is turned on at half filling56.

In a seminal paper, Lieb showed that the Hubbard
model on this lattice at half filling exhibits long range
ferrimagnetic order in its ground state57. The spin order
in similar geometries has been explored in Refs. 58–62.
In addition to these rigorous results, the Lieb lattice is
of interest as a more faithful representation of the CuO2

sheets of cuprate superconductors than is provided by the
single band Hubbard model. In this three band case, the
repulsion U is typically chosen to take different values on
the square lattice and bridging sites. The implications
of inhomogeneous U for ferrimagnetism were recently
explored in Ref. 63.

Lieb’s theorem is of limited direct interest for cuprate

superconductivity since it describes a filling of the lattice
n = 3 holes per CuO2 unit cell, far from that actually
present in these materials, n = 1 + δ. Although there
are no rigorous theorems available for the nature of the
spin order away from half filling, previous results provide
evidence of antiferromagnetic correlations for one hole
per unit cell, which are strongly suppressed for small
doping δ64–66. The investigation of other phases, such as
superconductivity for small doping, remains a challenge.

Here we apply PCA to determine the enhancement
of antiferromagnetic correlations for Hubbard model in
the Lieb lattice at fillings around one hole per unit cell
(or ρ = 1/3). Away from half filling, the measurements
of physical quantities by DQMC are strongly impeded
by the sign problem, see e.g. Ref. 67. Since the PCA
procedure can be provided with HS fields without the
necessity of dividing by the average sign, it can be
undertaken even when the average sign is small. It should
be noted, however, that even in this case the HS fields are
generated with the absolute value of the determinants,
and it remains an open question how much this will bias
the physics68. We return to this point in the conclusions.

The Hubbard Hamiltonian on the Lieb lattice is

H =− tpd
∑
rσ

(
d†rσ p

x
rσ + d†rσ p

y
rσ + h.c.

)
− tpd

∑
rσ

(
d†rσ p

x
r−x̂ σ + d†rσ p

y
r−ŷ σ + h.c.

)
+
∑
rα

Uα

(
nαr↑ −

1

2

)(
nαr↓ −

1

2

)
− µ

∑
rασ

nαrσ (4)

with tpd being hopping between d and pα (α = x or y)
orbitals. As before we define tpd as unity. We investigate
the inhomogeneous on-site repulsion case, with Up = 0
and Ud = 4. For this choice of Uα, the particle-hole
symmetric form of the interaction energy in Eq. (4) leads
to a difference of on-site energies ∆εdp = 2, which is close
to the difference of on-site energies of oxygen and copper
orbitals in the cuprates.

We performed simulations on a 10 × 10 lattice (i.e.
300 sites) at β = 20 (fixing L = 160 and ∆τ = 1/8),
and providing l = 1000 independent configurations for
each value of ρ. The relative variances λ̃n for different
components n are displayed in Fig. 3 (a). Although the
sub-dominant values are more prominent than in the
PAM and Hubbard model cases, λ1 is still more than
twice λ2. The projection of the two largest components,
is presented in Figs. 3 (b)-(d), for (b) ρ < 1/3, (c) ρ ∼ 1/3
and (d) ρ > 1/3. Notice that for ρ < 1/3 and ρ > 1/3
the data points form a small cluster around the origin,
whereas for ρ ∼ 1/3 they are spread out, suggesting a
disorder-order-disorder transition when ρ varies. Figure
3 (e) exhibits the quantified first leading component as
a function of ρ, with a sharp increase in 〈|p1|〉 occuring
at ρ = 1/3. A direct comparison can be made between
the 〈|p1|〉 and the AF structure factor of d-sites, which
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FIG. 3. PCA results for the Lieb lattice Hubbard model, with lattice size N = 10× 10, and inverse temperature β/t = 20. (a)

Relative variances λ̃n obtained from the raw HS field configurations. (b)-(d) Projection of the raw HS field configurations onto
the plane of the two leading principal components. Data points are color-coded by the value of the onsite density ρ (bar at
far right). (e) The quantified first leading component as a function of ρ. The dashed line, showing the abrupt peak, indicates
the QCP at ρc ≈ 1/3, (f) The weight vector corresponding to the first leading component. Red dots represent (copper) d-sites,
while blue dots correspond to (oxygen) p-sites.

provides evidence of an AF ground state at ρ = 1/3, in
line with the conventional analysis64–66.

Figure 3 (f), the leading eigenvector, emphasizes that
the magnetic order is on the ‘copper’ sites of the square
sublattice, while the ‘oxygen’ bridging sites have nearly
zero components.

VI. RESULTS: SUPERCONDUCTIVITY IN
ATTRACTIVE HUBBARD MODEL

The previous Sections have described the ability of
PCA to learn about “quantum critical points” as energy
scales in the Hamiltonian or density are varied. We now
turn our attention to examining the finite temperature
transition in the attractive Hubbard model.

At half-filling, and on a bipartite lattice, a particle-
hole transformation (PHT) on the Hubbard Hamiltonian
maps the attractive to the repulsive cases, so that the
existence of AF order at T = 0 in the latter implies
the presence of simultaneous CDW (the analog of AF in
the z direction) and Superconductivity (SC) order (the
analog of AF order in the xy plane) in the former69.
Thus the results of Sec. IV for the AF transition of
the repulsive Hubbard model immediately imply that
PCA can capture the SC-CDW transition in the ground
state of the half-filled attractive Hubbard model on a
honeycomb lattice. Away from half-filling it is known
from the PHT, which maps the model to the repulsive
model in an external Zeeman field, that there is a finite
temperature Kosterlitz-Thouless (KT) transition69 to a

purely SC state. For instance, at ρ = 0.80 on a square
lattice one obtains Tc ≈ 0.13, as reported by Ref. 70.

Earlier work on the classical XY model12 suggests PCA
can capture aspects of KT physics – the presence of
a transition – but not its physical origin in terms of
vortex unbinding. We now use the method to investigate
KT physics in a quantum Hamiltonian. The analysis
of finite temperature transitions in the PCA approach
is complicated by the fact that varying T changes the
number of imaginary time slices at fixed ∆τ , and,
therefore, the number of HS fields. Thus the number
of columns of X varies over the t simulations. There are
two possible solutions. One is to sweep the temperature
by varying ∆τ at fixed L. (If this is done, one must
ensure ∆τ remains small enough throughout is variation
so that Trotter errors are minor.) The other approach
is to give PCA only the HS variables on a single time
slice. One might expect the PCA to be able to discern
transitions even when not given the imaginary time
evolution, since one knows that conventional approaches
can analyze magnetic order both by using only equal-
time measurements (the structure factor) or by analyzing
unequal-time measurements (the susceptibility).

Figure 4 shows the results from both approaches, in
which we fixed U = −4 in Eq. (3), and adjusted µ to
have ρ = 0.80. In panels (a) and (b) the full space-time
HS variables of a 12 × 12 square lattice are given to the
PCA. The inverse temperature β is changed by altering
∆τ = [0.03, 0.12] at fixed L = 100. We provided l = 1000
independent configurations for each temperature to our
PCA procedure. Panels (c)-(f) are concerning to single
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FIG. 4. Results of PCA analysis of the attractive Hubbard model. In panels (a,b) the full space-time HS field variables were
used and β was altered over the range given by the color bar to the right of (b) at fixed L by varying ∆τ . The spatial lattice
size was 12 × 12. In panels (c,d,e,f) the spatial lattice size was 16 × 16 and only the HS variables on a single slice were given
to the PCA. In the latter case, for clarity, the (p1, p2) distribution is further separated into three panels.

time slice measurements in a 16 × 16 square lattice at
fixed ∆τ = 0.125 and varying L. For this latter case we
provided l = 4000 independent measurements to PCA.

The PCA does not appear to capture the finite T
SC transition in the attractive Hubbard model: There
appears to be very little change in the geometry of the
(p1, p2) distribution in going through Tc. This absence
of a signal is true both when the full space-time field
is provided [Fig. 4 (b)] and also when just the spatial
components are given [Fig. 4 (d)-(f)]. We also do not
observe any relevant variation in the quantified first
leading component as a function of β. A possible origin of
this failure is that the HS field couples to the spin order,
so that while it can, as seen earlier, carry information
to the PCA about magnetic transitions, it is not able to
do so for pairing transitions. In principle it is possible
to use HS fields which couple to the pair creation and
destruction operators, but this transformation results in
a very bad sign problem, even for the attractive model54.

Having seen inconclusive results when providing the
PCA with the HS field configurations, we follow
recent work15 and employ the equal-time Green’s
functions, Gij. In contrast to Fig. 4 (a), the relative
variances now exhibit a single dominant component,
as seen in Fig. 5 (a). Furthermore, Fig. 5 (b), data for
the two largest components distinguish high and low
temperatures. The quantified first leading component
increases in magnitude as β increases [Fig. 5 (c)], showing
a very similar behavior to the kinetic energy (KE) of
the system, exhibited in Fig. 5 (d). This connection is
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FIG. 5. PCA results for the attractive Hubbard model with
lattice size N = 16×16, onsite repulsion U = −4 and density
ρ = 0.8. (a) Relative variances λ̃n obtained from the raw
Green functions. (b) Projection of the raw Green functions
onto the plane of the two leading principal components. The
color bar indicates the inverse temperature β in units of t. (c)
The quantified first leading component as a function of β. (d)
The kinetic energy (KE) as a function of β.

not surprising. Gij is closely related to the mobility
of the electrons in the system, enabling the PCA to
discern different regimes. However, the method does
not capture the SC phase transition in the attractive
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FIG. 6. PCA results for the attractive Hubbard model with
the lattice size N = 16 × 16, the onsite repulsion U = 4
and the density ρ = 0.8. (a) Relative variances λ̃n obtained
from the raw pair pair correlation function. (b) Projection
onto the plane of the two leading principal components. The
color bar indicates the inverse temperature β in units of t.
(c) The quantified first leading component as a function of
β. The dashed line, corresponding to the steepest transition,
indicates the QCP at βc ≈ 6.0. (d) The weight vector
corresponding to the first leading component.

Hubbard model, in the sense of showing a definitive signal
near βc = 1/Tc ∼ 7. A similar smooth evolution of the
kinetic energy (“effective hopping”) is seen in the half-
filled repulsive Hubbard model as U is increased68.

As a final attempt to use the PCA to observe the SC
transition in the attractive Hubbard model, we use the
equal-time pair-pair correlation functions,

Γij = 〈d†i↑d
†
i↓dj↓dj↑ + H.c.〉. (5)

Figure 6 (a) displays the relative variances of the
principal components, whereas Fig. 6 (b) exhibits the
projection of the two largest components. The former
presents a single dominant component, while the
later shows two different behaviors to low and high
temperatures. As before, we analyse the quantified first
leading component 〈|p1|〉 as a function of β. This is
seen to behave in a similar way as the uniform Fourier
transformation of the pair-pair correlation functions,
Ps, as displayed in Fig. 6 (c). These allow the PCA
to provide the most promising signal of the SC phase
transition around βc = 6, in rough agreement with the
known critical temperature βc ≈ 7.570. The conventional
approaches which yield this value involve a demanding
process of data collapses of Ps, a level of analysis which
this initial PCA study here cannot attempt, since data
on only a single lattice size is studied.

Unlike previous models where the ordering vector is
(π, π), the pairing amplitude is uniform in the attractive
Hubbard model. This is reflected in the lack of
oscillations in the principal eigenvector, Fig. 6 (d).

VII. RESULTS: CHARGE-DENSITY WAVE IN
HOLSTEIN MODEL

Finally, we study the finite temperature CDW
transition in the Holstein model71, one of the simplest
tight-binding models of the electron-phonon interaction
(EPI). The Holstein model describes independent
(i.e. dispersionless) quantum harmonic oscillators (HO)
interacting locally with the electron density,

H =− t
∑
〈i,j〉,σ

(
d†iσdjσ + h.c.

)
− µ

∑
i,σ

ni,σ − λ
∑
i,σ

ni,σX̂i

+
1

2

∑
i

P̂ 2
i +

ω2
0

2

∑
i

X̂2
i , (6)

As earlier, the sum over 〈ij〉 is over nearest neighbor

sites on a two-dimensional square lattice. P̂ and X̂ are
respectively the momentum and displacement operators
of HOs with frequency ω0 and mass m = 1. The
electron-phonon coupling is λ which, when integrated
out, neglecting the P̂ 2 terms, leads to a dimensionless
coupling, λD = λ2 / 2tω2

0 .
The Holstein Hamiltonian is quadratic in the fermion

operators, which can therefore be integrated out without
the introduction of a HS field. The partition function
then involves an integration over the phonon degrees of
freedom,

Z =

∫
d{xi,l}e−∆τSB

[
det
(
I +B1B2 · · ·BL

)]2

, (7)

with
∫

d{xi,l} being the integral over the set of
continuous variables xi,l and

SB =

N∑
i=1

L∑
l=1

[
1

2m

(
xi,l − xi,l+1

∆τ

)2

+
mω2

0

2
x2
i,l

]
(8)

the phonon action. Because the phonons couple to
the charge, symmetrically for the spin up and spin
down species, gσ is the same for σ =↑, ↓ and the two
determinants are identical. Their product is always
positive and there is no sign problem for any filling
(as is also the case for the attractive Hubbard model).
The phonon fields {xi,l} are sampled by standard Monte
Carlo.

We used PCA to analyze the Holstein model at half
filling on a 10×10 square lattice. The PCA matrix
was constructed from the phonon fields {xi,τ}, for a
single fixed imaginary time slice τ , providing l = 1000
independent configurations for each temperature. Figure
7 (a) displays the relative variances, which exhibit a
single dominant component, suggesting the existence of
a dominant phonon displacement (or a charge) pattern.
The projection of the first two principal components
[Fig. 7 (b)] has data points (blue symbols) centered at
the origin and high T , and split into two different clusters
(red symbols) at low T . This splitting provides evidence
of a phase transition for a critical Tc.
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FIG. 7. PCA results for the half-filled 10 × 10 Holstein
model for λD = ω0 = 1. (a) Relative variances λ̃n obtained
from the raw phonon field configurations. There is a single
dominant relative variance. (b) Projection of the raw phonon
field configurations onto the plane of the two leading principal
components. The color bar indicates the inverse temperature
β in units of t. For small β (high T ), the pairs evolve with the
usual topologies: from a single grouping centered at (0, 0) at
small β (high T ) to a pair of groupings at larger β (low T ). (c)
The quantified first leading component as a function of β. The
dashed line indicates the QCP (separating the two topologies)
βc ≈ 5.5 which is close to values obtained by conventional
approaches. (d) The weight vector corresponding to the first
leading component, which shows a clear (π, π) pattern.

In addition to the changes in the scatter plots
of Fig. 7 (b) with temperature, we also analyse the
quantified first leading component. Figure 7 (c) displays
the behavior of 〈|p1|〉 as a function of β. A sharp
increase is evident for inverse temperature in the range
4.5 . β . 6.5. Taking the midpoint of this range
suggests a PCA estimation for the critical temperature
is βc ≈ 5.5. Although previous DQMC results provide
evidence of βc = 8 (see Refs. 72 and 73, respectively),
a recent, more accurate, analysis determined βc = 6.0
(Ref. 74), in agreement with our PCA results.

To explore finite size effects, we compare simulations
on lattice sizes N = 6 × 6, 8 × 8 and 10 × 10. In
Fig. 8 (a), the symbols are the PCA/DQMC results for
the quantified first leading component as a function
of β, while the dashed lines are their corresponding
numerical fits. Here we determine the inflection points
by differentiating the fitted curves, following Section IV.
Figure 8 (b) displays the derivative of fitted curves,
with the inflection points (and ultimately, the “critical
temperatures”) being determined by their peaks. In
Fig. 8 (c), we extract the critical value βc ≈ 5.68 using
a linear least-squares fit on these inflection points. We
have verified that fitting the data of Fig. 8 (a) to different
functional forms does not affect the values of β∗.
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FIG. 8. Finite size scaling analysis of the Holstein model for
λD = ω0 = 1. (a) Symbols are raw data for the quantified
first leading component as a function of β, for different lattice
sizes. The dashed lines are guides to the eyes. (b) Derivatives
with respect to β of numerical fits to the raw data. The
dashed line marks the extrapolated critical value βc ≈ 5.68
obtained in panel (c) from a linear least-squares fit to the
peaks β∗ on different lattice sizes. We assume the finite size
correction goes as the inverse of the linear system size.

VIII. CONCLUSIONS

This paper has extended prior work12 in which an
unsupervised learning approach based on the PCA was
applied to a variety of classical models of magnetism,
to itinerant quantum Hamiltonians in two dimensions.
The magnetic phase transitions in the Hubbard model
on a honeycomb lattice, the periodic Anderson model,
and the one sixth filled Lieb lattice, can all be observed
via the evolution of the principal components, even
though the transitions are tuned in quite different
ways; via interaction strength, hybridization, and density
respectively.

The similarities extend to the finite temperature
Kosterlitz-Thouless transition in the 2D attractive
Hubbard Hamiltonian, which, like its classical XY
counterpart, proves less amenable to analysis. In
contrast, the finite temperature CDW transition in the
half-filled 2D Holstein is well captured by the PCA,
presumably because the broken symmetry is discrete.

The similarities between PCA for classical and
quantum models of magnetism may be somewhat
surprising, since, unlike short range spin models, the
effective classical degrees of freedom in DQMC are
coupled by complicated, long range interactions (the
fermion determinants). Thus, in some ways, the
application of PCA to configurations provided by DQMC
reported here, and in Refs. 14 and 15, are similar to
some of the original themes explored in the interplay
of learning and statistical mechanics which considered
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(possibly frustrated) long range models.
To see the full rotational symmetry of the magnetically

ordered ground states of the Hubbard model (e.g. the
PAM) in the principal component distributions, fermion
spin configurations might be necessary to be fed into
PCA directly. As noted above, the particular form of the
HS transformation will likely be relevant to the answer.
Complete resolution of this issue would be facilitated
by a comparison of results for different forms of the
HS transformation, for example by using the rotation
symmetric form introduced by Chen and Tremblay55, but
is beyond the scope of the present paper.

It remains to assess the extent of the advantages offered
by machine learning approaches to these transitions. In
the cases we have studied, traditional approaches based
on analysis of the known order parameters would likely
give a more accurate determination of the critical points.
These more precise values are usually achieved only
following a finite size scaling analysis, as discussed in the
last paragraph of the Holstein model section. Finally, one
should acknowledge that the more established methods
have been improved and refined over three decades.
Machine learning techniques for DQMC await a similar
development and improvement process.

In particular, an intriguing opportunity is offered in

cases where the sign problem makes the usual evaluation
of a response function χ excessively noisy. Because
the PCA does not involve the computation of the ratio
〈χS 〉/〈S 〉, but rather only the generation and analysis
of configurations of the Hubbard-Stratonovich field (with
the absolute value of the determinants as the weight),
it seems possible that insight into transitions beyond
the sign problem might prove possible. One knows
that if the sign is ignored, then the response functions
can give incorrect information about the physics (in
the case of the 2D repulisive Hubbard model a d-
wave pairing amplitude which decreases as T is lowered
instead of increasing)68,75. Understanding whether a
machine learning analysis of the full space-time HS field
configuration generated with the absolute value of the
sign is similarly misleading is an open question.
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50 M. Vekić, J. W. Cannon, D. J. Scalapino, R. T. Scalettar,

and R. L. Sugar, Phys. Rev. Lett. 74, 2367 (1995).
51 C. Huscroft, A. K. McMahan, and R. T. Scalettar, Phys.

Rev. Lett. 82, 2342 (1999).
52 T. Paiva, G. Esirgen, R. T. Scalettar, C. Huscroft, and

A. K. McMahan, Phys. Rev. B 68, 195111 (2003).
53 W. Hu, R. T. Scalettar, E. W. Huang, and B. Moritz,

Phys. Rev. B 95, 235122 (2017).

54 G. Batrouni and R. Scalettar, Phys. Rev. B42 (1990).
55 L. Chen and A.-M. Tremblay, Int. J. Mod. Phys. B , 547

(1992).
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