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We present a generalization of Bloch’s theorem to finite-range lattice systems of independent
fermions, in which translation symmetry is broken solely due to arbitrary boundary conditions, by
providing exact, analytic expressions for all energy eigenvalues and eigenstates. Starting with a re-
ordering of the fermionic basis that transforms the single-particle Hamiltonian into a corner-modified
banded block-Toeplitz matrix, a key step is a Hamiltonian-dependent bipartition of the lattice, which
splits the eigenvalue problem into a system of bulk and boundary equations. The eigensystem
inherits most of its solutions from an auxiliary, infinite translation-invariant Hamiltonian that allows
for non-unitary representations of translation – hence complex values of crystal momenta with
specific localization properties. A reformulation of the boundary equation in terms of a boundary
matrix ensures compatibility with the boundary conditions, and determines the allowed energy
eigenstates in the form of generalized Bloch states. We show how the boundary matrix quantitatively
captures the interplay between bulk and boundary properties, leading to the construction of efficient
indicators of bulk-boundary correspondence. Remarkable consequences of our generalized Bloch
theorem are the engineering of Hamiltonians that host perfectly localized, robust zero-energy edge
modes, and the predicted emergence, for instance in Kitaev’s Majorana chain, of localized excitations
whose amplitudes decay in space exponentially with a power-law prefactor. We further show how the
theorem may be used to construct numerical and algebraic diagonalization algorithms for the class of
Hamiltonians under consideration, and use the proposed bulk-boundary indicator to characterize the
topological response of a multi-band time-reversal invariant s-wave topological superconductor under
twisted boundary conditions, showing how a fractional Josephson effect can occur without entailing
a fermionic parity switch. Finally, we establish connections to the transfer matrix method and
demonstrate, using the paradigmatic Kitaev’s chain example, that a defective (non-diagonalizable)
transfer matrix signals the presence of solutions with a power-law prefactor.

I. INTRODUCTION

Modern electronic transport theory in crystalline solids
relies on two fundamental tenets. On the one hand, be-
cause of the Pauli exclusion principle, electrons satisfy
Fermi-Dirac statistics; on the other, Bloch’s theorem al-
lows labeling of the one-electron wave-functions in terms
of their crystal momenta. The set of allowed momenta,
defining the so-called Brillouin zone, is determined by
symmetry and the fact that Born-von-Karman (periodic)
boundary conditions (BCs) are enforced on the system1.
It is the organization of electrons within the Brillouin
zone that is key to defining its conduction properties.
While the assumption of a perfect crystal with a unit cell
that is periodically repeated emphasizes the (discrete)
symmetry of translation, the torus topological constraint
imposed by the Born-von-Karman condition further elim-
inates the potential emergence of edge or boundary elec-
tronic states in a real, finite crystal. Although much
of the transport properties are determined by bulk elec-
trons, technologically relevant processes on the surface
of solids are known to lead to intriguing phenomena,
such as surface superconductivity2 or Kondo screening
of magnetic impurities resulting in exotic surface spin
textures3. Early theoretical investigations by Tamm and
Shockley4,5 initiated the systematic study of surface state
physics6, that witnessed a landmark achievement with
the discovery of the quantum Hall effect7, and that today
finds its most striking applications in topological insulat-

ing and superconducting materials8.

The organization of bulk electrons comes with a twist.
The quantum electronic states labeled by crystal mo-
menta organize in ways subject to classification according
to integer values of topological invariants defined over the
entire Brillouin zone9,10. The first Chern number, deter-
mined in terms of the Berry connection, is one of those
topological invariants, defining a topologically non-trivial
electronic phase whenever its value differs from zero8. For
instance, the transverse conductivity of a quantum Hall
fluid is proportional to such a Chern number. Perhaps
surprisingly, there appears to be a connection between a
non-vanishing value of the topological invariant, a bulk
property, and the emergence of “robust” boundary states,
an attribute of the surface. This principle is known as
the bulk-boundary correspondence8,10,11. At first, this re-
lation seems odd, since surface properties are totally in-
dependent from those of the bulk; for example, one can
deposit impurities, generate strain and reconstruction, or
add externally applied electric fields only on the surface.
Nonetheless, it seems reasonable to assume that as long
as the symmetry protecting the surface states is not bro-
ken by external means, a bulk-boundary correspondence
will still hold, although the quantum surface state will, in
general, get transformed12. In other words, although the
mere existence of a boundary mode may be robust, only
classical information may be protected in general12,13.

It is apparent that Bloch’s theorem and its conse-
quences pertain to the realm of bulk physics. A crys-
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tal without boundaries is required to establish it. But,
can one generalize Bloch’s theorem for independent elec-
trons to arbitrary BCs, so that bulk and surface states
can be handled on an equal footing, and physical insight
about the interplay between bulk and boundary may be
gained? In light of our previous discussion, it is clear that
to accomplish such a task one needs to give up on some
concepts, such as the standard notion of a Brillouin zone.
If possible, such a generalization could be instrumental
to formulate a bulk-boundary correspondence principle
that makes use of both bulk and boundary information.
It is tempting to argue that the relative importance of
BCs diminishes as the size of the crystal grows. Notwith-
standing, for example, recent work shows that BCs im-
pact the quasi-conserved local charges of one-dimensional
systems, with important consequences for bulk quench
dynamics14,15. More generally, the statistical mechan-
ics of topologically nontrivial systems begs some answers
directly relevant to the questions above16,17.

In this paper, we generalize Bloch’s theorem to sys-
tems of independent electrons subject to arbitrary BCs.
Intuitively speaking, one may expect such a result on
the basis that translation symmetry is only mildly bro-
ken by BCs – namely, clean (disorder-free) systems are
translationally-invariant away from the boundary. Our
generalized Bloch theorem makes this idea precise, by
providing an exact (often in fully closed-form) descrip-
tion of the eigenstates of the system’s Hamiltonian in
terms of generalized eigenstates of non-unitary represen-
tations of translation symmetry in infinite space, that
is, with boundaries at infinity and no torus topology18.
As a result, both exponentially decaying edge modes and
more exotic modes with power-law prefactors can emerge,
provided the BCs allow them. Our generalized Bloch
theorem leverages the bulk-boundary separation of the
Schrödinger equation we introduced in Ref. [19] and the
full solution of the bulk equation rigorously established
in Ref. [20]. It extends the diagonalization procedure de-
scribed in Ref. [19], and recently used in Ref. [21], to a
more general class of Hamiltonians and BCs which, in
particular, allows for different modifications to be im-
posed on different boundaries. A unifying theme behind
these results is an effective analytic continuation to the
complex plane of the standard Bloch’s Hamiltonian off
the Brillouin zone. This analytic continuation is remark-
ably useful because the original problem reduces to a ma-
trix polynomial function20. Interestingly, a recent study
made use of similar polynomial structures for the purpose
of topological classification22.

The outline of this paper is as follows. In Sec. II
we discuss a re-arrangement of the fermionic basis that
allows us to reduce the diagonalization of the original
many-electron finite-range quadratic Hamiltonian in sec-
ond quantization, subject to specified BCs, to the one
of a single-particle Bogoliubov-de Gennes Hamiltonian
that has the structure of a corner-modified block-Toeplitz
matrix, as introduced in Ref. [20]. Section III develops a
structural characterization of the energy eigenstates for

the many-electron systems under consideration, culmi-
nating into our generalization of Bloch’s theorem. Like
the usual Bloch’s theorem, such a generalization is first
and foremost a practical tool for calculations, granting
direct access to exact energy eigenvalues and eigenstates.
In Sec. IV, we provide two new procedures – one numeri-
cal and another algebraic – for carrying out the exact di-
agonalization of the single-particle Hamiltonian, based on
the generalized Bloch theorem. The algebraic procedure,
which may provide closed-form solutions to the problem,
is explicitly illustrated through a number of examples in
Sec. V. While, in order to illustrate our methodology, we
focus largely on one-dimensional systems here, we antic-
ipate that additional applications to higher-dimensional
problems will be addressed in a companion paper23. Re-
markably, while mid-gap modes with power-law prefac-
tors have been predicted for systems with long-range
couplings, we show analytically here that they can also
prominently manifest in short-range tight-binding mod-
els of topological insulators and superconductors24–28.

Crucially, our generalized Bloch theorem also allows
derivation of a boundary indicator for the bulk-boundary
correspondence, which contains information from both
the bulk and the BCs and, as remarked in Ref. [19], is
computationally more efficient than other indicators also
applicable in the absence of translational symmetry29.
This is the subject of Sec. VI. In the same section, we
expand on the analysis of the two-band time-reversal in-
variant s-wave topological superconducting wire we in-
troduced previously30,31, by employing our newly defined
indicator of bulk-boundary correspondence – constructed
by using the generalized Bloch theorem, as opposed to
the simplified Ansatz we presented in Ref. [19]. Specif-
ically, this indicator is employed in the analysis of the
Josephson response of the s-wave superconductor in a
bridge configuration, sharply diagnosing the occurrence
of a fractional 4π-periodic Josephson effect. Remark-
ably, we find that this is possible without a conven-
tional fermionic parity switch, which we explain based
on a suitable transformation into two decoupled systems,
each undergoing a parity switch. Section VII estab-
lishes some important connections between our gener-
alized Bloch theorem and the widely employed transfer
matrix approach32. Interestingly, from the standpoint of
computing energy levels, our bulk-boundary separation
is in many ways complementary to the transfer matrix
method. While the latter can handle bulk disorder (at a
computational cost), it does not, a priori, lend itself to
investigating the space of arbitrary BCs in a transpar-
ent way. On the contrary, our generalized Bloch the-
orem can handle arbitrary BCs efficiently, as long as
the bulk respects translational invariance – with arbi-
trary (finite-range) disorder on the boundary being per-
mitted. Looking afresh at the transfer matrix approach
from the generalized Bloch theorem’s perspective yields
a remarkable result: the generalized eigenvectors of the
transfer matrix, whose role has been appreciated only
recently33, describe energy eigenstates with power-law
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corrections to an otherwise exponential behavior. Our
generalized Bloch theorem further suggests a way to ex-
tend the transfer matrix approach to a disordered bulk
and arbitrary BCs. A discussion of the main implications
of our work, along with outstanding research questions,
concludes in Sec. VIII, whereas additional technical ma-
terial is included in separate appendixes.

II. FROM INDEPENDENT FERMIONS TO
TOEPLITZ MATRICES

We begin by describing the class of model Hamilto-
nians investigated in this and the companion paper23.
The upshot of this section will be a non-conventional re-
ordering of the physical subsystems’ labels that allows re-
casting the single-particle (Bogoliubov-de Gennes, BdG)
Hamiltonians in Toeplitz form, essential for the exact di-
agonalization procedure we will describe.

A. Systems with periodic boundary conditions

Consider first a D-dimensional, translation-invariant
infinite system of independent fermions. Such a system
is described in full generality by a quadratic, not neces-
sarily particle-number-conserving, Hamiltonian in Fock
space. In a lattice approximation, the vector position
of a given fermion in the regular crystal lattice can be
written as the sum of a Bravais lattice vector and a basis
vector1. We will include these basis vectors as part of
the internal labels, and denote Bravais lattice vectors as

j ≡∑D
µ=1 jµaµ, with a1, . . . ,aD primitive vectors of the

Bravais lattice ΛD, and jµ ∈ Z. An orthonormal basis of
the Hilbert space of single-particle states is thus labeled
by Bravais lattice vectors j, and a finite number of inter-

nal labels, m = 1, . . . , dint. We denote by cjm (c†jm) the

fermionic annihilation (creation) operator corresponding
to lattice vector j and internal state m. The Hamiltonian
of a translation-invariant system can then be written as

Ĥp =
∑

r, j∈ΛD

[
Φ̂†jKrΦ̂j+r +

1

2
(Φ̂†j∆rΦ̂

†
j+r + h.c.)

]
, (1)

with Φ̂†j ≡
[
c†j1 · · · c

†
jdint

]
, r, j Bravais lattice vectors,

and the dint × dint hopping and pairing matrices Kr, ∆r

satisfyingK−r = K†r , ∆−r = −∆T
r , where the superscript

T denotes the transpose operation. For arrays, such as Φ̂†j
and Φ̂j, we stick to the convention that those appearing

on the left (right) of a matrix are row (column) arrays.
As the infinite system is translation-invariant in all

D directions, it is customary to introduce the volume
containing the electrons by imposing Born-von Karman
(periodic) BCs over a macroscopic volume commensu-
rate with the primitive cell of ΛD. If the allowed j’s
correspond to jµ = 1, . . . ,Mµ, and the total number

of primitive cells is M ≡ M1M2 . . .MD, then Φ̂†k ≡

(1/
√
M)

∑
j∈ΛD

eik·jΦ̂†j defines the Fourier-transformed

array of creation operators of real Bloch wavevector (or

crystal momentum), k ≡ ∑D
µ=1

kµ
Mµ

bµ, with kµ inte-

gers such that k lies inside the Brillouin zone (BZ). ,
and bµ defines the reciprocal lattice vectors satisfying
aµ · bν = 2πδµν , with δµν being the Kronecker’s delta1.
By letting ∗ denote complex conjugation, one can express
the Hamiltonian of Eq. (1) in momentum space as

Ĥp =
1

2

∑
k∈BZ

[Φ̂†kKkΦ̂k + Φ̂†−kK
∗
−kΦ̂−k

+ Φ̂†k∆kΦ̂†−k + Φ̂k∆∗−kΦ̂−k],

which has a block structure in terms of the matrices

Kk ≡
∑
r∈ΛD

eik·rKr, ∆k ≡
∑
r∈ΛD

eik·r∆r.

B. Systems with arbitrary boundary conditions

We now wish to turn attention to systems that are
periodic along D − 1 directions, and support arbitrary
BCs in the remaining one. The first step is to formal-
ize how the D-dimensional infinite system may be ter-
minated by two parallel lattice hyperplanes, implement-
ing open (or hardwall) BCs. Such a system is quasi-
(D − 1)-dimensional in a precise sense: it can be de-
scribed in terms of a (D−1)-dimensional Bravais lattice,
ΛD−1 (the so-called surface mesh in surface physics6),
with basis vectors residing in the original D-dimensional
space. If m1, . . . ,mD−1 denote the primitive vectors
of the surface mesh ΛD−1, then any vector j‖ ∈ ΛD−1

can be expressed as j‖ =
∑D−1
µ=1 jµmµ. Let the stack-

ing vector s be any vector that is not in ΛD−1. In gen-
eral, {m1,m2, . . . ,mD−1, s} may differ from the prim-
itive vectors of ΛD, and therefore generate a different
D-dimensional Bravais lattice Λ̄D embedded in the orig-
inal one, Λ̄D ⊆ ΛD (see Fig. 1). Hence, any point j ∈ ΛD
in the volume confined by the two hypersurfaces parallel
to ΛD−1 may be described using one of the basis vectors
dν̄ , ν̄ = 1, . . . , I − 1 attached to a point in Λ̄D, so that

j = j‖ + js + dν̄ , j ∈ {1, . . . , N}, ν̄ ∈ {0, . . . , I − 1},

where N ∈ Z is proportional to the separation between
the two hypersurfaces, and we let d0 ≡ 0. Accordingly,
the fermionic operators associated to the primitive cell
labeled by j‖ can be arranged in an array to form a basis

Φ̂†j‖ ≡
[
Φ̂†j‖,1 . . . Φ̂†j‖,N

]
,

where

Φ̂†j‖,j ≡
[
Φ̂†j‖+js+d0

. . . Φ̂†j‖+js+dI−1

]
.

The total number of fermionic operators in each array
Φ̂j‖ is NIdint. In terms of this basis, the Hamiltonian of
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j = N

m1

s d1

d2a1
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FIG. 1. (Color online) Example of a D = 2-dimensional Bra-
vais lattice Λ2 terminated along two parallel lines (bordered
with pattern). a1 and a2 denote the primitive vectors of Λ2,
and its primitive cell is shaded (in blue). The dotted (black)
line connects the points of the surface mesh (Λ1) generated
by the primitive vector m1. The primitive cell of the Bravais
lattice Λ̄2, generated by m1 and the stacking vector s, is also
shown (shaded in brown). The original lattice Λ2 is obtained
by attaching the basis vectors d1 and d2 to each point of Λ̄2.

the terminated system subjected to open BCs becomes

ĤN =
∑

r‖, j‖∈ΛD−1

[
Φ̂†j‖Kr‖Φ̂j‖+r‖

+
1

2
(Φ̂†j‖∆r‖Φ̂

†
j‖+r‖

+ h.c.)
]
,

where the matrices Sr‖ with S = K,∆ are block-Toeplitz

with entries [Sr‖ ]jj′ = Sr‖,j′−j = Sr‖,r defined by

[Sr‖,r]ν̄,ν̄′ ≡ Sr‖+rs+dν̄′−dν̄ , ∀ ν̄, ν̄′ = 0, . . . , I − 1.

We will henceforth assume that the range R of hopping
and pairing in the stacking direction s is finite. This
means that, for every r‖ ∈ ΛD−1,

Kr‖,r = 0 = ∆r‖,r, if |r| > R.

In order to model finite-range BCs that are more gen-
eral than open BCs, we consider a Hermitian many-body

operator Ŵ on Fock space which satisfies the following
restrictions (see also Appendix A):

• Ŵ has no effect beyond the “boundary slab”, cor-
responding to points j = j‖ + bs + dν̄ , where
j‖ ∈ ΛD−1, ν̄ = 0, . . . , I − 1, and

b = 1, . . . , R, N −R+ 1, . . . , N ;

• Ŵ is periodic along the D − 1 directions
m1, . . . ,mD−1.

Because of the latter restriction, Ŵ can be expressed as

Ŵ =

ΛD−1∑
r‖, j‖

[
Φ̂†j‖W

(K)
r‖

Φ̂j‖+r‖
+

1

2
(Φ̂†j‖W

(∆)
r‖

Φ̂†j‖+r‖
+ h.c.)

]
,

where the matrices W
(K)
r‖ and W

(∆)
r‖ satisfy

[W (K)
r‖

]† = W
(K)
−r‖ , [W (∆)

r‖
]T = −W (∆)

−r‖ ,

respectively, due to fermionic statistics. In addition, they
also obey

[W (S)
r‖

]jj′ = 0 ∀r‖, S = K,∆,

if either of j, j′ are outside the boundary slabs, that is,
taking values from the set {R+ 1, . . . , N −R}.

Finally, we may restrict our system to the lattice points
corresponding to

j‖ =

D−1∑
µ=1

jµmµ, jµ = 1, . . . , Nµ, ∀µ,

and enforce periodic BCs along directions m1, . . . ,mD−1.
If n1, . . . ,nD−1 denote the primitive surface recipro-
cal lattice vectors satisfying mµ · nν = 2πδµν , for
µ, ν = 1, . . . , D − 1, the Wigner-Seitz cell of the sur-
face reciprocal lattice defines the surface Brillouin zone
(SBZ)6. Using surface crystal momenta of the form

k‖ =
∑D
µ=2

kµ
Nµ

nµ ∈ SBZ, kµ ∈ Z ∀µ, we may then

define the partial Fourier-transformed basis

Φ̂†k‖ =

ΛD−1∑
j‖

eik‖·j‖√
NS

Φ̂†j‖ , NS = N1 . . . ND−1. (2)

The total Hamiltonian Ĥ = ĤN + Ŵ can now be rewrit-
ten in terms of one-dimensional “virtual wires” according

to ĤN + Ŵ ≡∑k‖
Ĥk‖,N + Ŵk‖ , and

Ĥk‖,N =
1

2
(Φ̂†k‖Kk‖Φ̂k‖

+ Φ̂†−k‖K
∗
−k‖Φ̂−k‖

+ Φ̂†k‖∆k‖Φ̂
†
−k‖ + Φ̂k‖∆

∗
−k‖Φ̂−k‖),

Ŵk‖ =
1

2
(Φ̂†k‖W

(K)
k‖

Φ̂k‖
+ Φ̂†−k‖(W

(K)
−k‖)

∗Φ̂−k‖

+ Φ̂†k‖W
(∆)
k‖

Φ̂†−k‖ + Φ̂k‖(W
(∆)
−k‖)

∗Φ̂−k‖),

where the NIdint ×NIdint matrices

[Sk‖ ]jj′ = Sk‖,j′−j ≡
∑
r‖

eik‖·r‖Sr‖,(j′−j),

S = K,∆,W (K),W (∆),

and the finite-range assumption means that

Kk‖,r = 0 = ∆k‖,r, ∀ k‖ ∈ SBZ if |r| > R. (3)

Throughout the rest of this paper, we shall focus on

diagonalizing one such block, Ĥk‖ = Ĥk‖,N + Ŵk‖ , for a
fixed value of k‖. We will investigate the interplay be-
tween k‖ and our diagonalization algorithm, (and, more
generally, disordered BCs), in Ref. [23]. Thus, the next
step consists of deriving the BdG Hamiltonian for this
block. The conventional way34 is to use the (Nambu)
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basis Ψ̂†k‖ ≡
[
Φ̂†k‖ Φ̂−k‖

]
, with Φ̂†k‖ defined in Eq. (2), so

that Ĥk‖ can be expressed in the form

Ĥk‖ =
1

2
Ψ̂†k‖H̃k‖Ψ̂k‖ +

1

2
tr(Kk‖ +W

(K)
k‖

),

in terms of a Hermitian matrix H̃k‖ (note that the matrix

W
(K)
k‖

has entries [W
(K)
k‖

]jj′ = 0 if any of j, j′ take values

from the set {R+ 1, . . . , N −R}). This relation leads us

to a BdG Hamiltonian H̃k‖ ≡ H̃k‖,N + W̃k‖ with

H̃k‖,N =

[
Kk‖ ∆k‖

−∆∗−k‖ −K
∗
−k‖

]
,

W̃k‖ =

[
W

(K)
k‖

W
(∆)
k‖

−W (∆)
−k‖

∗
−W (K)

−k‖

∗

]
.

The diagonalization of the BdG Hamiltonian H̃k‖ implies

that of Ĥk‖ , as detailed for example in Ref. [34].

The 2×2 block-structure of H̃k‖ emphasizes the intrin-
sic charge-conjugation symmetry under the anti-unitary

operator C ≡ (1NIdintτx) Ccc, i.e., CH̃k‖C−1 = −H̃−k‖ ,
where τx is the Pauli σx-matrix in the Nambu basis, and
Ccc denotes complex conjugation. Such a block-structure,
however, does not explicitly highlight the role of transla-
tion invariance. For this reason, we reorder the (Nambu)
basis according to19

Ψ̂†k‖ ≡
[
Ψ̂†k‖,1 · · · Ψ̂†k‖,N

]
, Ψ̂†k‖,j ≡

[
Φ̂†k‖,j Φ̂−k‖,j

]
,

so that the BdG Hamiltonian transforms to

H̃k‖ 7→ Hk‖ ≡ Hk‖,N +Wk‖ ,

in terms of a banded block-Toeplitz matrix Hk‖,N = HN ,

with entries [HN ]jj′ = hj′−j along the diagonals, and a
block matrix Wk‖ = W , where

hr =

[
Kk‖,r ∆k‖,r

−∆∗−k‖,r −K
∗
−k‖,r

]
,

[W ]bb′ =

[
W

(K)
k‖,bb′

W
(∆)
k‖,bb′

−(W
(∆)
−k‖,bb′)

∗ −(W
(K)
−k‖,bb′)

∗

]
.

Explicitly, in array form, we have:

HN =



h0 . . . hR 0 · · · 0
...

. . .
. . .

. . .
...

h†R
. . .

. . . 0
. . .

. . .

0
. . .

. . . hR
...

. . .
. . .

. . .
...

0 · · · 0 h†R · · · h0


,

W =



w
(l)
11 . . . w

(l)
1R 0 w11 . . . w1R

...
. . .

...
...

...
. . .

...

w
(l)
R1 . . . w

(l)
RR

... wR1 . . . wRR

0 · · · · · · 0 · · · · · · 0

w†11 . . . w†1R
... w

(r)
11 . . . w

(r)
1R

...
. . .

...
...

...
. . .

...

w†R1 . . . w†RR 0 w
(r)
R1 . . . w

(r)
RR



,

where we have used the notation

w
(l)
bb′ ≡Wbb′ , w

(r)
bb′ ≡WN−R+b,N−R+b′ , (4)

wbb′ ≡Wb,N−R+b′ .

Here, the superscript (l) [or (r)] indicates the entries
that allow hoppings only near the left [or right] bound-
ary, whereas the ones without superscript allow hoppings
from the left to the right boundary slabs. The matrix
H = HN +W is a corner-modified banded block-Toeplitz
matrix as defined in Ref. [20], and is amenable to the
exact solution approach described therein35.

This transformed BdG Hamiltonian allows us to write
the second-quantized Hamiltonian Ĥk‖ in the form

Ĥ =
1

2

N∑
j=1

Ψ̂†jh0Ψ̂j +
1

2

R∑
r=1

(N−r∑
j=1

Ψ̂†jhrΨ̂j+r + h.c.
)

+
1

2

∑
b,b′

Ψ̂†bWbb′Ψ̂b′ +
1

2
tr(K +W (K)),

where we have dropped the label k‖ everywhere. In par-
ticular, for one-dimensional systems (D=1), we recover
(up to a constant) the class of Hamiltonians considered

in Ref. [19], provided that Ŵ is expressible as

Ŵ =
1

2

R∑
r=1

N∑
b=N−r+1

(
Ψ̂†b gr Ψ̂b+r−N + h.c.

)
,

for some 2dint × 2dint matrices gr (for one-dimensional
systems, s = a1, therefore I = 1).

Observe that for particle number-conserving systems
(∆ = 0 = W (∆)), the single-particle Hamiltonian is just
H = K + W (K), which is already a corner-modified,
banded block-Toeplitz matrix. In such cases, the re-
ordering of the basis is not required, and one may directly
apply the diagonalization procedure described in the fol-
lowing sections to H, with internal blocks of dimension
Idint. In order to have a uniform notation, we shall use

d ≡
{
Idint if ∆ = 0 (number-conserving)
2Idint if ∆ 6= 0 (number-non-conserving)

.
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III. ALGEBRAIC CHARACTERIZATION OF
ENERGY EIGENSTATES

A main goal of this work is to diagonalize the single-
particle Hamiltonian H = HN + W , which is a corner-
modified, banded block-Toeplitz matrix. In this section,
we investigate the structure of its energy eigenstates,
which will culminate in a generalization of Bloch’s the-
orem to systems described by such model Hamiltonians.
Our analysis will illustrate, in particular, that for non-
generic parameter values, Hamiltonians may display a
finite number of exceptional (singular) energies corre-
sponding to dispersionless, flat bands. The latter repre-
sent a macroscopic number of energy eigenstates that are
localized in the bulk and, thus, are completely insensitive
to BCs. It is remarkable that the analytic continuation of
the Bloch Hamiltonian can still encompass this situation.
We will show how to use it to construct the localized flat
band energy eigenstates directly in real space.

A. An impurity problem as a motivating example

Consider the simple tight-binding Hamiltonian

ĤN = −t
N−1∑
j=1

(c†jcj+1 + c†j+1cj),

defined on an open chain of N (even) lattice sites with
nearest-neighbor hopping strength t, and lattice constant
a = 1. The corresponding single-particle Hamiltonian is

HN = −t
N−1∑
j=1

(
|j〉〈j + 1|+ |j + 1〉〈j|

)
,

and breaks translation-invariance due to the presence of
the boundary, so that the crystal momentum is not a
good quantum number. In fact, for any k ∈ (0, 2π], the

state |k〉 = 1√
N

∑N
j=1 e

ikj |j〉 (labeled by k) obeys

HN |k〉 = −2t cos k|k〉+
t√
N

(
|1〉+ eik(N+1)|N〉

)
, (5)

with a similar relation holding for −k

HN | − k〉 = −2t cos k| − k〉+
t√
N

(
|1〉+ e−ik(N+1)|N〉

)
.

(6)
The first term on the right-hand side of Eqs. (5)-(6) in-
dicates that |k〉 and | − k〉 “almost” (for large N) satisfy
the eigenvalue relation with energy −2t cos k, while the
two terms in the brackets show that the eigenvalue rela-
tion is violated near the two edges of the chain. Under
periodic BCs, −2t cos k is the actual energy eigenvalue of
the eigenstate |k〉 (and | − k〉), and k is the crystal mo-
mentum, given by k = 2πq/N, q = 1, . . . , N ∈ (0, 2π]1.

Because of the identical first term −2t cos k in Eqs. (5)
and (6), the states |k〉 and | − k〉 can be linearly com-
bined in order to cancel off the similar-looking boundary

contributions. For α, β ∈ C, the eigenvalue relation

HN

(
α|k〉+ β| − k〉

)
= −2t cos k

(
α|k〉+ β| − k〉

)
,

is recovered provided that the constraint

t√
N

(α+ β)|1〉+
t√
N

(αeik(N+1) + βe−ik(N+1))|N〉 = 0

is satisfied. For this to hold, the coefficients of both |1〉
and |N〉 must vanish, which leads to the kernel equation

t

[
1 1

eik(N+1) e−ik(N+1)

] [
α
β

]
≡ B

[
α
β

]
= 0. (7)

The determinant of the above “boundary matrix” B must
vanish, which happens if the condition ei2k(N+1) = 1 is
satisfied, that is, when k = πq/(N + 1), q = 1, . . . , N .

For each of these values of k, α = −β = 1/
√

2 provides
the required kernel vector of the boundary matrix, with
the resulting N eigenvectors

|εk〉 ≡
|k〉 − | − k〉√

2
= i

√
2

N

N∑
j=1

sin(kj)|j〉,

of energy εk = −2t cos k. Notice that the allowed values
of k differ from the case of periodic BCs36.

Encouraged by these results, let us change the Hamil-
tonian by adding an on-site potential at the edges,

W = w(|1〉〈1|+ |N〉〈N |), w ∈ R,

so that the total single-particle Hamiltonian becomes
H = HN +W . The boundary matrix B changes to

B ≡
[

t+ weik t+ we−ik

teik(N+1) + weikN te−ik(N+1) + we−ikN

]
.

While it is harder to predict analytically the values of k
for which it has a non-trivial kernel, it is interesting to
examine the limit w � t. Then, we can approximate the
relevant kernel condition as

B

[
α
β

]
≈ w

[
eik e−ik

eikN e−ikN

] [
α
β

]
= 0,

showing nontrivial solutions if ei2k(N−1) = 1. There are
now (N − 2) k-values yielding stationary eigenstates as
before. The two missing eigenstates are localized at the
edges, and can be taken to be |1〉 and |N〉, to leading
order in t/w � 1. These localized states are reminiscent
of Tamm-Shockley modes4,5.

In hindsight, it is natural to ask whether this approach
to diagonalization may be improved and extended to
more general Hamiltonians. The answer is Yes, and this
paper provides the appropriate tools.
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FIG. 2. (Color online) Bulk-boundary separation for a system
with two fermionic modes per unit cell, d = 2, and next-
nearest-neighbor hopping, R = 2. Each (blue) circle stands
for a fermionic mode. Thick and thin solid lines indicate two
different hopping strengths in the bulk. Since the size of the
boundary depends on the range R, the boundary comprises
the first and last two unit cells of the chain. Dotted lines
stand for arbitrary hopping strengths at the boundary.

B. The bulk-boundary system of equations

The above motivating example suggests that it may
be possible to isolate the extent to which boundary ef-
fects prevent bulk eigenstates from becoming eigenstates
of the actual Hamiltonian. Consider Eqs. (5) and (6) in
particular. We may condense them into a single relative
eigenvalue equation, PBHN |±k〉 = (−2t cos k)PB |±k〉, in

terms of the projector PB ≡
∑N−1
j=2 |j〉〈j|. The extension

of this observation to the general class of Hamiltonians
H = HN +W requires only knowledge of the range R in
Eq. (3). The block-structure of HN defines a subsystem
decomposition of the single-particle state space19,

H ∼= CN ⊗ Cd ≡ HL ⊗HI ,
where HL and HI are lattice and internal state spaces
of dimensions N and d, respectively. Let {|j〉, j =
1, . . . , N} and {|m〉, m = 1, . . . , d} be their respective
orthonormal bases. Define bulk and boundary projectors,

PB ≡
N−R∑
j=R+1

|j〉〈j| ⊗ 1d, P∂ ≡ 1− PB ,

with 1 ≡ 1N ⊗ 1d the identity matrix on H, and 1N ,
1d the identity matrices on HL and HI , respectively (see
Fig. 2). The defining property of the bulk projector is
that it annihilates any boundary contribution W , that
is, PBW = 0. Because PB + P∂ = 1, the bulk-boundary
system of equations,{

PBHN |ε〉 = εPB |ε〉,
(P∂HN +W )|ε〉 = εP∂ |ε〉, (8)

may be seen to be completely equivalent to the standard
eigenvalue equation, H|ε〉 = ε|ε〉20.

This bulk-boundary separation of the eigensystem
problem is advantageous because the bulk equation is, in
a well-defined sense, translation-invariant. Let us define

a left-shift operator T ≡ ∑N−1
j=1 |j〉〈j + 1| on the lattice

space HL (see Appendix B). Then, one may verify that

HN = 1N ⊗ h0 +

R∑
r=1

(T r ⊗ hr + T †
r ⊗ h†r). (9)

By extending T infinitely on both directions, we obtain
a translation-invariant auxiliary Hamiltonian,

H ≡ 1⊗ h0 +

R∑
r=1

(T r ⊗ hr + T−r ⊗ h†r), (10)

where T ≡ ∑j∈Z |j〉〈j + 1| now denotes the generator

of discrete translations on the (infinite-dimensional) vec-
tor space spanned by {|j〉}j∈Z, and 1 the corresponding
identity operator. The subtle difference between Hamil-
tonians HN and H is that while T is not invertible, T
is, and in fact T−1 = T †. This difference is decisive
in solving the corresponding eigenvalue problems. On
the one hand, the eigenvalue equation H|Ψε〉 = ε|Ψε〉 is
equivalent to the infinite system of linear equations

h0|ψj〉+

R∑
r=1

(
hr|ψj+r〉+ h†r|ψj−r〉

)
= ε|ψj〉, j ∈ Z,

(11)
where |Ψε〉 ≡

∑
j∈Z |j〉 ⊗ |ψj〉. On the other, the bulk

equation PBHN |ε〉 = εPB |ε〉, with |ε〉 ≡ ∑N
j=1 |j〉 ⊗ |ψj〉

is equivalent to Eq. (11) but restricted to the finite do-
main R < j ≤ N − R. Hence, the bulk equation is un-
derdetermined (there are 2R more vector variables than
constraints). In particular, if |Ψε〉 is an eigenstate of the
infinite Hamiltonian as above, then

|ε〉 ≡
N∑
j=1

|j〉〈j|Ψε〉 = P1,N |Ψε〉

is a solution of the bulk equation. It is in this sense of
shared solutions with H that the bulk equation is, as
anticipated, translation-invariant.

C. Exact solution of the bulk equation

Let us revisit the energy eigenvalue equation, Eq. (11).
If the goal were to diagonalize the infinite-system Hamil-
tonian H, then one should focus on finding energy eigen-
vectors associated to normalized states in Hilbert space.
However, our model systems are of finite extent, and we
are only interested in using H as an auxiliary opera-
tor for finding the translation-invariant solutions of the
bulk equation. Hence, we will allow H to act on ar-
bitrary vector sequences of the form Ψ =

∑
j∈Z |j〉|ψj〉,

possibly “well outside” the Hilbert state space, and so we
will drop Dirac’s ket notation. From the standpoint of
solving the bulk equation, every sequence that satisfies
HΨ = εΨ is acceptable, so one must find them all. In
the space of all sequences, the translation symmetry T
remains invertible but is no longer unitary, because the
notion of adjoint operator is not defined. This is impor-
tant, because it means that translations need not have
their eigenvalues on the unit circle, or be diagonalizable.
Nonetheless, [T ,H] = 0, and so both features have in-
teresting physical consequences for finite systems.
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We will refer to the space of solutions of the bulk equa-
tion as the bulk solution space and denote it by

M1,N (ε) ≡ KerPB(HN − ε1d),

for any fixed energy ε. Let M−∞,∞(ε) ≡ Ker (H − ε1)
denote the space of eigenvectors of H of energy ε within
the space of all sequences. In terms of these spaces, our
arguments in Sec. III B establish the relation

P1,NM−∞,∞ ⊆M1,N , (12)

where we dropped the argument ε. Translation invari-
ance is equivalent to the properties TM−∞,∞ ⊆M−∞,∞
and T−1M−∞,∞ ⊆ M−∞,∞37. If the matrix hR is in-
vertible, Eq. (12) becomes P1,NM−∞,∞ =M1,N

20.
Since T commutes with T−1, the generator of trans-

lations to the right, these two symmetries share eigen-
vectors of the form Φz,1|u〉 ≡

∑
j∈Z z

j |j〉|u〉, with z an

arbitrary non-zero complex number and |u〉 any internal
state: there are d linearly independent eigenvectors of
translations for each z 6= 0. As a simple but important
consequence of the identities

TΦz,1|u〉 = zΦz,1|u〉, T−1Φz,1|u〉 = z−1Φz,1|u〉,

one finds that

HΦz,1 |u〉 = Φz,1H(z)|u〉, (13)

where the linear operator

H(z) = h0 +

R∑
r=1

(zrhr + z−rh†r),

acts on the internal space HI only. This H(z) is precisely
the reduced bulk Hamiltonian hB(z) of Ref. [19], obtained
here by way of a slightly different argument. Since Hk =
H(z = eik) is the usual Bloch Hamiltonian of a one-
dimensional system with Born-von-Karman BCs, H(z)
is the analytic continuation of Hk off the Brillouin zone.

One can similarly continue the energy dispersion rela-
tion off the Brillouin zone, by relating ε to z via

det(H(z)− ε1d) = 0. (14)

In practice, it is advantageous to use the polynomial

P (ε, z) ≡ zdR det(H(z)− ε1d). (15)

We will say that ε is regular if P (ε, z) is not the zero
polynomial, and singular otherwise. That is, P (ε, z) = 0
identically for all z if ε is singular. Such a (slight) abuse of
language20 is permitted since we are interested in varying
ε for a fixed Hamiltonian. For any given Hamiltonian of
finite range R, there are at most a finite number of singu-
lar energies. Physically, singular energies correspond to
flat bands, as one can see by restriction to the Brillouin
zone. We can now state a first useful result, whose formal
proof follows from the general arguments in Ref. [20]:

Theorem 1. If ε is regular, the number of independent
solutions of the bulk equation is dimM1,N (ε) = 2Rd, for
any system size N > 2R.

This result ties well with the physical meaning of the
number 2Rd = dim(RangeP∂) as counting the total
number of degrees of freedom on the boundary, which
is equal to the dimension of the boundary subspace. The
condition N > 2R implies that the system is big enough
to contain at least one site in the bulk.

1. Extended-support bulk solutions at regular energies

The solutions of the bulk equation that are inherited
from H have non-vanishing support on the full lattice
space HL, and are labeled by the eigenvalues of T , pos-
sibly together with a second “quantum number” that
appears because T is not unitary on the space of all
sequences. For any z 6= 0, if |u〉 satisfies the eigen-
value equation H(z)|u〉 = ε|u〉, then Eq. (13) implies that
Φz,1|u〉 is an eigenvector of H with eigenvalue ε. In order
to be more systematic, let {z`}n`=1 denote the n distinct
non-zero roots of Eq. (15), and {s`}n`=1 their respective
multiplicities. For generic values of ε, H(z`) has exactly
s` eigenvectors {|u`s〉}s`s=1 in HI , satisfying

H(z`)|u`s〉 = ε|u`s〉, s = 1, . . . , s`.

Since HΦz`,1|u`s〉 = εΦz`,1|u`s〉, the states

P1,NΦz`,1|u`s〉 =

N∑
j=1

zj` |j〉|u`s〉 ≡ |z`, 1〉|u`s〉 (16)

are solutions of the bulk equation. Intuitively, these
states are “eigenstates of the Hamiltonian up to BCs.”

For a few isolated values of ε, H(z`) can have less than
s` eigenvectors. However, the number of eigenvectors of
H is still s`

20, as we illustrate here by example. Suppose
for concreteness that

H − ε1 = − t
2

(T + T−1)− ε1 = − t
2
T−1

2∏
`=1

(T − z`).

Since R = 1 and d = 1, we expect two eigenvectors for
each value of ε. One concludes that the eigenspace of
energy ε is spanned by the sequences Φz`,1, ` = 1, 2, if
z1 6= z2. But, if ε = ±t, then z1 = z2 = ∓1, and

H ∓ t1 = − t
2
T−1(T − z1)2.

How can one get two independent solutions in this case?
The answer is that, in addition to Φz1,1, the factor
(T − z1)2 contributes another sequence to the kernel of

H − ε1, namely, Φz1,2 =
∑
j∈Z jz

j−1
1 |j〉. There are two

eigenvectors in total, even though there is only one root.
Returning to the general case, the sequences20,38

Φz,v =
1

(v − 1)!
∂v−1
z Φz,1 =

∑
j∈Z

j(v−1)

(v − 1)!
zj−v+1|j〉, (17)

j(v) ≡ j(j − 1) . . . (j − v + 1), j(0) ≡ 1,
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span the kernel of (T − z)s for v = 1, . . . , s. In other
words, Φz,v is a generalized eigenvector of the transla-
tional symmetry T of rank v with eigenvalue z. We refer
to eigenvectors with v > 1 as the power-law solutions of
the bulk equation (solutions with a power-law prefactor).
They exist because translations are not diagonalizable in
the full space of sequences (as opposed to the Hilbert
space of square-summable sequences), leading to the new
quantum number v.

The power-law solutions of the bulk equation may be
found from the action of H on the generalized eigenvec-
tors of T . For arbitrary internal state |ux〉, we have:

HΦz,x|ux〉 =
1

(x− 1)!
∂x−1
z Φz,1H(z)|ux〉. (18)

Then one can show from Eqs. (17) and (18) that the ac-
tion of H on the vector sequence Ψ =

∑v
x=1 Φz,x|ux〉,

where {|ux〉} are arbitrary internal states, is given by

HΨ =

v∑
x=1

v∑
x′=1

Φz,x[Hv(z)]xx′ |ux′〉. (19)

Here, Hv(z) is an upper triangular block-Toeplitz matrix
with non-trivial blocks

[Hv(z)]xx′ ≡
1

(x′ − x)!
∂x
′−x
z H(z), 1 ≤ x ≤ x′ ≤ v.

(20)
In matrix form, by letting H(x) ≡ ∂xzH(z), we have

Hv(z) =



H(0) H(1) 1
2H

(2) · · · 1
(v−1)!H

(v−1)

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1
2H

(2)

...
. . .

. . . H(1)

0 · · · · · · 0 H(0)


.

We refer to Hv(z) as the generalized reduced bulk Hamil-
tonian of order v. Notice that H1(z) = H(z). In the
partial basis

Φz =
[
Φz,1 . . . Φz,v

]
, (21)

organized as a row vector, the entries of |u〉 =[
|u1〉 . . . |uv〉

]T
are the vector-valued coordinates of Ψ,

Ψ = Φz|u〉 =
∑v
x=1 Φz,x|ux〉. Then, Eq. (19) can be

rewritten as

HΦz|u〉 = ΦzHv(z)|u〉.

Now it becomes clear that for Ψ to be an eigenvector of
H, the required condition is Hv(z)|u〉 = ε|u〉, which is
analogous to the condition derived for the generic case
v = 1. If a root z` of Eq. (14) has multiplicity s`, then H
has precisely s` linearly independent eigenvectors corre-
sponding to z`. This provides a characterization of the
eigenstates of H, which may be regarded as extending
Bloch’s theorem to H viewed as a linear transformation

on the space of all vector-valued sequences, and whose
rigorous justification follows from Ref. [20]:

Theorem 2. For fixed, regular ε, let {z`}n`=1 denote the
distinct non-zero roots of Eq. (14), with respective multi-
plicities {s`}n`=1. Then, the eigenspace of H of energy ε
is a direct sum of n vector spaces spanned by generalized
eigenstates of T of the form

Ψ`s = Φz` |u`s〉 =

s∑̀
v=1

Φz`,v|u`sv〉, s = 1, . . . , s`,

where the linearly independent vectors {|u`s〉}s`s=1 are
chosen in such a way that Hs`(z`)|u`s〉 = ε|u`s〉, and

|u`s〉 =
[
|u`s1〉 . . . |u`ss`〉

]T
.

Once the eigenvectors ofH are calculated, the bulk so-
lutions of extended support are readily obtained by pro-
jection. Let, for v ≥ 1,

|z, v〉 ≡ P1,NΦz,v =

N∑
j=1

j(v−1)

(v − 1)!
zj−v+1|j〉

be the projections of generalized eigenvectors of T . Then

Bext ≡ {|ψ`s〉, s = 1, . . . , s`, ` = 1, . . . , n}
describes a basis of the translation-invariant solutions of
the bulk equation, where

|ψ`s〉 =

s∑̀
v=1

|z`, v〉|u`sv〉 ∀`, s. (22)

It is worth noting that an energy value ε lies inside
an energy band if and only if at least one of the roots
{z`}n`=1 is of unit norm (|z`| = 1). If none of the roots lie
on the unit circle, then ε necessarily lies in a band gap
(or above or below all energy bands). However, it may
happen that some, though not all, of the roots {z`} lie
on the unit circle, as also evidenced by use of the trans-
fer matrix method33. Such energy values, in fact, de-
scribe the observed phenomenon of surface resonance6.
The bulk eigenstates at such energies can have contribu-
tions from exponentially decaying states (corresponding
to |z`| 6= 1) with large amplitude near the surface, and
Bloch-wave like states (corresponding to |z`| = 1) that
penetrate deep into the bulk. Whether such states are
physical depends on compatibility with the BCs.

Remark.— The bulk equation bears power-law solu-
tions only at a few isolated values of ε39. However, linear
combinations of v = 1 solutions show power-law-like be-
havior, as soon as two or more of the roots of Eq. (14)
are sufficiently close to each other. Suppose, for instance,
that for some value of energy ε, two of the roots of
Eq. (14) coincide at z∗. For energy differing from ε by
a small amount δε, the double root z∗ bifurcates into two
roots slightly away from each other, with values z∗ ± δz.
The relevant bulk solution space is spanned by

|z∗ + δz, 1〉+ |z∗ + δz, 1〉 ≈ 2|z∗, 1〉,
|z∗ + δz, 1〉 − |z∗ + δz, 1〉 ≈ 2(δz/z∗)|z∗, 2〉,
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showing that the second vector has indeed a close resem-
blance to the power-law solution |z∗, 2〉. Similar consider-
ations apply if d > 1, as it is typically the case in physical
applications. Assuming that the relevant bulk solutions
at energy ε + δε are described by analytic vector func-
tions |ψ(z∗+ δz)〉 and |ψ(z∗− δz)〉, then, from the above
analysis, it is clear that for energy ε, the power-law bulk
solution will be proportional to

lim
δz→0

(|ψ(z∗ + δz)〉 − |ψ(z∗ − δz)〉) ∝ ∂z|ψ(z∗)〉. (23)

We will make use of this observation for the calculation
of power-law solutions in Sec. V B.

2. Emergent solutions at regular energies

While the extended solutions of the bulk equation cor-
respond to the nonzero roots of Eq. (14), the polynomial
P (ε, z) defined in Eq. (15) may also include z0 = 0 as a
root of multiplicity s0, that is, we may generally write

P (ε, z) = zdR det(H(z)− ε1d) ≡ c
n∏
`=0

(z − z`)s` , c 6= 0.

However, |z = 0〉|u〉 = 0 does not describe any state of
the system. This observation suggests that the extended
solutions of the bulk equation may fail to account for all
2Rd solutions we expect for regular ε. That this is indeed
the case follows from a known result in the theory of ma-
trix polynomials40, implying that 2Rd = 2s0 +

∑n
`=1 s`

for matrix polynomials associated to Hermitian Toeplitz
matrices20. Hence, the number of solutions of the bulk
equation of the form given in Eq. (22) is

n∑
`=1

s` = 2Rd− 2s0. (24)

We call the missing 2s0 solutions of the bulk equation
emergent, because they are no longer controlled by H
and (nonunitary) translation symmetry, but rather they
appear only because of the truncation of the infinite lat-
tice down to a finite one, and only if dethR = 020. Emer-
gent solutions are a direct, albeit non-generic, manifesta-
tion of translation-symmetry-breaking; nonetheless, re-
markably, they can also be determined by the analytic
continuation of the Bloch Hamiltonian, in a precise sense.

While full technical detail is provided in Appendix C,
the key to computing the emergent solutions is to relate
the problem of solving the bulk equation to a half-infinite
Hamiltonian, rather than the doubly-infinite H we have
exploited thus far. Let us define the unilateral shifts

T− =

∞∑
j=1

|j〉〈j + 1|, T ?− =

∞∑
j=1

|j + 1〉〈j|.

The Hamiltonian

H− ≡ 1− ⊗ h0 +

R∑
r=1

(T r− ⊗ hr + T ? r− ⊗ h†r) (25)

is then the half-infinite counterpart of H. The corre-
sponding half-infinite bulk projector is

P−B ≡
∞∑

j=R+1

|j〉〈j| = T ?R− TR− .

Suppose there is a state Υ−, that solves the equa-
tion P−B (H− − ε1−)Υ− = 0. Then one can check that
|ψ〉 = P1,NΥ− is a solution of the bulk equation, Eq. (8).
Clearly, some of the bulk solutions we arrive at in this
way using H− will coincide with those obtained from H.
These are precisely the extended solutions we already
computed in Sec. III C 1. In contrast, the emergent so-
lutions are obtained only from H−.

Since T−T
?
− = 1−, we may write P−B (H− − ε1−) =

T ?R− K−(ε,T−), in terms of the matrix polynomial

K−(ε, z) ≡ zR(H(z)− ε1d). (26)

Half of the emergent solutions, namely, the ones local-
ized on the left edge, are determined by the kernel of
K−s0(ε, z0 = 0) ≡ K−(ε), with [K−v (ε, z)]xx′ constructed
as in Eq. (20). Explicitly, such a matrix, which was ob-
tained by different means in Ref. [20], takes the form

K−(ε)≡ (27)

h†R · · · h0 − ε1d · · · hR 0 · · · 0
. . .

. . .
. . .

. . .
...

. . . 0
. . .

. . .
. . .

hR
. . .

. . .
...

h0 − ε1d
0

. . .
...

...
. . .

0 · · · 0 h†R



,

for systems with fairly large s0 > 2R+ 1. Let {|u−s 〉}s0s=1

denote a basis of the kernel of K−(ε), with

|u−s 〉 =
[
|u−s1〉 |u−s2〉 . . . |u−ss0〉

]T
.

Then,

|ψ−s 〉 =

s0∑
j=1

|j〉|u−sj〉, s = 1, . . . , s0, (28)

are the emergent solutions with support on the first s0

lattice sites, with s0 obeying Eq. (24).
We are still missing s0 emergent solutions for the

right edge. They may be constructed from the kernel of
the lower-triangular block matrix K+(ε) ≡ [K−(ε)]† =
[K−s0(ε, z0 = 0)]†. Let {|u+

s 〉}s0s=1 denote a basis of the
kernel of K+(ε), with

|u+
s 〉 =

[
|u+
s1〉 |u+

s2〉 . . . |u+
ss0〉

]T
.
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Then,

|ψ+
s 〉 =

s0∑
j=1

|N − s0 + j〉|u+
sj〉 s = 1, . . . , s0, (29)

are the emergent bulk solutions associated to the right
edge, supported on the lattice sites N − s0 + 1, . . . , N .

In what follows, we shall denote the spaces spanned
by left- and right- localized emergent bulk solutions by
F−1 and F+

N , and their bases by B− ≡ {|ψ−s 〉}s0s=1 and
B+ ≡ {|ψ+

s 〉}s0s=1, respectively.

3. Bulk-localized states at singular energies

If hR is not invertible, there can be at most a finite
number of singular energy values (usually referred to as
flat bands), leading to bulk-localized solutions: these so-
lutions are finitely-supported and appear everywhere in
the bulk. Hence, a singular energy cannot be excluded
from the physical spectrum of a finite system by way of
BCs. In contrast, emergent solutions are also finitely-
supported but necessarily “anchored” to the edges (and
only appearing for regular values of ε).

Recall that if ε is singular, then det(H(z)− ε1) = 0 for
any z. Thus, there exists an analytic vector function,

|v(z)〉 ≡
δ0∑
δ=0

z−δ|vδ〉, δ0 = (d− 1)2Rd, (30)

satisfying H(z)|v(z)〉 = ε|v(z)〉 for all z. To obtain |v(z)〉,
one can construct the adjugate matrix of (H(z) − ε1d).
(Recall that the adjugate matrix adj(M) associated to a
square matrix M is constructed out of the signed minors
of M and satisfies adj(M)M = det(M)1.) Hence,

(H(z)− ε1d)adj(H(z)− ε1d) = det(H(z)− ε1d)1d = 0,

and so one can use any of the non-zero columns of
adj(H(z) − ε1d), suitably pre-multiplied by a power of
z, for the vector polynomial |v(z)〉. By matching powers
of z, this equation becomes

hR 0 · · · 0

hR−1 hR
. . .

...
...

. . .
. . . 0

...
. . .

. . .
. . .

h†R
. . .

. . .
. . . hR

. . .
. . .

. . .
...

0
. . .

. . .
...

...
. . .

. . . h†R−1

0 · · · 0 h†R




|v0〉
|v1〉

...
|vδ0〉

 = 0. (31)

The idea now is to use the linearly independent so-

lutions of Eq. (31) to construct finite-support solutions
of the bulk equation. Let us denote such solutions by

|vµ〉 ≡
[
|vµ0〉 |vµ1〉 . . . |vµδ0〉

]T
, for µ = 1, . . . , µ0. One

can check directly that the finitely-supported sequences

Ψjµ ≡
δ0∑
δ=0

|j + δ〉|vµδ〉, j ∈ Z, µ = 1, . . . , µ0,

all satisfy (H − ε1)Ψjs = 0 because |vµ〉 obeys Eq. (31).
Hence, the states P1,NΨjµ provide finitely-supported so-
lutions of the bulk equation. In addition, as long as
2R < j < N − 2R − δ0, the boundary equation is also
satisfied trivially, and so all such states become eigenvec-
tors of HN +W with the singular energy ε. This is why
singular energies, if present for the infinite system, are
necessarily also part of the spectrum of the finite system
and display macroscopic degeneracy of order O(N).

Let us further remark that the sequences Ψjµ and as-
sociated solutions of the bulk equation need not be lin-
early independent. To obtain a complete (rather than
overcomplete), set of solutions for flat bands, one would
require a technical tool, the Smith normal form41, which
is beyond the scope of this paper. We refer the reader to
Ref. [20] for more details, and to Ref. [42] for additional
related discussion on flat bands.

D. The boundary matrix

For regular energies, the bulk solutions determine a
subspace of the full Hilbert space [Theorem 1], whose
dimension 2Rd � dN for typical applications. While
not all bulk solutions are eigenstates of the Hamiltonian
H = HN + W , the actual eigenstates must necessarily
appear as bulk solutions. Hence, the bulk-boundary sep-
aration in Eqs. (8), and, in particular, the bulk equation,
identifies by way of a translational symmetry analysis a
small search subspace. In order to find the energy eigen-
states efficiently, one must solve the boundary equation
on this search subspace. Since the boundary equation is
linear, its restriction to the space of bulk solutions can
be represented by a matrix, the boundary matrix19. The
latter is a square matrix that combines our basis of bulk
solutions with the relevant BCs.

Let B ≡ Bext ∪ B− ∪ B+ be a basis for M1,N . Then,
building on the previous section, the Ansatz state

|ε,α〉 ≡ |ΨB〉α (32)

=

n∑
`=1

s∑̀
s=1

α`s|ψ`s〉+

s0∑
s=1

α+
s |ψ+

s 〉+

s0∑
s=1

α−s |ψ−s 〉 ,

represents the solutions of the bulk equation
parametrized by the 2Rd amplitudes α, where
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α ≡
[
α11 · · · αnsn α+

1 · · · α+
s0 α−1 · · · α−s0

]T
,

|ΨB〉 ≡
[
|ψ11〉 · · · |ψnsn〉 |ψ+

1 〉 · · · |ψ+
s0〉 |ψ−1 〉 · · · |ψ−s0〉

]
.

(33)

Moreover, let as before b = 1, . . . , R,N −R+ 1, . . . , N label the boundary sites. Then,

PB(H − ε1)|ε,α〉 = 0 and P∂(H − ε1)|ε,α〉 =
∑
b

|b〉〈b|(HN +W − ε1)|ΨB〉α. (34)

In particular, the boundary equation is equivalent to the requirement that 〈b|(HN+W−ε1)|ΨB〉α = 0 for all boundary
sites. Since 〈b|(HN +W − ε1)|ΨB〉 ≡ 〈b|Hε|ΨB〉 denotes a row array of internal states, it is possible to organize these
arrays into the boundary matrix

B(ε) ≡



〈1|Hε|ψ11〉 · · · 〈1|Hε|ψnsn〉 〈1|Hε|ψ+
1 〉 · · · 〈1|Hε|ψ−s0〉

...
...

...
...

〈R|Hε|ψ11〉 · · · 〈R|Hε|ψnsn〉 〈R|Hε|ψ+
1 〉 · · · 〈R|Hε|ψ−s0〉

〈N −R+ 1|Hε|ψ11〉 · · · 〈N −R+ 1|Hε|ψnsn〉 〈N −R+ 1|Hε|ψ+
1 〉 · · · 〈N −R+ 1|Hε|ψ−s0〉

...
...

...
...

〈N |Hε|ψ11〉 · · · 〈N |Hε|ψnsn〉 〈N |Hε|ψ+
1 〉 · · · 〈N |Hε|ψ−s0〉


. (35)

By construction, the boundary matrix B is a block ma-
trix of block-size d× 1. In terms of this matrix, Eq. (34)
provides the useful identity

H|ε,α〉 = ε|ε,α〉+
∑
b,s

|b〉Bbs(ε)αs, ε ∈ R. (36)

One may write an analogous equation in Fock space by
defining an array

η†ε,α ≡
N∑
j=1

〈j|ε,α〉Ψ̂†j .

Then Eq. (36) translates into

[Ĥ, η†ε,α] = ε η†ε,α +
∑
b,s

Ψ̂†bBbs(ε)αs. (37)

It is interesting to notice that this (many-body) relation
remains true even if ε is allowed to be a complex number.

E. The generalized Bloch theorem

The bulk-boundary separation of the energy eigenvalue
equation shows that actual energy eigenstates are neces-
sarily linear combinations of solutions of the bulk equa-
tion. This observation leads to a generalization of Bloch’s
theorem for independent fermions under arbitrary BCs:

Theorem 3 (Generalized Bloch theorem). Let
H = HN + W denote the single-particle Hamiltonian of
a clean system subject to BCs described by W = P∂W .
If ε is a regular energy eigenvalue of H of degeneracy K,
the associated eigenstates can be taken to be of the form

|ε,ακ〉 = |ΨB〉ακ, κ = 1, . . . ,K,

where {ακ, κ = 1, . . . ,K} is a basis of the kernel of the
boundary matrix B(ε) at energy ε.

In short, (HN +W )|ε,α〉 = ε|ε,α〉 if and only if Bα =
0, in which case it also follows from Eq. (37) that η†ε,α is
a normal fermionic mode of the many-body Hamiltonian

Ĥ. From now on, we will refer to energy eigenstates of
the form |ΨB〉ακ as generalized Bloch states. Recall that
H acts on H = CN⊗Cd, with couplings of finite range R.
A lower bound on N should be obeyed, in order for the
above theorem to apply. If dethR 6= 0, since there are
no emergent solutions nor flat bands, generalized Bloch
states describe the allowed energy eigenstates as soon as
N > 2R, independently of d. If hR fails to be invertible,
we should require that N > 2 max(s0, R) to ensure that
emergent solutions on opposite edges do not overlap, and
are thus independent. Since s0 ≤ Rd, this condition is
satisfied for any N > 2Rd. In general, N > 2R(d + 1)
always suffices for generalized Bloch states to describe
generic energy eigenstates20.

We further note that if ε is not an energy eigenvalue,
the kernel of B(ε) is trivial. Thus, the degeneracy of a
single-particle energy level coincides with the dimension
of the kernel of B(ε). Let ρ(ω) denote the single-particle
density of states. Combining its definition with the gen-
eralized Bloch theorem, we then see that

ρ(ω) =
∑

detB(ε)=0

[dim KerB(ε)] δ(~ω − ε),

an alternative formula to the usual

ρ(ω) = − 1

π
Im Tr (HN +W − ~ω + i0+)−1,

from the theory of Green’s functions43. Another inter-
esting and closely related formula is

ZW = Tr e−β(HN+W ) =
∑

detB(ε)=0

dim KerB(ε) e−βε,
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for the partition function of the single-particle Hamilto-
nian, with the dependence on BCs highlighted16.

We conclude this section by showing how, for periodic
BCs, one consistently recovers the conventional Bloch’s
theorem. In the notation introduced in Sec. II, we con-
sider the setting in which the stacking vector is one of
the primitive vectors, say, s = aD without loss of gener-
ality, and the hypersurface is spanned by the remaining
D−1 primitive vectors, mµ = aµ, µ = 1, . . . , D−1. The
system extends from j = 1, . . . , N ≡ MD along s, and
jµ = 1, . . . , Nµ ≡ Mµ along the remaining directions. In
this case, the appropriate matrix W reads

W ≡Wp =

R∑
r=1

(TN−r ⊗ h†r + h.c.),

since then one can check that

Hp = HN +Wp = 1N ⊗ h0 +

R∑
r=1

(V r ⊗ hr + h.c.),

in terms of the fundamental circulant matrix

V ≡ T + (T †)N−1 =

N−1∑
j=1

|j〉〈j + 1|+ |N〉〈1|.

Physically, V is the generator of translations (to the left)
for a system displaying ring (1-torus) topology.

The Bloch states are the states that diagonalize Hp

and V simultaneously. Theorem 3 guarantees that we can
choose the eigenstates of Hp to be linear combinations of
translation-invariant and emergent solutions. Thus, we
only need to check if these linear combinations include
eigenstates of V . There is no hope of retaining the emer-
gent solutions, because they are localized and too few in
number (at most 2Rd) to be rearranged into eigenstates
of V . The same holds for translation-invariant solutions
with a power-law prefactor. Hence, the search subspace
that is compatible with the translational symmetry V is
described by the simplified Ansatz19

|ε,α〉 =

n∑
`=1

α`1|ψ`1〉.

Now, V |ψ`1〉 = z`|ψ`1〉 − z`(1 − zN` )|N〉|u`s`1〉, and so
the generalized Bloch states can only be eigenstates of
V if eik`N = 1 with z` = eik` , and all but one entry
in α vanish. That is, |ε,α〉 ≡ |ε, k`〉 = |z`, 1〉|u`1,1〉. As
one may verify, Hp|ε, k`〉 = |z`, 1〉H(z`)|u`1,1〉 = ε|ε, k`〉,
showing that |ε, k`〉 is indeed compatible with the bound-
ary matrix. Manifestly, |ε, k`〉 is an eingenstate of Hp in
the standard Bloch form – thereby recovering the con-
ventional Bloch’s theorem for periodic BCs, as desired.

IV. THE BULK-BOUNDARY ALGORITHMS

The results of Sec. III can be used to develop diagonal-
ization algorithms for the relevant class of single-particle

Hamiltonians. We will describe two such algorithms. The
first treats ε as a parameter for numerical search. The
second is inspired by the algebraic Bethe Ansatz, as sug-
gested by comparing our Eq. (36) to Eq. (28) of Ref. [44].

A. Numerical “scan-in-energy” diagonalization

The procedure described in this section is a spe-
cial instance of the Eigensystem Algorithm described in
Ref. [20], specialized to Hermitian matrices. It employs
a search for energy eigenvalues along the real line, and
takes advantage of the results of Sec. III to determine
whether a given number is an eigenvalue. The overall
procedure is schematically depicted in Fig. 3.

The first part of the algorithm finds all eigenvectors
of H that correspond to the flat (dispersionless) energy
band, if any exists. Two steps are entailed:

1. Find all real values of ε for which det(H(z)− ε1d)
vanishes for any z. Output these as singular eigen-
values of H.

2. For each of the eigenvalues found in step (1), find
and output a basis of the corresponding eigenspace
of H using any conventional algorithm.

In implementing step (2) above, one can leverage the
analysis of Sec. III C 3. The following part of the algo-
rithm, which repeats until all eigenvectors ofH are found,
proceeds according to the following steps:

3. Choose a seed value of ε, different from those eigen-
values found already.

4. Find all n distinct non-zero roots of the equa-
tion det(H(z) − ε1d) = 0. Let these roots be
{z`, ` = 1, . . . , n}, and their respective multiplici-
ties {s`, ` = 1, . . . , n}.

5. For each such roots, construct the generalized re-
duced bulk Hamiltonian Hs`(z`) [Eq. (20)].

6. Find a basis of the eigenspace of Hs`(z`) with eigen-
value ε. Let the basis vectors be {|u`s〉, s =
1, . . . , s`}. The bulk solution corresponding to (`, s)
is |ψ`s〉 = |z`, 1〉|u`s〉, with Φz` defined in Eq. (21).

7. If hR is non-invertible, find s0 = Rd −∑n
`=1 s`/2.

Construct matrices K−(ε) as described in Eq. (27),
and K+(ε) = [K−(ε)]†.

8. Find bases of the kernels of K−(ε) and K+(ε).
Let the basis vectors be {|u−s 〉, s = 1, . . . , s0} and
{|u+

s 〉, s = 1, . . . , s0}, respectively. The emergent
bulk solutions corresponding to each s are follow
from Eqs. (28) and (29).

9. Construct the boundary matrix B(ε) [Eq. (35)].
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Construct reduced
bulk Hamiltonian

H(z)
Input H = HN +W

Find values of
ε for which

H(z)− ε1d is singular

Find basis of corre-
sponding eigenspaces

Choose a new
value for ε

Find a basis of the
bulk solution space

Construct bound-
ary matrix B Is detB = 0?

Construct and output
all eigenvectors
corresponding
to eigenvalue ε
from Kernel(B)

All eigenvectors
found?

stop

yes

no

no

yes

FIG. 3. (Color online) Flowchart of the numerical diagonalization algorithm. The steps inside the dashed rectangle form the
loop for scanning over ε. The crucial step is solving the bulk equation, which encompasses steps (4)-(8) as described in the text.

10. If detB(ε) = 0, output ε as an eigenvalue. Find
a basis {ακ, κ = 1, . . . ,K} of the kernel of B(ε).
Then a basis of the eigenspace of H corresponding
to energy ε is {|εκ〉 = |ΨB〉ακ, κ = 1, . . . ,K}, with
|ΨB〉 being defined in Eqs. (33). If all 2dN eigen-
vectors are not yet found, then go back to step (3).

11. If detB(ε) 6= 0, choose a new value of ε as dictated
by the relevant root-finding algorithm45. Go back
to step (4).

Some considerations are in order, in regard to the fact
that the determinant of B(ε) plotted as a function of en-
ergy ε may display finite-precision inaccuracies, that ap-
pear as fictitious roots. Such issues arise at those ε where
two (or more) of the roots of Eq. (14) cross as a function
of ε, due to the non-orthogonality of the basis B that re-
sults from the procedure described in Sec. III C. Let ε∗ be
a value of energy for which this happens, so that the bulk
equation bears a power-law solution. For ε ≈ ε∗ (except
ε∗ itself), Eq. (14) has two roots that are very close in
value, so that the corresponding bulk solutions overlap
almost completely. This results in a boundary matrix
having two nearly identical columns, with determinant
vanishing in the limit ε → ε∗, irrespective of ε∗ being
an eigenvalue of H (hence, a physical solution). How-
ever, if we calculate B(ε) exactly at ε∗, then the basis
B contains power-law solutions, and accurately indicates
whether ε∗ is an eigenvalue. This also means that the
function detB(ε) has a discontinuity at ε = ε∗.

A simple way to identify those fictitious roots is as

follows. Rewrite the polynomial in Eq. (15) as

P (ε, z) =

2Rd−s0∑
r=s0

pr(ε)z
r, (38)

which is treated as a polynomial in z with coefficients
depending on ε (if s0 changes with ε, we use the smallest
possible value of s0 in Eq. (38)). P (ε, z) has double roots
at ε∗ if and only if the discriminant D(P (ε∗, z)) = 046.
The latter gives a polynomial expression in ε, of degree
O(dR). By finding the roots of this equation, one can
obtain all the values of ε for which fictitious roots of
detB(ε) may appear. To check whether these roots are
true eigenvalues, one then needs to construct B(ε) by
including the power-law solutions in the Ansatz.

We further note that, while the Ansatz is not contin-
uous at such values of ε, the fact that the bulk solution
space is the kernel of the linear operator PB(HN +W−ε)
implies that it must change smoothly with ε. A way to
improve numerical accuracy would be to construct an or-
thonormal basis (e.g., via Gram-Schmidt orthogonaliza-
tion) ofM1,N (ε) at each ε, and use this basis to construct

a modified boundary matrix B̃(ε). In practice, one may
directly compute the new determinant by using

det B̃(ε) =
detB(ε)√

detG(ε)
,

where G ≡ 〈ΨB|ΨB〉 is the Gramian matrix47 of the basis
of bulk solutions obtained in steps (4) to (8) of the algo-
rithm, with entries Gss′ ≡ 〈ψs|ψs′〉, s, s′ = 1, . . . , 2Rd. In
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fact, it can be checked that the bulk solutions

{
|φs〉 ≡

2Rd∑
s′=1

[
G−1/2

]
s′s
|ψs′〉, s = 1, . . . , 2Rd

}
form an orthonormal basis of the bulk solution space
M1,N . The calculation of the entries of the Gramian
is straightforward thanks to the analytic result

〈z, 1|z′, 1〉 =

{
z∗z′−(z∗z′)N+1

1−z∗z′ if z′ 6= 1/z∗

N if z′ = 1/z∗
.

In regard to the time and space complexity of the al-
gorithm, the required resources depend entirely on those
needed to compute the boundary matrix. For generic
ε, regardless of the invertibility of hR, the size of B(ε) is
2Rd×2Rd, independently of N . Calculation of each of its
entries is also simple from the point of view of complexity,
thanks to the fact that H = HN +W is symmetrical20,35.
Accordingly, both the number of steps and the memory
space used by this algorithm do not scale with the sys-
tem size N , making this approach computationally more
efficient than conventional methods of diagonalization of
generic Hermitian matrices48.

B. Algebraic diagonalization

The scan-in-energy algorithm can be further developed
into an algorithm that yields an analytic solution (of-
ten closed-form), in the same sense as the Bethe Ansatz
method does for a different class of (interacting) quan-
tum integrable systems. The idea is to obtain, for generic
values of ε, an analytic expression for B(ε), since its de-
terminant will then provide a condition for ε to be an
eigenvalue, and the corresponding eigenvectors can be
obtained from its kernel. As mentioned, for generic ε,
the extended bulk solutions do not include any power-
law solutions. This property can be exploited to derive
an analytic expression for B(ε) in such a generic setting.
The values of ε for which power-law solutions appear,
or the analytic expression fails for other reasons, can be
dealt with on a case-by-case basis.

By the Abel-Ruffini theorem, a completely closed-form
solution by radicals in terms of ε can be achieved if the
degree in z of the characteristic polynomial of the reduced
bulk Hamiltonian is at most four. If this is not the case,
the roots {z`} do not possess an algebraic expression in
terms of ε and entries of H. The workaround is then to
consider {z`} as free variables, with the constraint that
each of them satisfy the characteristic equation of H(z).
With these tools in hand, the following procedure can be
used to find an analytical solution for generic values of ε:

1. Construct the polynomial P (ε, z) in Eq. (38), which
is a bivariate polynomial in ε and z. Determine s0

using s0 = 2Rd−deg(P (ε, z)), where deg(.) denotes
the degree of the polynomial in z.

2. Assuming that ε and z satisfy P (ε, z) = 0, find an
expression for the eigenvector |u(ε, z)〉 of H(z) with
eigenvalue ε.

3. Consider variables {z`, ` = 1, . . . , 2Rd− 2s0}, each
satisfying Pε(z`) = 0. Each of these corresponds to
a bulk solution |z`, 1〉|u(ε, z`)〉.

4. If hR is not invertible, construct matrices K−(ε)
and K+(ε) = [K−(ε)†] [Eq. (27)].

5. Find bases for their kernels, each of which contains
s0 vectors. Let these be {|u−s (ε)〉, s = 1, . . . , s0}
and {|u+

s (ε)〉, s = 1, . . . , s0}. These correspond to
finite-support solutions of the bulk equation.

6. Construct the boundary matrix B(ε) ≡ B(ε, {z`})
[Eq. (35)].

7. The condition for ε being an eigenvalue of H is
detB(ε, {z`}) = 0. Therefore, a complete charac-
terization of eigenvalues is

{P (ε, z`) = 0, ` = 1, . . . , n}, detB(ε, {z`}) = 0.

8. If deg(P (ε, z)) ≤ 4, substitute for each z` the
closed-form expression of the corresponding root
z`(ε). The eigenvalue condition in step (7) simpli-
fies to a single equation, detB(ε, {z`(ε)}) = 0.

9. For every eigenvalue ε, the kernel vector α(ε, {z`})
of B(ε, {z`}) provides the corresponding eigenvec-
tor of H.

In steps (2), (5) and (9), we need to obtain an analytic
expression for the basis of the kernel of a square symbolic
matrix of fixed kernel dimension in terms of its entries.
This can be done in many different ways, and often is
possible by inspection. One possible way was described
in Sec. III C 3 in connection to evaluating Ker(H(z)−ε1d)
for singular values of ε. The above analysis does not hold
when ε satisfies any of the following conditions:

(i) det(H(z) − ε1) = 0 has one or more double roots.
This is equivalent to D(P (ε, z)) = 0, as discussed in
Sec. IV A. This is a polynomial equation in terms of
ε, the roots of which yield all required values of ε.

(ii) The coefficient ps0(ε) of zs0 in P (ε, z) vanishes, or
equivalently, ε is a root of ps0(ε) = 0.

(iii) Each entry of |u(ε, z)〉 vanishes. Such points are
identified by solving simultaneously the equations
〈m|u(ε, z)〉 = 0, m = 1, . . . , d and P (ε, z) = 0, Since
a necessary and sufficient condition for these poly-
nomials (in z) to have a common root is that their
resultant vanishes46, we find the relevant values of
ε by equating the pairwise resultants to zero.

(iv) {|u−s (ε)〉, s = 1, . . . , s0} or {|u+
s (ε)〉, s = 1, . . . , s0}

are linearly dependent. To find such values of ε,
one may form the corresponding Gramian matrix
and equate its determinant to zero.
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For all the values of ε thus identified, B(ε) is calculated by
following steps (4)-(10) in the scan-in-energy algorithm.
To summarize, this algebraic procedure achieves diago-
nalization in analytic form: the upshot is a system of
polynomial equations, whose simultaneous roots are the
eigenvalues, and an analytic expression for the eigenvec-
tors, with parametric dependence on the eigenvalue.

V. ILLUSTRATIVE EXAMPLES

This section contains three paradigmatic examples il-
lustrating the use of our generalized Bloch theorem, along
with the resulting algebraic procedure of diagonalization.

A. The impurity model revisited

Let us first reconsider the impurity model of Sec. III A.
The single-particle Hamiltonian is the corner-modified,
banded block-Toeplitz matrix H = HN +W , with

HN = −t(T + T †), and W = wP∂ .

The boundary consists of two sites, so that P∂ = |1〉〈1|+
|N〉〈N |, for any N > 2. Likewise, R = 1 = d. The
first step in diagonalizing H is solving the bulk equation.
Since the reduced bulk Hamiltonian H(z) = −t(z+z−1),

P (ε, z) = z (H(z)− ε) = −t(z2 +
ε

t
z + 1). (39)

Thus, every value of ε is regular and yields two (= the
number of boundary degrees of freedom) solutions of the
bulk equation. If ε 6= ±2t, the solutions are |z`, 1〉, with

z` = − ε

2t
+ (−1)`

√
ε2

4t2
− 1, ` = 1, 2,

with z1z2 = 1 and ε = −t(z1 + z2). The special values
ε = ±2t for which HN yields only one of the two bulk
solution have an interpretation as the edges of the energy
band. If ε = 2t, then H(z) yields only |z1 = −1, 1〉,
whereas if ε = −2t, it yields only |z1 = 1, 1〉. In order to
obtain the missing bulk solution in each case, one must
consider the effective Hamiltonian [Eq. (20)]

H2(z) = −t
[
z + z−1 1− z−2

0 z + z−1

]
.

One may check that H2(z1)−ε1 ≡ 0 if ε = ±2t, z1 = ∓1.
Thus, the two linearly independent solutions of the bulk
equation at these energies are |z1 = 1, v〉, v = 1, 2, if
ε = −2t, and |z1 = −1, v〉, v = 1, 2, if ε = 2t.

For the purpose of solving the boundary equation, and
hence the full diagonalization problem, it is convenient
to organize the solutions of the bulk equation as

|ε〉 =

 α1|z1, 1〉+ α2|z2, 1〉 if ε 6= ±2t
α1|z1 = −1, 1〉+ α2|z1 = −1, 2〉 if ε = 2t
α1|z1 = 1, 1〉+ α2|z1 = 1, 2〉 if ε = −2t

.

For comparison with Sec. III A, one should think of z1 =
eik and z2 = e−ik. Because the Ansatz is naturally bro-
ken into three pieces, so is the boundary matrix. For
instance, when ε 6= ±2t, direct calculation yields

B(ε) =

[ −tz2
1 + (w − ε)z1 −tz2

2 + (w − ε)z2

−tzN−1
1 + (w − ε)zN1 −tzN−1

2 + (w − ε)zN2

]
.

However, from Eq. (39) it follows that

−t(z` + z−1
` )− ε = 0, ` = 1, 2. (40)

This allows a simpler form to be obtained, by effectively
changing the argument of the boundary matrix from ε to
z` (or k). The complete final expression reads:

B(ε) =



[
t+ wz1 t+ wz2

(z1t+ w)zN1 (z2t+ w)zN2

]
if ε 6= ±2t

[
t− w w

(−1)N−1(t− w) (−1)N (N(t− w) + t)

]
if ε = 2t

[
w + t w
w + t (w + t)N + t

]
if ε = −2t

. (41)

Notice that if ε approaches ±2t, the two distinct roots
collide at z1 = z2 = ∓1, and B(ε) becomes, trivially,
a rank-one matrix, signaling the discontinuous behavior
anticipated in Sec. IV A. Furthermore, it follows from
Eq. (23) that the power-law solution at ε = ±2t may be
written as ∂z(|z1, 1〉) = |z1, 2〉. The entries of the second
column of the corresponding boundary matrices satisfy

〈b|Hε|z1, 2〉 = ∂z2〈b|Hε|z2, 1〉|z2=z1 , where z1 is the dou-
ble root. Thus, the entries in the second column of B(ε)
for ε = ±2t may be obtained by differentiating with re-
spect to z2 the second column of B(ε) for other (generic)
values of ε, an observation we will use in other examples
as well (see e.g. Sec. V B 2). We now analyze separately
different regimes (see also Fig. 4 for illustration).
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1. Vanishing impurity potential

If w = 0, then B(ε = 2t) and B(ε = −2t) have a trivial
kernel; the exotic states |ε = ±2t〉 cannot possibly arise
as physical eigenvectors. For other energies, we find that
the kernel of the boundary matrix

B(ε) = t

[
1 1

zN+1
1 zN+1

2

]
(w = 0),

is nontrivial only if zN+1
1 = zN+1

2 , in which case we can
take α1 = 1 and α2 = −1. From Eq. (39), it also follows
that z1z2 = 1. Hence, there are 2N + 2 solutions,

z1 = z−1
2 = ei

πq
N+1 , q = −N − 1,−N, . . . , N.

Of the associated 2N+2 (un-normalized) Ansatz vectors

|εq〉 = |z1, 1〉 − |z2, 1〉 = 2i

N∑
j=1

sin
( πq

N + 1
j
)
|j〉,

two vanish identically (q = −N − 1 and q = 0). For q =
±1, . . . ,±N , it is immediate to check that |ε−q〉 = −|εq〉.
This means that the Ansatz yields exactly N linearly
independent energy eigenvectors, of energy

εq = −t(z1 + z2) = −2t cos
( πq

N + 1

)
, q = 1, . . . , N.

This is precisely the result of Sec. III A, where the solu-
tions were labelled in terms of allowed quantum numbers
k = πq/(N + 1), q = 1, . . . , N .

According to our general theory, the eigenspaces of
H are in one-to-one correspondence with the zeroes of
detB(ε). For this system then, there should be at most
N zeroes. The reason we find 2N +2 zeroes is due to the
above-mentioned (quadratic) change of argument in the
boundary matrix from ε to k. Such a change of variables
is advantageous for analytic work, and the associated re-
dundancy is always rectified at the level of the Ansatz.

2. Power-law solutions

What would it take for |ε = ±2t〉 to become eigenvec-
tors? The kernel of B(ε = 2t) is nontrivial only if

w = t or w = t
N + 1

N − 1
.

These two values coincide up to corrections of order 1/N ,
but remember that our analysis is exact for any N > 2.
Similarly, the kernel of B(ε = −2t) is nontrivial only if

w = −t or w = −t N + 1

N − 1
.

Only one of these conditions can be met: for fixed w,
either |ε = 2t〉 is an energy eigenstate or |ε = −2t〉 is,
but not both. Let us look more closely at the state at
the bottom of the energy band. As we just noticed, this

Im
[d
et
B
(ε
)]

ε/2t

FIG. 4. (Color online) Imaginary part of detB(ε) for N = 10
as a function of the dimensionless parameter ε/2t. Here, B(ε)
is numerically evaluated from the top expression in Eq. (41),
ε 6= ±2t. Its real part vanishes identically in this range of
energies. The impurity potential is w = 0.7 > |wN | for the
solid blue curve, and w = 0.3 < |wN | for the dashed red
curve. In the regime w < wN (w > wN ), the system hosts
zero (two) edge modes, which is reflected in the number of
zeroes (N and N − 2) of the respective curves, in the energy
range −1 < ε < 1. In both cases, the crossings through zero at
ε = ±1 do not have associated eigenstates of the Hamiltonian.
The origin of such fictitious zeroes was discussed in Sec. IV A.

state will be a valid eigenstate for either of the two values
of w. Let us pick w ≡ wN = −t(N + 1)/(N − 1), since
it yields the most interesting ground state. Then,

B(ε = −2t) =

[
wN + t wN
wN + t wN

]
,

so that one can set α1 = 1/(wN + t), α2 = −1/wN , and

|ε = −2t〉 =

N∑
j=1

( 1

wN + t
− j

wN

)
|j〉.

Notice that 〈j|ε = −2t〉 = −〈N − j + 1|ε = −2t〉; that is,
the power-law eigenvector of the impurity problem is an
eigenstate of inversion symmetry.

3. Strong impurity potential

Lastly, consider the regime where t� |w|, for large N .
Then, the values ε = ±2t are excluded from the physical
spectrum, and the eigenstates of the system can be de-
termined from detB(ε) = 0. We expect bound states of
energy w to leading order and well-localized at the edges,
so that 0 < |z1| < 1 < |z2|, say, with z1 (z2) associated to
the left (right) edge. It is convenient to take advantage
of this feature and modify the original Ansatz to

|ε〉 = α1|z1, 1〉+ α2z
−N
2 |z2, 1〉,
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so that |z1, 1〉 (z−N2 |z2, 1〉) peaks at the left (right) edge,
respectively. The boundary matrix becomes

B̃(ε) =

[
t+ z1w (t+ wz2)z−N2

(z1t+ w)zN1 z2t+ w

]
≈
[
t+ wz1 0

0 z2t+ w

]
,

since |z1|N ≈ 0 ≈ |z2|−N . Keeping in mind that z1z2 = 1,

we see that the kernel of B̃(ε) is two-dimensional for

z1 = − t

w
= z−1

2 , εb = −t(z1 + z2) = w − t2

w2
,

and otherwise trivial. The corresponding energy eigen-
states can be chosen to be

|εb, 1〉 =

N∑
j=1

(
− t

w

)j
|j〉, |εb, 2〉 =

N∑
j=1

(
− w

t

)j−N
|j〉.

Notice that |εb, 2〉 is the mirror image of |εb, 1〉, up to nor-
malization. The large-N approach to boundary modes
exemplified by the preceding calculation can be made
systematic, as we will further explain in Sec. VI A.

The remaining (N − 2) eigenstates consist of standing
waves. They can be computed from the original bound-
ary matrix, approximated for t� |w| as

B(ε 6= εb) ≈ w
[
z1 z2

zN1 zN2

]
.

This boundary matrix has a nontrivial kernel only if

z1 = z−1
2 = ei

πs
N−1 , s = 0, . . . , 2(N − 1)− 1,

in which case one may choose α1 = z2, α2 = −z1. Then,

|εs〉 =

N∑
j=1

(zj−1
1 − zj−1

2 )|j〉 = 2i

N−1∑
j=2

sin
(πs(j − 1)

N − 1

)
|j〉.

Moreover, |εs〉 = −|εN−1+s〉, s = 1, . . . , N − 2. Hence, as
needed, we have obtained (N − 2) linearly independent
eigenvectors of energy εs = −2t cos[πs/(N − 1)].

The above discussion is further illustrated in Fig. 4,
where the determinant of the exact boundary matrix is
displayed as a function of energy.

B. Engineering perfectly localized
zero-energy modes: A periodic Anderson model

Having illustrated the algebraic diagonalization
method on a simple impurity model, we illustrate next
its usefulness toward Hamiltonian engineering. In this
section, we will design from basic principles a “comb”
model, see Fig. 5, with the peculiar property of exhibit-
ing a perfectly localized mode at zero energy while all
other modes are dispersive. The zero mode is distributed
over two sites on the same end of the comb, with weights
determined by a ratio of hopping amplitudes.

t0
t1

t0
t1

(a)

(b)

(c)

k/π

ε(k)

FIG. 5. (Color online) Two variants of the topological comb
model. In (a), thin (thick) black lines indicate intra-ladder
(diagonal) hopping with strength t0 (t1). Red ovals or circles
show the support of the zero energy edge modes. In (b), upon
shifting the lower chain by one site to the right, t1 can be
interpreted as direct inter-ladder hopping strength. (c) Band
structure for the parameter regime t1/t0 = 0.7. The (black)
dashed line represents zero energy, which lies in the band gap.

The starting point is the single-particle Hamiltonian

H = HN = T ⊗ h1 + T † ⊗ h†1. In order to have perfectly
localized eigenvectors at zero energy, the bulk equation
must bear emergent solutions. Therefore, we assume that

h1 is non-invertible. Let |u−〉 be in the kernel of h†1. Since
T annihilates |j = 1〉,

H(|j = 1〉|u−〉) = (T ⊗ h1 + T † ⊗ h†1)(|j = 1〉|u−〉)
= T |j = 1〉h1|u−〉+ T †|j = 1〉h†1|u−〉
= 0.

Similarly, if |u+〉 is in the kernel of h1, then |j = N〉|u+〉
is also in the kernel of H. Therefore, |j = 1〉|u−〉 and
|j = N〉|u+〉 are perfectly localized zero energy modes.

A concrete example may be obtained by choosing

h1 = −
[
t0 0
t1 0

]
and h†1 = −

[
t0 t1
0 0

]
,

whose kernel is, respectively, spanned by

|u+〉 =

[
0
1

]
and |u−〉 =

[
−t1
t0

]
.

This example corresponds to a many-body Hamiltonian
of two coupled fermionic chains, as illustrated in Fig. 5:

Ĥ = −
N−1∑
j=1

(t0c
†
jcj+1 + t1c

†
j+1fj + h.c.), (42)

where cj and fj denote the jth fermions in the upper
and lower chain, t0 denotes intra-ladder hopping in one
of the chains, and t1 is the diagonal hopping strength
between the two chains of the ladder, respectively. Phys-
ically, this “topological comb model” is closely related
to the one-dimensional periodic Anderson model in its
non-interacting (spinless) limit, see Ref. [49].
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1. Zero-energy modes

The perfectly localized zero-energy modes in this case
are |j = 1〉|u−〉 and |j = N〉|u+〉, that translate, after
normalization, into the fermionic operators

η†1 =
1√

t20 + t21
(t1c

†
1 − t0f†1 ), η†2 = f†N . (43)

The operator η†2 trivially describes a zero-energy mode,
since it corresponds to the last fermion on the lower

chain, that is decoupled from the rest. However, η†1 corre-
sponds to a non-trivial zero energy mode, localized over
the first sites of the two chains. For large values of |t0/t1|,
η†1 is localized mostly on the f -chain, whereas for small
values it is localized mostly on the c-chain.

Remarkably, such a non-trivial zero-energy mode is ro-
bust against arbitrary fluctuations in hopping strengths,
despite the absence of a protecting chiral symmetry.
Imagine that in Eq. (42) the hopping strengths t0,j and

t1,j are position-dependent. Then, Ĥ may be writ-

ten as Ĥ = −(t0,1c
†
1c2 + t1,1c

†
2f1 + h.c.) + Ĝ, where

Ĝ does not contain terms involving c1 and f1, so that

[Ĝ, c1] = 0 = [Ĝ, f1]. Then it is easy to verify that the

expression for the zero-energy mode is obtained from η†1
in Eq. (43) after substituting t0 7→ t0,1 and t1 7→ t1,1. We
conclude that the zero-energy edge mode is protected by
an “emergent symmetry”, that has a non-trivial action
only on the sites corresponding to j = 1. Likewise, as-
sume for concreteness that t0 = ±t1, and consider the
inter-chain perturbation described by

Ĥ1 ≡ µ
N∑
j=1

(c†j ± f†j )(cj ± fj), µ ∈ R.

In this case, the corresponding single-particle Hamilto-

nian becomes H = 1N ⊗ h0 + T ⊗ h1 + T † ⊗ h†1 with

h0 = µ

[
1 ±1
±1 1

]
.

Nevertheless, the zero-energy mode corresponding to
|1〉|u−〉 is still an emergent solution for ε = 0, and can
be verified to satisfy the boundary equation as well. The
topological nature of this zero-energy mode is confirmed
by its non-trivial Berry phase8 at half-filling. Under pe-
riodic BCs, the Hamiltonian in momentum space is

Hk = −
[
2t0 cos k t1e

−ik

t1e
ik 0

]
,

leading to the following eigenvectors for the two bands:

|umk〉 =

[
−t0 cos k + (−1)m

√
t20 cos2 k + t21

−t1eik
]
, m = 1, 2.

Direct calculation shows that the Berry phase has the
non-trivial value π (mod 2π), as long as t1 6= 0.

2. Complete closed-form solution

We now obtain a complete closed-form solution of
the eigenvalue problem corresponding to Eq. (42) (open
BCs). The reduced bulk Hamiltonian is

H(z) = −
[
t0(z + z−1) t1z

−1

t1z 0

]
,

with the associated polynomial (R = 1, d = 2)

P (ε, z) = z2[ε2 + εt0(z + z−1)− t21]. (44)

The model has two energy bands with a gap containing
ε = 0, and no chiral symmetry. Because H is real, this
enforces the symmetry z ↔ z−1 of the non-zero roots of
P (ε, z) that satisfy z1z2 = 1. For generic ε 6= 0, there
are two distinct non-zero roots and, therefore, two ex-
tended bulk solutions. The eigenvector of H(z) may be
generically expressed as

|u(ε, z)〉 =

[
ε
−t1z

]
.

Using Eq. (24), the number of emergent bulk solutions
is 2Rd − 2 = 2 = 2s0, one localized on each edge. As

K−(ε) = h†1 and K+(ε) = h1, such solutions are found
from their kernels, spanned by |u−〉 and |u+〉, indepen-
dently of ε. The boundary matrix

B(ε) =


t0ε− t21z1 t0ε− t21z2 0 εt1

0 0 0 −εt0
zN+1

1 t0ε zN+1
2 t0ε 0 0

zN+1
1 t1ε zN+1

2 t1ε −ε 0

 ,
whose kernel is nontrivial only if

εt0(zN+1
1 − zN+1

2 )− t21z1z2(zN1 − zN2 ) = 0.

In this case, since z1z2 = 1, we may reduce this system to
one variable by substituting z2 = z−1

1 , which then yields
the polynomial equation

εt0z
2N+2
1 − t21z2N+1

1 + t21z1 − εt0 = 0. (45)

The algebraic system of equations (44) and (45) deter-
mine the “dispersing” extended-support bulk modes of
the system. When these equations are both satisfied, the
kernel of the boundary matrix is spanned by

α =
i

2

[
z
−(N+1)
1 −zN+1

1 0 0
]T
,

and the corresponding eigenvectors of H are given by

|ε〉 =
iz
−(N+1)
1

2
|z1, 1〉

[
ε

−t1z1

]
− iz

N+1
1

2
|z−1

1 , 1〉
[

ε
−t1z−1

1

]
,

which, upon substituting z1 = eik, can be recast as50

|ε〉 =

N∑
j=1

|j〉
[
ε sin k(N + 1− j)
−t1 sin k(N − j)

]
. (46)

To check whether |ε〉 in Eq. (46) indeed satisfies the
eigenvalue equation, notice that
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〈j|H − ε1|ε〉 =


−ε〈1|ε〉+ h1〈2|ε〉 if j = 1

h†1〈j − 1|ε〉+ h1〈j + 1|ε〉 − ε〈j|ε〉 if 2 ≤ j ≤ N − 1

h†1〈N − 1|ε〉 − ε〈N |ε〉 if j = N

.

Using the expression for |ε〉, 〈N |H − ε1|ε〉 vanishes triv-
ially, while, for j = 1,

〈1|H − ε1|ε〉 = −
[
εt0 sin k(N − 1) + ε2 sin kN

0

]
,

which is seen to vanish from the relation

εt0 sin k(N − 1) + ε2 sin kN =

sin kN [ε2−t21+2εt0 cos k]+[−εt0 sin k(N+1)+t21 sin kN ].

The first term on the right hand-side is equal to
P (ε, eik) = 0, whereas the second term vanishes due to
Eq. (45). Finally, for 2 ≤ j ≤ N − 1, we get

〈j|H− ε1|ε〉 = −
[
sin k(N + 1− j)[ε2 − t21 + 2εt0 cos k]

0

]
,

which equals zero, completing the argument.
Next, we find the values of ε for which Eq. (44) has a

double root. The discriminant of P (ε, z) is D(P (ε, z)) =

(ε2 − t21)2 − 4ε2t20, and vanishes for ε = −t0 ±
√
t20 + t21

and ε = t0±
√
t20 + t21, for which the corresponding double

roots are z1 = +1 and z1 = −1, respectively. In these
cases, the bulk equation may have power-law solutions.
While one could construct the reduced bulk Hamiltonian
H2(z) to identify these solutions, another quick way to
proceed is suggested by Eq. (23), as already remarked in
Sec. V A. A power-law solution may now be written as

∂z1(|z1, 1〉|u(ε, z1)〉)= |z1, 2〉|u(ε, z1)〉+|z1, 1〉∂z1 |u(ε, z1)〉,

where z1 is the double root corresponding to ε. The first
column of the new boundary matrix remains the same as
the original one, while its second column is determined
from the derivative of the second column of the original
boundary matrix with respect to z2, computed at z2 =
z1. For ε = −t0 ±

√
t20 + t21, we have z1 = 1 and

B(ε) =

t0ε− t
2
1 −t21 0 εt1

0 0 0 −εt0
t0ε (N + 1)t0ε 0 0
t1ε (N + 1)t1ε −ε 0

 .
Some algebra reveals that detB(ε) 6= 0, so that these
values of ε do not appear in the spectrum of H for any
values of parameters t0, t1. Similar analysis for ε = t0 ±√
t20 + t21 yields the same conclusion. Therefore, there are

no power-law solutions compatible with open BCs.
We now derive the perfectly localized zero energy

modes described in Sec. V B 1. Notice that for ε = 0,

the only possible roots of P (ε, z) are z0 = 0, and from its
degree it follows that there are s0 = 2 emergent solutions
on each edge. In this case,

K−(0) =

[
h†1 0

0 h†1

]
,

with its kernel spanned by

|u−1 〉 =
[
|u−〉 0

]T
and |u−2 〉 =

[
0 |u−〉

]T
.

Similarly, the kernel of K+(0) is spanned by

|u+
1 〉 =

[
|u+〉 0

]T
and |u+

2 〉 =
[
0 |u+〉

]T
.

Thus, the Ansatz for ε = 0 consists of all four perfectly
localized solutions (see Eqs. (28) and (29)). The bound-
ary matrix in this case is

B(ε = 0) =

 0 0 0 t1t0
0 0 0 t21
−t1 0 0 0
0 0 0 0

 ,
which has a two-dimensional kernel, spanned by

α1 =
[
0 0 1 0

]T
, α2 =

[
0 1 0 0

]T
.

The corresponding two zero-energy edge modes are then

|ε = 0,α1〉 = |1〉|u−〉, |ε = 0,α2〉 = |N〉|u+〉,

consistent with the results of Sec. V B 1. The eigenvector
|ε = 0,α1〉 has support only on the first site of the two
band chain. Since |N〉|u+〉 = |N〉[0 1]T, the eigenvector
|ε = 0,α2〉 represents the decoupled degree of freedom at
the right end of the chain, as shown in Fig. 5 (a) and (b).

C. The Majorana Chain

Kitaev’s Majorana chain29 is a prototypical model of
p-wave topological superconductivity51,52. In terms of
spinless fermions, the relevant many-body Hamiltonian
in the absence of disorder and under open BCs reads

ĤK = −
N∑
j=1

µ c†jcj −
N−1∑
j=1

(
t c†jcj+1 −∆ c†jc

†
j+1 + h.c.

)
,

where µ, t,∆ ∈ R denote the chemical potential, hop-
ping amplitude, and pairing strengths, respectively.
This Hamiltonian, expressed in spin language via a
Jordan-Wigner transformation, describes the well-known
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anisotropic XY spin chain, which has a long history in
quantum magnetism, including analysis of boundary ef-
fects for both open and periodic BCs36,53–55.

Expressed in the form of Eq. (9), the corresponding
single-particle Hamiltonian is

HN = 1N ⊗ h0 + (T ⊗ h1 + T † ⊗ h†1),

h0 =

[
−µ 0
0 µ

]
, h1 =

[
−t ∆
−∆ t

]
. (47)

Thus, R = 1, d = 2dint = 2, and hR = h1 (hence
the model) is invertible in the generic parameter regime
|t| 6= |∆|, for arbitrary µ. We have already charac-
terized in detail both the invertible regime19 and the
non-invertible regime20 for generic, regular energy val-
ues. While, given the importance of the model, we will
summarize some of these results in what follows, our
emphasis here will be on (i) addressing singular energy
values, in particular, by directly computing compactly-
supported eigenstates of flat-band eigenvectors directly
in real space; (ii) uncovering the existence of zero-energy
Majorana modes with a power-law prefactor, emerging in
an invertible but non-generic parameter regime recently
discussed in the context of transfer-matrix analysis56.

1. The parameter regime |t| = |∆|, µ 6= 0

We briefly recall some key steps and results presented
in Sec. 5.2 of Ref. [20]. For concreteness, we assume t =
∆, but a similar analysis may be repeated for the case
t = −∆. The reduced bulk Hamiltonian in this case is

H(z) =

[
−µ− t(z + z−1) t(z − z−1)
−t(z − z−1) µ+ t(z + z−1)

]
,

with associated polynomial

P (ε, z) = −z2[2µt(z + z−1) + (µ2 + 4t2 − ε2)]. (48)

As in the topological comb example, for generic values
of ε the above has two distinct non-zero roots z1 and z2,
which implies a two-dimensional space of extended bulk
solutions and one emergent solution on each edge. Let
the two extended solutions be labeled by z1 and z2 = z−1

1 ,
with |z1| ≤ 1. Then, we get

|u(ε, z`)〉 =

[
t(z` − z−1

` )
ε+ µ+ t(z` + z−1

` )

]
, ` = 1, 2.

The two emergent solutions are obtained from the one-

dimensional kernels of the matrices K−(ε) = h†1 and
K+(ε) = h1, which are spanned by

|u−1 〉 =

[
1
−1

]
and |u+

1 〉 =

[
1
1

]
,

respectively. Following Eq. (35), the boundary matrix is

B(ε) =


2t2z1 + t(ε+ µ) 2t2z−1

1 + t(ε+ µ) 0 −µ− ε
−2t2z1 + t(ε+ µ) −2t2z−1

1 + t(ε+ µ) 0 −µ+ ε

zN+1
1 [−2t2z−1

1 − t(ε− µ)] z
−(N+1)
1 [−2t2z1 − t(ε− µ)] −µ− ε 0

zN+1
1 [−2t2z−1

1 − t(ε− µ)] z
−(N+1)
1 [−2t2z1 − t(ε− µ)] µ− ε 0

 .

Our analysis in Ref. [20] shows that open BCs do not
allow any contributions from the emergent solutions in
the energy eigenstates, which are linear combinations of
the two extended solutions. The condition for ε to be an
energy eigenvalue is detB(ε) = 0, which simplifies to

2tz1 + ε+ µ = ± z(N+1)
1 (2tz−1

1 + ε+ µ). (49)

Explicitly, as long as ε /∈ S ≡ {µ ± 2t,−µ ± 2t}, the
corresponding eigenstate is

|ε〉 = |z1, 1〉|u(ε, z1)〉 ∓ zN+1
1 |z−1

1 , 1〉|u(ε, z−1
1 )〉.

The above equation is particularly interesting for zero
energy, since it dictates the necessary and sufficient con-
ditions for the existence of Majorana modes. For ε = 0,

the root z1 takes values

z1 =

{
−µ/2t if |µ| < 2|t|
−2t/µ if |µ| > 2|t| .

In the large-N limit, the factor zN+1
1 in the right hand-

side of Eq. (49) vanishes thanks to our choice of |z1| < 1.
However, the left hand-side vanishes only in the topologi-
cally non-trivial regime characterized by |µ| < 2|t|, giving
rise to a localized Majorana excitation. The unnormal-
ized Majorana wavefunction in this limit is characterized
by an exact exponential decay (see also Fig. 6), namely,

|ε = 0〉 =
(4t2 − µ2

2µ

) ∞∑
j=1

zj1|j〉
[

1
−1

]
.

For the analysis of the non-generic energy values in
S, we return to the finite system size N . For such ε,
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P (ε, z) has double roots at z1 = 1 and z1 = −1, so that
the bulk equation has one power-law solution in each
case20. These solutions are compatible with the BCs for
certain points in the parameter space, determined by the
condition 2tN+µ(N+1) = 0. Explicitly, the eigenstates
corresponding to eigenvalues ε = ±(µ+ 2t) are then

|ε = µ+ 2t〉 =
∑N
j=1 |j〉

[
1

−1 + 2j
N+1

]
,

|ε = −µ− 2t〉 =
∑N
j=1 |j〉

[
−1 + 2j

N+1

1

]
.

2. The parameter regime |t| = |∆|, µ = 0

This regime, sometimes affectionately called the “sweet
spot,” is remarkable. Since the analytic continuation of
the Bloch Hamiltonian is

H(z) = t

[
−(z + z−1) z − z−1

−(z − z−1) z + z−1

]
,

one finds that det(H(z) − ε12) = ε2 − 4t2. Thus, the
energies ε = ±2t realize a flat band and its charge con-
jugate. From the point of view of the generalized Bloch
theorem, these two energies are singular. According to
Sec. III C 3, they necessarily belong to the physical spec-
trum of the Kitaev chain regardless of BCs, each yielding
O(N) corresponding bulk-localized eigenvectors.

In order to construct such eigenvectors, note that for
ε = ±2t, the adjugate of H(z)− ε1d is the matrix

adj(H(z)∓ 2t1d) = t

[
z + z−1 ∓ 2 −z + z−1

z − z−1 −z − z−1 ∓ 2

]
,

which immediately provides two kernel vectors

|v1,±(z)〉 =

[
1 + z−2 ± 2z−1

1− z−2

]
,

|v2,±(z)〉 =

[
−1 + z−2

−1− z−2 ± 2z−1

]
.

In this case, we see that the kernel vectors contain poly-
nomials in z−1 of degree 2 < δ0 = (d− 1)2Rd = 4 (recall
Eq. (30)). For a suitable range of lattice coordinates js,
the compactly-supported sequences

Ψj1,± = |j〉
[
1
1

]
± 2|j + 1〉

[
1
0

]
+ |j + 2〉

[
1
−1

]
,

Ψj2,± = −|j〉
[
1
1

]
± 2|j + 1〉

[
0
1

]
+ |j + 2〉

[
1
−1

]
,

yield non-zero solutions |Ψjµ,±〉 = P1,NΨjµ,±, µ = 1, 2,
of the bulk equation. However, it is not a priori clear how
many of these are linearly independent. For example, it
is immediate to check that

Ψj1,± + Ψj2,± = ∓(Ψj+1,2,± −Ψj+1,1,±).

In this case, a basis of compactly-supported solutions can
be chosen from the states

|Ψ̃0〉 = |1〉
[
−1
1

]
if j = 0,

|Ψ̃j,±〉 = |j〉
[
1
1

]
± |j + 1〉

[
1
−1

]
if 1 ≤ j ≤ N − 1,

|Ψ̃N 〉 = |N〉
[
1
1

]
if j = N,

Out of these N + 1 states, the ones corresponding to j =
1, . . . , N−1 can be immediately checked to be eigenstates
of energy ε ± 2t57. In contrast, |Ψ̃0〉 and |Ψ̃N 〉 are not
eigenstates: they do not satisfy the boundary equation
trivially like other states localized in the bulk. We have
thus found 2N − 2 eigenstates of the Hamiltonian, N − 1
for each band ε = ±2t.

The two missing eigenstates appear at ε = 0, which is
a regular value of energy and so it is controlled by the
generalized Bloch theorem. For ε = 0, there are four
emergent solutions (two on each edge), out of which only

|ψ−〉 = |1〉
[

1
−1

]
= −|Ψ̃0〉 and |ψ+〉 = |N〉

[
1
1

]
= |Ψ̃N 〉

are compatible with the BCs. Since these solutions are
perfectly localized on the two edges, they exist for any
N > 2 (see also Fig. 6). Interestingly, the above states
also appeared as solutions of the bulk equation at the
singular energies ε = ±2t, and failed to satisfy the BCs
at those values of energy. We do not know whether this
fact is just a coincidence or has some deeper significance.

3. Majorana wavefunction oscillations in the regime t 6= ∆

Recently, it was shown56 that, inside the so-called “cir-
cle of oscillations”, namely, the parameter regime( µ

2t

)2

+
(∆

t

)2

= 1, (50)

the Majorana wavefunction oscillates while decaying in
space. Such oscillations in Majorana wavefunction are
not observed outside this circle. This observation has
consequences on the fermionic parity of the ground
state25. Because of duality, spin excitations in the XY
chain show a similar behavior in the corresponding pa-
rameter regime55 B2

z = t2−∆2 = JxJy. We now analyze
this phenomenon by leveraging the analysis of Sec. III.
For simplicity, we address directly the large-N limit.

Clearly, whether a wavefunction oscillates in space
depends on the nature of the extended bulk solutions
that contribute to the wavefunction. In particular, let
|ψ〉 = |z, 1〉|u〉 be one such bulk solution. For a wave-
function to be decaying asymptotically, we must have
|z| < 1. Further, if z ∈ R, then |ψj〉 = z|ψj−1〉 implies
that the part of the wavefunction associated to this bulk
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FIG. 6. (Color online) Spatial behavior of Majorana wave-
functions for various parameter regimes of the Kitaev chain
under open BCs in the large-N limit. The origin (blue dia-
mond), µ = 0,∆ = 0, corresponds to a metal at half filling.
The region shaded in black pattern is the trivial regime, which
does not host Majoranas, and is separated from the non-trivial
phase by solid black lines indicating the critical points. The
interior of the circle of oscillations [Eq. (50)] (shaded in light
blue) hosts Majoranas whose wavefunction decays with oscil-
lations, whereas the region outside show a behavior similar to
overdamped decay of a classical harmonic oscillator. On the
circle, the wavefunction decays exponentially with a power-
law prefactor. The “sweet spots” (red dots) host perfectly
localized Majorana modes on the edge.

solution simply decays exponentially without any oscil-
lations. On the other hand, if z ≡ |z|eiφ with non-zero
phase, then a linear combination of vectors

|z, 1〉+ |z∗, 1〉 =

N∑
j=1

2|z|j cos(φj)|j〉,

can show oscillatory behavior while decaying. This is
precisely the phenomenon observed in this case. When
t 6= ∆, the reduced bulk Hamiltonian is

H(z) =

[
−µ− t(z + z−1) ∆(z − z−1)
−∆(z − z−1) µ+ t(z + z−1)

]
,

with associated characteristic equation

(z+z−1)2(t2−∆2)+(z+z−1)(2µt)+(µ2 +4∆2−ε2) = 0.
(51)

For ε = 0, the above admits four distinct roots in general,
out of which two lie inside the unit circle and contribute
to the Majorana mode on the left edge. Whether any
of these two roots is complex decides if the Majorana

wavefunction oscillates for those parameter values. No-
tice that the characteristic equation is quadratic in the
variable ω = z + z−1. We get the two values of ω to be

ω± =
−µt±∆

√
µ2 − 4(t2 −∆2)

(t2 −∆2)
.

Likewise, notice that for µ2 < 4(t2−∆2), we get both ω+

and ω− to be complex, which necessarily means that both
z1, z2 inside the unit circle are also necessarily complex.
Further, the symmetry of Eq. (51) forces that z2 = z∗1 .
This leads to the oscillatory behavior of the Majorana
wavefunction in the regime µ2 < 4(t2 − ∆2), that is,
inside the circle defined by Eq. (50). Thus, the spatial
behavior of Majorana excitations in this regime is for-
mally similar to the solution of an underdamped classical
harmonic oscillator (see Fig. 6). Outside the circle, the
roots ω± are real. With some algebra, it can be shown
that |ω±| > 2 in this regime, which also means that both
z1, z2 are real roots. This is why oscillations are not ob-
served in this parameter regime, in agreement with the
results of Ref. [56]. The Majorana wavefunction in this
case resembles qualitatively the solution of a overdamped
harmonic oscillator.

The situation when the parameters lie precisely on the
circle is particularly interesting. In this case, we find
that ω+ = ω− ≡ ω0 = −4t/µ. Let us assume t/∆ > 0
for simplicity. It then follows that z1 = z2 = −2(t −
∆)/µ, which rightly indicates appearance of a power-law
solution. Let us specifically analyze the case of open
BCs on one end (for N � 1 as stated). One of the two
decaying bulk solutions is |ψ1,1〉 = |z1, 1〉|u(z1)〉, where

|u(z)〉 =

[
∆(z − z−1)

µ+ t(z + z−1)

]
.

The other bulk solution is obtained from

|ψ1,2〉= ∂z1 |ψ11〉

= z−1
1 |z1, 1〉

[
∆(z1 + z−1

1 )
t(z1 − z−1

1 )

]
+ |z1, 2〉

[
∆(z1 − z−1

1 )
µ+ t(z1 + z−1

1 )

]
.

The relevant boundary matrix,

B(ε = 0) ≡
[
B11(z1) B12(z1)
B21(z1) B22(z1)

]
,

may be computed by relating its second column to the
partial derivative of the first column at z = z1 as also
done previously. Explicitly:[

B11(z1)
B21(z1)

]
=

[
(2tz1 + µ)∆

−µt− z1(t2 + ∆2)− z−1
1 (t2 −∆2)

]
,[

B12(z1)
B22(z1)

]
=

[
2t∆

−(t2 + ∆2) + z−2
1 (t2 −∆2)

]
,

where we also used Eq. (51) for simplification. Some al-
gebra reveals that B(0) has a one-dimensional kernel,
spanned by the vector

α =
[
−µt 2∆(t−∆)

]T
.
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This leads to the power-law Majorana wavefunction

|ε = 0〉= −µt |ψ1,1〉+ 2∆(t−∆) |ψ1,2〉

=
8∆2(t−∆)

µ

∞∑
j=1

jzj−1
1 |j〉

[
1
−1

]
, (52)

which decays exponentially with a linear prefactor (see
Fig. 6). In principle, the existence of such exotic Majo-
rana modes could be probed in proposed Kitaev-chain
realizations based on linear quantum dot arrays58, which
are expected to afford tunable control on all parameters.

VI. AN INDICATOR OF THE
BULK-BOUNDARY CORRESPONDENCE

As stated in the Introduction, a main motivation be-
hind the development of the generalized Bloch theorem
is to achieve a more rigorous understanding of the bulk-
boundary correspondence. In this section, we take a first
step by presenting an indicator of bulk-boundary cor-
respondence based on the results from Sec. III, general-
izing the original definition in Ref. [19]. The indicator
is built out of the boundary matrix and, therefore, en-
codes information from the bulk and the BCs. We will
then consider an application of the indicator to study
the Josephson response of an s-wave two-band topologi-
cal superconductor30,31. Interestingly, and to the best of
our knowledge, this system provides the first example of
an unconventional (fractional) Josephson effect not ac-
companied by a fermionic parity switch. We explain the
physical reasons behind such a result.

A. Derivation of the indicator

For a system of size N , the existence of localized modes
at energy ε reflects into a non-trivial kernel of the cor-
responding boundary matrix, which we now denote by
BN (ε) in order to emphasize the dependence on N and
ε. As we increase N without changing the BCs, the en-
ergy ε of the bound modes (that is, modes that remain
asymptotically normalizable) attains a limiting value.
For instance, in topologically non-trivial, particle-hole or
chiral- symmetric systems under hard-wall BCs, the mid-
gap bound modes attain zero energy in the large-N limit.
This convergence of bound modes and their energies is
nicely captured by a modified version of the boundary
matrix in the limit N � 1, which we now construct.

Consider a system of N sites in a ring topology, as
shown in Fig. 7(a), so as to allow non-zero contribution
from the matrix wbb′ in the BCs described by W (see
Eq. (4)). Let us assume that the system hosts one or more
bound modes near the junction formed by the two ends,
which converge in the large-N limit to energy ε. The
resulting modes are the bound modes of a bridge config-
uration that extends to infinity on both sides, and where
the boundary region is shown in Fig. 7(b). For each N ,

(a)

1 2
3

N − 1
N − 2

N

(b)

−1 0 1 2· · ·−N → −∞ · · · N →∞

FIG. 7. (Color online) Ring (a) vs bridge (b) configurations
of a chain Hamiltonian, d = 1 = R. The solid (black) lines
denote nearest-neighbor bulk hopping, whereas the thick (red)
line indicates hopping between the left (j = N) and the right
(j = 1) boundary (shaded gray rectangle). The bound states
of (a) converge to the ones of (b) in the large-N limit.

we may express the bound eigenstate as in Eq. (32). Such
bound states have contributions only from those bulk so-
lutions that are normalizable for N � 1. The extended-
support solutions corresponding to |z`| = 1 are not nor-
malizable, and therefore must drop out from the Ansatz.
Further, while the amplitude of those corresponding to
|z`| > 1 blows up near j = N , they remain normalizable
in the limit. This becomes apparent once we rescale such
solutions by z−N` . These rescaled solutions almost vanish
at j = 1 for large N . Based on these considerations, we
propose a modified Ansatz for finite N ,

|ε,α〉N ≡
∑
|z`|<1

s∑̀
s=1

α`s|ψ`s〉+

s−∑
s=1

α−s |ψ−s 〉+

∑
|z`|>1

s∑̀
s=1

α`sz`
−N |ψ`s〉+

s+∑
s=1

α+
s |ψ+

s 〉. (53)

expressed in terms of up most 2Rd amplitudes.
The above Ansatz may be used to compute a corre-

sponding boundary matrix BN (ε) in the same way as
described in Sec. III D. Note that BN (ε) may not cap-
ture the bound modes appearing at finite N since, by
construction, it does not incorporate contributions from
extended support solutions corresponding to |z`| = 1.
However, B∞(ε) ≡ limN→∞BN (ε) is now well-defined,
and describes accurately the presence and exact form of
bound modes in the limit. The condition for a non-trivial
kernel becomes det[B†N (ε)BN (ε)] = 0. Based on this con-
dition, we define the quantity

Dε ≡ log{det[B∞(ε)†B∞(ε)]}, (54)

as an indicator of bulk-boundary correspondence. This
captures precisely the interplay between the bulk prop-
erties and the BCs that may lead to the emergence of
bound modes, in the sense that, as we parametrically
change either or both of the reduced bulk Hamiltonian
and the BCs, Dε shows a singularity at (and only at)
the parameter value for which the system hosts bound
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modes at energy ε. Unlike most other topological indica-
tors that are derived from bulk properties (i.e., in a torus
topology), our indicator is constructed from a boundary
matrix, that incorporates the relevant properties of the
bulk. In cases where the bound modes are protected by
a symmetry, this allows for the indicator to be computed
for arbitrary BCs that respect the symmetry, paving the
way to characterizing the robustness of the bound modes
against classes of boundary perturbations.

An interesting situation is that of wbb′ = 0, in which
case the large-N limit consists of two disjoint semi-
infinite chains. Then B∞(ε) is block diagonal,

B∞(ε) =

[
B−∞(ε) 0

0 B+
∞(ε)

]
,

where B−∞ (B+
∞) may be interpreted as the boundary

matrix of a semi-infinite chain, describing the edge modes
at the left (right) edge, respectively.

While the indicator Dε of Eq. (54) signals the presence
of bound states, it does not convey information about
the degeneracy of that energy level, which is neverthe-
less contained in the boundary matrix. Therefore, it is
often useful to also study the behavior of the degeneracy
indicator as a function of ε:

Kε ≡ dim Ker[B∞(ε)].

In practice, the dimension of the kernel is obtained by
counting the number of zero singular values of B∞(ε).

Remark.— With reference to the discussion in
Sec. IV A, recall that in numerical computations, B∞(ε)
signals fictitious roots whenever the bulk equation has a
power-law solution. In such cases, we once again rem-
edy the issue by resorting to the Gramian. Then the
corrected value of the indicator is given by

Dε = log

{
det[B∞(ε)†B∞(ε)]

detG(ε)

}
.

Thus, the correct degeneracy of the energy is obtained
by counting zero (within numerical accuracy) singular

values of the matrix B̃∞(ε) = B∞(ε)G(ε)−1/2.

B. Application: An s-wave topological
superconducting wire

The usefulness of the proposed indicator of bulk-
boundary correspondence was demonstrated in the con-
text of characterizing the Josephson response of a two-
band time-reversal invariant s-wave topological super-
conducting wire in Ref. [19]. While the calculations re-
ported there employed a simplified Ansatz, including only
extended-support solutions of the bulk equation, we now
validate the analysis by using the complete Ansatz given
in Eqs. (32) and (53), and further analyze and interpret
our results in terms of fermionic parity switches.

The relevant s-wave, spin-singlet, two-band supercon-
ductor model30,31 derives its topological nature from the

interplay between a Dimmock-type intra-band spin-orbit
coupling and inter-band hybridization terms. Due to the
spin degree of freedom in each of the two relevant or-
bitals, say, c and d, the Nambu basis corresponding to
an atom at position j consists of 8 fermionic operators,
that we write as the vector

Ψ̂†j =
[
c†j,↑ c†j,↓ d†j,↑ d†j,↓ cj,↑ cj,↓ dj,↑ dj,↓

]
.

In this basis, the single-particle Hamiltonian under open
BCs is given by

HN = 1N ⊗ h0 + (T ⊗ h1 + T † ⊗ h†1),

h0 =

 −µ ucd −i∆σy 0
ucd −µ 0 i∆σy
i∆σy 0 µ −ucd

0 −i∆σy −ucd µ


= −µτz + ucdτzνx + ∆τyνzσy,

h1 =

iλσx −t 0 0
−t −iλσx 0 0
0 0 iλσx t
0 0 t −iλσx


= −tτzνx + iλνzσx,

where the real parameters µ, ucd, t, λ,∆ denote the chem-
ical potential, the interband hybridization, hopping,
spin-orbit coupling and pairing potential strengths, re-
spectively, and τα, να, σα, α = {x, y, z}, are Pauli matri-
ces in Nambu, orbital and spin spaces.

The topological properties of the above Hamiltonian
were analyzed in Ref. [31]. The BdG Hamiltonian is time-
reversal invariant, which places it in the symmetry class
DIII. The topological phases may thus be distinguished
by a Z2-invariant, given by the parity of the sum of the
Berry phases for the two occupied negative bands in one
of the Kramers’ sectors only31. For open BCs and for
non-vanishing pairing, the system in its trivial phases
was found to host zero or two pairs of Majoranas on each
edge, in contrast to the topologically non-trivial phase
supporting one pair of Majoranas per edge. Similar to the
two-dimensional version of the model, one may see that
the existence of such Majorana modes is protected by a
non-trivial chiral symmetry, of the form τyσz. The single-
particle Hamiltonian HN for open BCs can be exactly di-
agonalized as described in Sec. IV. In the large N -limit,
the boundary matrix B∞(ε = 0) calculated by using the
Ansatz in Eq. (53) yields degeneracy K0 = 0, 4, 8 in the
no-pair, one-pair, and two-pair phases, respectively, ver-
ifying the bulk-boundary correspondence previously es-
tablished through numerical diagonalization.

1. Josephson response

In the Josephson ring configuration considered in
Ref. [19], the first and last sites of the open chain are
coupled by the same hopping and spin-orbit terms as in
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the rest of the chain, only weaker by a factor of 1/w. A
flux φ is introduced between the two ends via this weak
link. In the large-N limit, this link acts as a junction,
with the corresponding tunneling term in the many-body
Hamiltonian being given by

ĤT (φ) = Ψ̂†N (wh1Uφ)Ψ̂1+ h.c., Uφ =

[
eiφ/214 0

0 e−iφ/214

]
.

The total Hamiltonian is then Ĥ(φ) = ĤN + ĤT (φ). It
was demonstrated19 that the Hamiltonian displays frac-
tional Josephson effect in the topologically non-trivial
phase, as inferred from its 4π-periodic many-body ground
state energy [Fig. 8(a)], with the phenomenon being ob-
served only if the open-chain Hamiltonian correspond-
ingly hosts an odd number of Majorana pairs per edge.
The physics behind the 4π-periodicity was explained in
terms of the crossing of a positive and a negative single-
particle energy level happening at precisely zero energy
as a function of flux φ.

The singular behavior, at φ = π, 3π, of the indicator
Dε=0(φ) computed using both the simplified Ansatz as
in Ref. [19] and the complete Ansatz of Eq. (53) is shown
in Fig. 8(c). The qualitative features are unchanged,
indicating that in the large-N limit the bound modes
formed near the junction are linear combinations only of
extended-support solutions, with no contributions from
emergent ones. As seen in Fig. 8(d), at both φ = π and
φ = 3π the junction hosts a total of four Majoranas.

2. Parity switch and decoupling transformation

Despite the 4π-periodic Josephson response witnessed
in the topologically non-trivial phase, it turns out that
the ground state fermionic parity remains unchanged
for all flux values. In the non-trivial regime of inter-
est, we may focus on the three low-lying energy lev-
els. Specifically, for values of φ < π, let |Φ(φ)〉 de-
note the many-body ground state, with energy E0(φ),
as in Fig. 8(a). As we will show, there are two degen-
erate quasi-particle excitations, say, η1(φ), η2(φ), with
small positive energy ε0(φ). This results in a two-fold
degenerate first excited many-body state, with energy
E1(φ) = E0(φ) + ε0(φ), and a corresponding eigenspace

is spanned by {η†1(φ)|Φ(φ)〉, η†2(φ)|Φ(φ)〉}. The second

excited state, η†1(φ)η†2(φ)|Φ(φ)〉, is not degenerate and
has energy E2(φ) = E0(φ) + 2ε0(φ). Note that this
state has the same (even) fermionic parity as the ground
state. At φ = π, the quasi-particle excitation has ex-
actly zero energy, ε0(π) = 0, causing all three energy
levels to become degenerate. As φ crosses π, ε0(φ) be-
comes negative. Therefore, for π < φ < 3π, we find
that E2(φ) < E1(φ) < E0(φ). The continuation of the

state η†1(φ)η†2(φ)|Φ(φ)〉 with energy E2(φ) thus becomes
the new ground state, whereas the continuation of the
original ground state |Φ(φ)〉 now attains the maximum
energy among these three levels. Since the new ground

E0(φ)

E1(φ)

E2(φ)

(a)
E(φ)

(b)ε(φ)

(c)Dε=0(φ)

(d)Kε=0(φ)

φ/π

FIG. 8. (Color online) (a) Low-lying many-body energy eigen-
values in the Josephson ring configuration, as a function of
flux φ. The energy level E1(φ) is doubly degenerate. (b) En-
ergy of the bound mode and its anti-particle excitation. The
shaded (blue) area denotes the continuum of energy states in
the bulk. (c) Comparison of the indicator defined in Ref. [19]
(dashed red line) and the generalized indicator of Eq. (54)
(solid red line) in the topologically non-trivial phase. (d) De-
generacy of the zero-energy level inferred from the dimension
of the kernel of B∞(ε = 0, φ). The parameters are w = 0.2,
µ = 0, ucd = t = λ = 1, ∆ = 2, N = 60 in (a) and (b).

state has the same parity as the original one, the system
shows no parity switch, with a similar analysis holding for
the crossover at φ = 3π. We conclude that the absence
of a fermionic parity switch originates from the twofold
degeneracy of the single-particle energy levels.

While the system under open BCs is time-reversal in-
variant, away from φ = 0, 2π this symmetry is broken by

the tunneling term ĤT (φ). Therefore, Kramer’s theorem
is not responsible in general for the degeneracy in the
single-particle levels. Instead, we now explain the phys-
ical origin of this degeneracy in terms of a “decoupling
transformation” in real space, thanks to which the sys-
tem in the Josephson bridge configuration is mapped into
two decoupled systems in the same configuration, each
with half the number of internal degrees of freedom as
the original one. Although each of these smaller systems
does undergo a parity switch, the total parity being the
sum of individual parities remains unchanged.

Observe that the Hamiltonian Ĥ(φ) is invariant under

the unitary symmetries Ŝ1 and Ŝ2, defined by the action

Ŝ1 : c↑(d↑) 7→ d↑(c↑), c↓(d↓) 7→ −d↓(−c↓),
Ŝ2 : c↑(d↑) 7→ ic↓(id↓), c↓(d↓) 7→ ic↑(id↑).

We can use the eigenbasis of Ŝ1 to decouple Ĥ(φ) into
two independent Hamiltonians. Consider, for each site
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j = 1, . . . , N , the canonical transformation

ajσ ≡
cjσ + djσ√

2
, bjσ ≡

cjσ − djσ√
2

, σ =↑, ↓ . (55)

and let Û1 be the unitary change of basis defined by Û1 :

Ψ̂†j 7→ [ Ψ̂†+,j Ψ̂†−,j ], where

Ψ̂†+,j ≡ [ a†j,↑ b†j,↓ aj,↑ bj,↓ ],

Ψ̂†−,j ≡ [ a†j,↓ − b
†
j,↑ aj,↓ − bj,↑ ].

By letting Ψ̂†± ≡ [Ψ̂†±,1 . . . Ψ̂†±,N ], the action of Û1 then

decouples Ĥ(φ) according to

Ĥ(φ) ≡ Ĥ+(φ) + Ĥ−(φ) = Ψ̂†+H+(φ)Ψ̂+ + Ψ̂†−H−(φ)Ψ̂−,

where Ĥ±(φ) describes two smaller systems, each in a
Josephson ring configuration, with hopping and pairing
amplitudes given by

h±,0 =

[
−µ+ ucdσ̃z −i∆σ̃y

i∆σ̃y µ− ucdσ̃z

]
= −µτz + ucdτzσ̃z + ∆τyσ̃y,

h±,1 =

[
±iλσ̃x − tσ̃z 0

0 ±iλσ̃x + tσ̃z

]
= ±iλσ̃x − tτzσ̃z,

with σ̃α denoting Pauli matrices in the modified spin ba-
sis. The decoupling transformation in Eq. (55) is close
in spirit to the one already employed under periodic
BCs30,31. Indeed, it is worth remarking that Ψ̂+,j and

Ψ̂−,j are still time-reversals of each other, in the sense

that T Ψ̂†+,jT −1 = Ψ̂†−,j , with T being the anti-unitary
time-reversal operator for the system. Because of the
tunneling term, however, the two decoupled (commut-

ing) Hamiltonians Ĥ±(φ) are related by the relation

T Ĥ+(φ)T −1 = Ĥ−(4π − φ).

It now remains to show that Ĥ±(φ) have identical
single-particle energy spectrum, and therefore lead to the

desired degeneracy in the energy levels of Ĥ(φ). This fol-
lows by examining the symmetries of the single-particle
BdG Hamiltonian H(φ). Corresponding to Ŝ1, H(φ) has
a unitary symmetry S1 = 1N⊗νxσz, and thus gets block-
diagonalized into two blocks, H±(φ), upon the action of

U1. Similarly, corresponding to Ŝ2, H(φ) has another
unitary symmetry S2 = i1N ⊗ τzσx. Further, S1 and
S2 satisfy the anti-commutation relation {S1, S2} = 0,
which is responsible for the doubly degenerate eigen-
value spectrum59. In fact, one can also verify directly

that Ĥ+(φ) and Ĥ−(φ) satisfy Ŝ2Ĥ+(φ)Ŝ†2 = Ĥ−(φ).
This explains the origin of the double degeneracy of each
single-particle energy level, and hence of the absence of
fermionic parity switch.

VII. TRANSFER MATRIX IN THE LIGHT OF
THE GENERALIZED BLOCH THEOREM

Starting with the work in Refs. [60]-[61], the transfer
matrix has remained the tool of choice for analytical in-
vestigations of the bulk-boundary correspondence33,62–64

including, as mentioned, recent studies of Majorana
wavefunctions in both clean and disordered Kitaev
wires56. In this section, we revisit the transfer matrix
approach to band-structure determination in the light
of our generalized Bloch theorem. In particular, we show
how, in situations where the transfer matrix fails to be di-
agonalizable, our analysis makes it possible to give phys-
ical meaning to the generalized eigenvectors by relating
them to the power-law solutions discussed in Sec. III C.

A. Basics of the standard transfer matrix method

While our conclusions apply more generally to arbi-
trary finite-range clean models, for concreteness we re-
fer in our discussion to the simplest setting where both
approaches are applicable, namely, a one-dimensional
chain with nearest-neighbor hopping. We further focus
on open (hard-wall) BCs, as most commonly employed
in transfer-matrix studies. The relevant single particle-
Hamiltonian HN is then a tridiagonal block-Toeplitz ma-

trix, with entries h†1, h0 and h1 along the three diagonals.
Generically, h1 is assumed to be invertible. The starting
point of the method entails obtaining the recurrence re-
lation between eigenvector components. Specifically, if

|ε〉 =
∑N
j=1 |j〉|ψj〉 is an eigenvector of H with energy

eigenvalue ε relative to the usual Hilbert-space factor-
ization H = HL ⊗ HI , the components |ψj〉 satisfy the
recurrence relation

h†1|ψj−1〉+(h0−ε1)|ψj〉+h1|ψj+1〉 = 0, 2 ≤ j ≤ N−1.
(56)

In terms of the 2d× 2d transfer matrix

t(ε) ≡
[

0 1d

−h−1
1 h†1 −h−1

1 (h0 − ε1)

]
, (57)

the above recurrence relation may be reformulated as

Pj,j+1|ε〉 = t(ε)Pj−1,j |ε〉, 2 ≤ j ≤ N − 1, (58)

where we have written Pj,j+1|ε〉 ≡
[
|ψj〉 |ψj+1〉

]T
. Thus,

Pj+1,j+2|ε〉 = t(ε)jP1,2|ε〉, 0 ≤ j ≤ N − 2, (59)

which can be leveraged for obtaining the complete set of
eigenvectors of HN . We can define |ψ0〉, |ψN+1〉 by using
the relations

P1,2|ε〉 = t(ε)P0,1|ε〉, PN,N+1|ε〉 = t(ε)PN−1,N |ε〉,

so that PN,N+1|ε〉 = T (ε)P0,1|ε〉 in terms of the matrix

T (ε) ≡ t(ε)N . Hard-wall BCs enforce |ψ0〉 = 0 = |ψN+1〉.
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Substituting these boundary values leads to[
|ψN 〉

0

]
=

[
T11(ε) T12(ε)
T21(ε) T22(ε)

] [
0
|ψ1〉

]
,

which has a non-trivial solution if and only if

det T22(ε) = 0. (60)

Therefore, all values of ε that obey the above condition
are eigenvalues of HN . For each eigenvalue, the corre-
sponding |ψ1〉 is obtained as the kernel of T22(ε). In
practice, T (ε) is calculated by first diagonalizing t(ε) by
a similarity transformation, and then exponentiating the
eigenvalues along its diagonal32.

As can be appreciated from this example, the standard
version of the transfer matrix method relies on invert-
ibility of certain matrices, although “inversion-free”65,66

or partially inversion-free33 modifications have also been
suggested. In the standard case, the only prerequisite
for constructing t(ε) at each step is the banded structure
of the single-particle Hamiltonian and, most importantly,
the resulting matrix T (ε) is assumed to be diagonalizable.

B. Connections to the generalized Bloch theorem

In order to relate the above analysis to the general-
ized Bloch formalism, the key observation is to note that
the set of equations in Eq. (56) constitute the complete
bulk equation, as described in Sec. III B. Consequently,
Eq. (58) is satisfied by any bulk solution |ψ〉 ∈ M1,N ,
whereM1,N denotes the bulk solution space as usual. It
is insightful to recast Eq. (59) in the form

t(ε)jP1,2|ψ〉 = P1,2 (T )j |ψ〉, 0 ≤ j ≤ N − 2,

suggesting that the action of the transfer matrix in the
bulk solution space is closely related to the one of the left
shift T . When restricted to M1,N , the above yields the
following operator identity:

(t(ε)− z1d)jP1,2

∣∣∣
M1,N

= P1,2(T − z1N )j
∣∣∣
M1,N

, (61)

with z ∈ C. This relation may be used to establish a
direct connection between the basis of the bulk solution
space described in the generalized Bloch theorem, and
the Jordan structure of the transfer matrix. In the ab-
sence of power-law solutions, each bulk solution |ψ`s〉 is
annihilated by P1,2(T − z`1N ) = P1,2[PB(T − z`1N )]. In
such cases, Eq. (61) reads

(t(ε)− z`1d)P1,2|ψ`s〉 = P1,2(T − z`1N )|ψ`s〉 = 0,

implying that P1,2|ψ`s〉 is an eigenvector of t(ε) with
eigenvalue z`. Naturally, a Bloch wave-like bulk solution
corresponds to an eigenvalue on the unit circle, whereas
an exponential solution corresponds to one inside or out-
side the unit circle, in agreement with the literature32.

While, as remarked, the transfer matrix is typically
assumed to be diagonalizable, we now show that general-
ized eigenvectors of t(ε) are physically meaningful, and in
fact related to the power-law solutions of the bulk equa-
tion. Let ε be a value of energy for which power-law
solutions are present. We can then generalize our earlier
calculation for the eigenvectors of the transfer matrix by
noting that each |ψ`s〉 is annihilated by P1,2(T−z`1N )s` ,
where s` is the multiplicity of the root z` as usual. Then,
a similar calculation reveals that P1,2|ψ`s〉 is a general-
ized eigenvector of t(ε), satisfying

(t(ε)− z`1d)s`P1,2|ψ`s〉 = 0.

Thus, generalized eigenvectors of the transfer matrix are
projections of solutions with a power-law prefactor. In
some non-generic scenarios, they indeed contribute to the
energy eigenstates, as we discussed67.

This analysis is vividly exemplified by the parameter
regime corresponding to the circle of oscillations in the
Majorana chain, Eq. (50), which we found to be associ-
ated to a zero-energy power-law Majorana wavefunction.
Accordingly, we expect the corresponding transfer matrix
to possess generalized eigenvectors of rank two, failing to
be diagonalizable. Let us verify this explicitly. Except
for the points µ = 0,∆/t = ±1 in this regime, the matrix
h1 in Eq. (47) is invertible. The transfer matrix is then

t(ε = 0)=
1

µ2

 0 0 µ2 0
0 0 0 µ2

−4(t2 + ∆2) −8t∆ −4tµ −4∆µ
−8t∆ −4(t2 + ∆2) −4∆µ −4tµ

,
where µ, t and ∆ satisfy Eq. (50). It can be checked
that t(ε = 0) has only two eigenvalues, namely, z` =
−2(t+ (−1)`∆)/µ, ` = 1, 2, each of algebraic multiplic-
ity two, and that both of these eigenvalues have only one
eigenvector, given by

P1,2|z`, 1〉|u`〉 =


z`

(−1)`z`
z2
`

(−1)`z2
`

 ,
hence geometric multiplicity equal to one. Both z1, z2

are then defective, making t(ε = 0) not diagonalizable.
In fact, t(ε = 0) has one generalized eigenvector of rank
two corresponding to each eigenvalue, given by

P1,2|z`, 2〉|u`〉 =


1

(−1)`

(2z`)
(−1)`(2z`)

 .
Returning to the general case, a number of additional

remarks are worth making, in regard to points of contact
and differences between the transfer matrix approach
and our generalized Bloch theorem. First, the eigen-
state Ansatz obtained from the analytic continuation of
the Bloch Hamiltonian provides a global characterization
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of energy eigenvectors (and generalized eigenvectors), as
opposed to the local characterization afforded within the
transfer-matrix approach, whereby each eigenvector is re-
constructed “iteratively” for any given eigenvalue. Fur-
ther to that, the generalized Bloch theorem unveils the
role of non-unitary representations of translational sym-
metry for finite systems. Perhaps most importantly, the
two methods differ in the way BCs are handled. Clearly,
in both approaches it is necessary to match BCs in order
to obtain the physical energy spectrum. While open BCs
are most commonly used in transfer-matrix calculations,
the method has also been applied to relaxed surfaces32

and generalized periodic BCs68, all of which belong to
the class of BCs considered in this paper. In this sense,
it is tempting to compare Eq. (60) with the condition on
the determinant of the boundary matrix, detB(ε) = 0.
However, the class of BCs to which the transfer matrix
approach can be successfully applied is not a priori clear,
thus whether such a condition can be established for as
general a class of BCs as our theorem covers has not been
investigated to the best of our knowledge.

From a numerical standpoint, the computational com-
plexity of the standard transfer matrix method for clean
systems (when applicable) is independent of the system
size N , as is the case of our scan-in-energy algorithm
in Sec. IV A. In those cases where inversion of certain
matrices is a difficulty and inversion-free approaches are
used65,66, the latter also have a comparable computa-
tional complexity to our method. Interestingly, all ap-
proaches so far that are truly inversion-free rely at some
point or another on the solution of a non-linear eigen-
value problem67. Thanks to the fact that, as noted, the
construction of t(ε) in the generic case relies only on the
banded structure of HN , bulk disorder can be handled
efficiently within transfer-matrix approaches, albeit for a
limited class of BCs. For general BCs as we consider, it
is thus natural to combine the transfer matrix approach
with the bulk-boundary separation we have introduced,
in order to still find solutions efficiently: the transfer ma-
trix can be employed to find all possible solutions of the
bulk equation in the presence of bulk disorder, and the
latter can then be used as input for the boundary matrix,
that provides a condition for energy eigenstates.

VIII. DISCUSSION AND OUTLOOK

We have formulated a generalization of Bloch’s theo-
rem applicable to clean systems of independent fermions
on a lattice, subject to BCs that are arbitrary – other
than respecting the finite-range nature of the overall
Hamiltonian. This generalization, which leverages a re-
formulation of the problem in terms of corner-modified
block-Toeplitz matrices, affords exact, analytical expres-
sions for all the energy eigenvalues and eigenstates of
the system – which consistently recovers the ones derived
from the standard Bloch’s theorem for periodic BCs. As
a key component to this theorem, one obtains an exact

structural Ansatz, close in spirit to the Bethe Ansatz, for
all (regular) energy eigenstates in dispersive bands. This
Ansatz is easy to construct since it depends only on the
energy eigenvalue and the bulk properties of the Hamil-
tonian. The individual components of this Ansatz reflect
translation invariance in a way we have made precise and
are, as such, determined by the analytic continuation of
the Bloch Hamiltonian, as shown.

Based on the generalized Bloch theorem, we have pro-
vided both a numerical and an algebraic diagonalization
algorithm for the class of quadratic Hamiltonians un-
der consideration. For generic energy values, the former
is computationally more efficient than existing ones in
that its complexity is independent upon the system size;
the latter is especially well-suited for symbolic computa-
tion or pen-and-paper solutions, as we explicitly demon-
strated by solving in closed form a number of tight-
binding Hamiltonians of interest, under various BCs.
With an eye toward applications in synthetic quantum
matter, we have also used the generalized Bloch theorem
to engineer a quasi one-dimensional Hamiltonian that
support a perfectly localized, robust zero-energy mode,
notwithstanding the lack of chiral and charge-conjugation
protecting symmetries.

Our generalized Bloch theorem predicts the existence,
under specific (non-generic) conditions, of edge states
that decay exponentially in space with a power-law pref-
actor. Such exotic states were previously believed to arise
only in systems with long-range couplings. In our frame-
work, their origin may be traced back to the descrip-
tion of the system’s eigenstates in terms of non-unitary
representations of translation symmetry “outside Hilbert
space” – again capturing the fact that such a symmetry
is only mildly broken by the BCs, in a precise sense. No-
tably, we have shown how the emergence of zero-energy
Majorana modes with a linear prefactor is possible in the
paradigmatic Kitaev chain by proper Hamiltonian tuning
on the so-called “circle of oscillations”. Their “critical”
spatial behavior separates the theoretically observed Ma-
jorana wavefunction oscillations inside such a circle from
the simple exponential decay outside.

While our generalized Bloch theorem makes no predic-
tion about the (singular) energy values which correspond
to dispersionless (flat) bands of eigenstates, we have pro-
vided a prescription for identifying such energy values
without diagonalizing the full Hamiltonian, and showed
how they necessarily enter the physical energy spectrum
irrespective of the BCs. In such singular cases, we have
further provided a procedure to effectively obtain a (pos-
sibly overcomplete) basis of perfectly localized states using
an analytic continuation of the Bloch Hamiltonian, and
explicitly illustrated such a procedure in the Kitaev’s Ma-
jorana chain Hamiltonian at its sweet spot.

Building on our proposal in Ref. [19], we have rigor-
ously derived and further explored a proposed boundary
indicator for the bulk-boundary correspondence, which
diverges if and only if the system hosts a bound mode.
This indicator leverages the other key component to our
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generalized Bloch theorem, the boundary matrix, and is
unique in the sense that, unlike most other indicators
in the literature, it combines information from both the
bulk and the boundary. The utility of this indicator is
seen from our analysis of the 4π-periodic Josephson effect
in a model of a s-wave topological superconductor. In the
process, we show how, interestingly, the 4π-periodicity
that distinguishes a topologically nontrivial response is
not accompanied by a fermionic parity switch in this sys-
tem. We have provided a physical explanation of this be-
havior by exhibiting a decoupling transformation, which
maps the relevant Hamiltonian to two uncoupled “vir-
tual” wires – each undergoing a parity switch.

Finally, for systems where no bulk disorder is present,
and subject to BCs for which the transfer matrix ap-
proach is also applicable, we have shown how the gener-
alized Bloch theorem may be used to obtain a physical
interpretation of the transfer matrix’s generalized eigen-
vectors, in terms of bulk solutions with a power-law pref-
actor. An explicit example is seen, again, in the semi-
infinite Kitaev’s chain with open BCs, precisely in the
same circle-of-oscillations parameter regime that hosts
power-law zero-energy Majorana modes. While, in this
way, our method provides yet another inversion-free al-
ternative to the standard transfer-matrix approach, the
connections we have identified point to further possibili-
ties for fruitfully combining the two approaches. In par-
ticular, since the bulk-boundary separation we propose
remains useful in the presence of bulk disorder, one may
envision a hybrid approach for solving disordered systems
subject to arbitrary BCs, by employing transfer-matrix
techniques to handle the resulting bulk equation.

The tools we have developed here may serve as the
starting point for a number of additional studies and ap-
plications. As mentioned, in the companion paper23, we
will provide a formulation of the bulk-solution Ansatz
and the generalized Bloch theorem further accounting
for the role played by the transverse momentum (k‖) in
higher-dimensional systems with non-trivial boundaries –
as opposed to the single k‖-analysis presented here. We
will show that topological power-law modes discussed in
this paper are not just a feature of one-dimensional sys-
tems, and indeed are present in higher dimensions too.
Beside exploring the interplay between k‖, the boundary
matrix, and the edge states in a number of paradigmatic
model Hamiltonians, we will also demonstrate how the
treatment of one-dimensional homogeneous systems can
be effectively extended to those of interfaces. From a
computational standpoint, we expect that the diagonal-
ization algorithms emerging from our approach will be
useful for large-scale electronic calculations in both one-
and higher- dimensions, possibly in conjunction with per-
turbative approaches for incorporating interactions.

Towards a deeper understanding of the bulk-boundary
correspondence in topological insulators and supercon-
ductors, an important next step is to study the robust-
ness of edge states against boundary perturbations, and
more directly connect our approach to bulk and boundary

invariants for systems that are classified as topologically
non-trivial69. It is natural to start by asking how cer-
tain symmetries of the system influence the nature of the
proposed indicator, or the boundary matrix from which
the indicator itself is derived. This can possibly lead to
identifying a symmetry principle which dictates the bulk-
boundary correspondence, as well as an interpretation at
the basic dynamical-system level in terms of stability the-
ory. Likewise, the framework we have developed may also
serve as a concrete starting point for rigorously deriving
an effective boundary theory for lattice systems and for
exploring generalizations of the concept of Wannier func-
tion in the presence of arbitrary BCs.

Lastly, while we have focused on fermions in this paper,
the general foundation of our method laid out in Ref. [20]
is equally valid for bosons and immediately applicable
to non-Hermitian effective Hamiltonians with non-trivial
boundaries, as often arising in semi-classical models of
open quantum systems in various contexts70–73. We
plan to explore the corresponding generalized Bloch theo-
rems in forthcoming publications, and to ultimately pro-
vide extensions to Markovian open quantum systems de-
scribed by quadratic Lindblad master equations.
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Appendix A: Further discussion on arbitrary BCs

Section II imposes two restrictions on the allowed form

of BCs, described by Ŵ . The first restricts the non-trivial

action of Ŵ to the boundary hyperplanes. Since the cor-
responding single-particle operator W satisfies the rela-
tion PBW = 0, with PB being the bulk projector associ-
ated toHN , W can be thought of as a corner-modification
of the banded block-Toeplitz matrix HN . The operators
HN+W represent boundary value problems in such a way
that a change of BCs is encoded in a change of W . The
intuition behind these ideas comes from finite-difference
methods for solving differential equations. We briefly il-
luminate this connection here.

Consider for concreteness the Schrödinger boundary
value problem

ψ(0) = ψ(L) = 0,(
− 1

2

d2

dx2
− ε
)
ψ(x) = 0 for x ∈ (0, L),

describing a particle in an infinite one-dimensional po-
tential well. The discretization x 7→ xj = j∆x, with
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j = 0, 1, . . . , N + 1 = L/∆x, reduces this problem to the
lattice boundary value problem

ψ(x0) = ψ(xN+1) = 0, (A1)

−1

2
ψ(xj−1) + (1− ε)ψ(xj)−

1

2
ψ(xj+1) = 0, (A2)

in terms of the centered second difference approximation
to the Laplacian. This set of linear equations is equiva-
lent to the eigenvalue equation (HN − ε1N )|ψ〉 = 0, with

HN = −1

2
(T + T †) + 1N and |ψ〉 ≡

N∑
j=1

|j〉ψ(xj).

By comparison, the more general BCs

α1ψ(0) + β1
dψ

dx
(0+) = 0, α2ψ(L) + β2

dψ

dx
(L−) = 0,

lead to the lattice boundary value problem

α1ψ(x0) + β1
ψ(x1)− ψ(x0)

∆x
= 0, (A3)

α2ψ(xN+1) + β2
ψ(xN+1)− ψ(xN )

∆x
= 0, (A4)

together with Eq. (A2). The system of linear equations in
Eqs. (A2)–(A4) is equivalent to the eigenvalue problem
(HN +W − ε1N )|ψ〉 = 0, with

W =
β1

2(α1∆x− β1)
|1〉〈1| − β2

2(α2∆x+ β2)
|N〉〈N |,

a corner modification of the lattice Laplacian HN . For
the special case α1 = α2, β1 = −β2, we have discussed
the exact diagonalization of HN +W in Sec. V A.

Appendix B: Algebras of shift operators

Consider the topologically inequivalent manifolds cor-
responding to the finite line segment, the circle (of finite
or infinite radius), the semi-infinite line, and the infinite
line, as illustrated in Fig. 9. Given a physical system
whose state space has support on those manifolds, one
can define distinct shift (or translation by a distance a)
operators acting on the physical states. Certainly, those
shift operators encode topological information that de-
pending on the circumstances may have physical conse-
quences. In the following we will study the algebra of
those shift operators. The subtle difference between the
various shift (or translation) operators is reflected in the
fundamental discussions that led to the modern theory
of macroscopic electric polarization in many-body sys-
tems in terms of Berry phases74–76, and the concomitant
definition of the position operator in extended systems77.

The finite line segment.— This section is based on
Ref. [78], where the matrices we are about to consider
appeared with a different physical meaning. Consider

compact

boundary

Y

NY

N

circle   line

 line segment semi−line 

FIG. 9. Four topologically inequivalent one-dimensional man-
ifolds. The classification (Yes = Y, No = N) encompasses
compactness and whether the boundary is empty.

a line of finite length L = Na, written in terms of a
characteristic length a, typically defined by a periodic
potential or lattice. The left shift operator is given by

T =
∑N−1
j=1 |j〉〈j + 1|, in terms of the orthonormal lat-

tice states |j〉. The lattice state |1〉 is annihilated by T ,
T |1〉 = 0, and |N〉 is annihilated by T †, mirroring the
fact that the boundary of a line segment consists of two
points. For states other than |1〉, |N〉, T and T † act as or-
dinary translations, to the left or right respectively, i.e.,
T |j〉 = |j − 1〉 and T †|j〉 = |j + 1〉.

While T can be regarded as the generator of bulk trans-
lations, it is not a unitary transformation. Instead,

T s(T †)s + (T †)N−sTN−s = 1, s = 1, . . . , N − 1,

and notice also that TN = 0. The commutator [T, T †] =
|1〉〈1| − |N〉〈N | captures the extent of translation-
symmetry breaking introduced by the BCs. The lattice-

regularized position operator X =
∑N
j=1 j |j〉〈j| satisfies

[X,T ] = −T. (B1)

While this is formally analogous to [x, eip/~] = −eip/~,
care must be exercised, because of issues of definition of
the domains of functions where operators act upon.

The circle.— The other compact one-dimensional man-
ifold is the circle. The standard (periodic) left shift op-
erator in this case is given by

V =

N−1∑
j=1

|j〉〈j + 1|+ |N〉〈1| = T + (T †)N−1.

No lattice state |j〉 is annihilated by either V or V †, be-
cause the circle is a manifold with no boundary. One can
further check that V V † = 1 = V N . The relation between
periodic shifts and the position operator X is better de-
scribed in terms of U ≡ ei

2π
N X , since then we have the
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Heisenberg-Weyl relation

V U = ei
2π
N UV. (B2)

This Heisenberg-Weyl algebra is well-known in statisti-
cal mechanics in connection to clock models79, but its
relevance to tight-binding models appears to have gone
unnoticed. The two generators are related by the discrete
Fourier transform F as FUF † = V † and FV F † = U , see
for example Ref. [79] for more details and references.

By comparing Eq. (B1) to Eq. (B2), one sees that the
U(1)-symmetry of the shift algebra associated to the line
segment is broken to a ZN -symmetry for the circle. In
practice, the full U(1) symmetry is recovered by intro-
ducing twisted generalizations of the Heisenberg-Weyl
algebra, VφUφ = ei

2π
N UφVφ, V

N
φ = eiφ1, with Uφ and

Vφ unitary. Their meaning is clear in terms of tight-
binding models: twisted Heisenberg-Weyl algebras de-
scribe problems subject to generalized Born-von-Karman
BCs, needed e.g. for defining topological invariants. A
representation of these algebras is given by

Uφ = U, Vφ =

N∑
j=1

ei
φ
N |j〉〈j + 1|+ ei

φ
N |N〉〈1|.

In statistical mechanics, our twisted Heisenberg-Weyl al-
gebras are connected to chiral Potts models, but this con-
nection seems to be unknown in the literature.

The semi-infinite line.— The left and right unilateral
shifts T−, T

?
− were introduced in Sec. III C 2. The com-

mutator [T−,T
†
−] = |1〉〈1| captures in some sense the

extent of translation symmetry breaking. The lattice
position operator X− =

∑∞
j=1 j |j〉〈j| satisfies the com-

mutation relations [X−,T−] = −T−, [X−,T
?
−] = T ?−.

The relation T ?− = T †− holds if the domain of these lin-
ear transformations is restricted to the Hilbert space of
square summable half-infinite sequences.

The real line.— The shift operator is T ≡∑j∈Z |j〉〈j+
1|, and it is unitary when restricted to the Hilbert space
of square-summable sequences, that is, T−1 = T †. We
carefully refrained from restricting T so in Sec. III C 1.
With X ≡ ∑j∈Z j |j〉〈j| (an unbounded Hermitian op-

erator in Hilbert space), one can show that [X,T ] =
−T , [X,T−1] = T−1 both in and out of Hilbert space.

In summary, the shift operators associated to the finite
and the semi-infinite line segment do not commute with
their adjoints, reflecting the presence of boundary points
for these topologies. In contrast, the shift operators de-
fined on the circle and the line V and T do commute
with their adjoints (or inverses) and are unitary (or just
invertible) – which is why they can represent transla-
tion symmetry. As a consequence, V, V † can be diago-
nalized simultaneously, and the same goes for T ,T †80.
Their eigenvalues lay on the unit circle due to unitarity.
The key difference between these two types of translation
symmetry stems from their interplay with lattice position
operators. For all the shift algebras but the one associ-
ated to the circle, the position operators generate U(1)

rotations of the shift operators. For the Heisenberg-Weyl
algebra, this U(1) symmetry appears instead as a family
of inequivalent unitary irreducible representations of the
defining relation Eq. (B2).

Appendix C: Emergent solutions at regular energies

This appendix provides further mathematical detail on
the procedure for computing emergent bulk solutions out-
lined in Sec. III C 2. Specifically, we pick up the discus-
sion where we left it therein, right after the definition of
the matrix polynomial K−(ε,T−) in Eq. (26).

Left-localized emergent bulk solutions.— In analogy to
the sequences Φz,v associated to T in Eq. (17), let us
define states

Υ−z,1 ≡
∞∑
j=0

zj |j + 1〉,

Υ−z,v ≡
1

(v − 1)!

dv−1

dzv−1
Υ−z,1, v = 2, 3, . . . . (C1)

in such a way that Υ−0,v = |j = v〉 and, also,

Υ−z |u〉 ≡
v∑
x=1

Υ−z,x|ux〉 =
[
Υ−z,1 . . . Υ−z,v

] |u1〉
...
|uv〉

 .
It is then immediate to verify that

K−(ε,T−)Υ−z,1|u1〉 = Υ−z,1K
−(ε, z)|u1〉.

Moreover, using Eq. (C1), one also obtains

K−(ε,T−)Υ−z |u〉=
[
Υ−z,1 . . . Υ−z,v

]
K−v (ε, z)

|u1〉
...
|uv〉

,(C2)

in terms of the upper-triangular v × v block matrix

[K−v (ε, z)]xx′ =
1

(x′ − x)!

dx
′−xK−(ε, z)

dzx′−x
, 1 ≤ x ≤ x′ ≤ v.

It will be crucial for later use to notice that K−v (ε, z) is
a block-Toeplitz matrix.

Both K−v (ε, z) and Hv(z) are defined by the same for-
mula, recall Eq. (20). The key difference between the two
is that K−v (ε, z) is well-defined also at z = 0. So suppose
that z0 = 0 is a root of P (ε, z) of multiplicity s0 > 0.
Then, one can show using tools from Ref. [20], that there
are precisely s0 independent solutions of the equation
K−s0(ε, z0 = 0)|u−s 〉 = 0, s = 1, . . . , s0. The corresponding
emergent bulk solutions are

|ψ−s 〉 = P1,NΥ−0 |u−s 〉 =

s0∑
j=1

|j〉|u−sj〉.
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They are localized on the left edge over the first s0 sites.
For Hermitian Hamiltonians, s0 ≤ dR necessarily.

Right-localized emergent bulk solutions.— Left-
localized emergent bulk solutions cannot appear alone;
they can only appear in conjunction with a set of
right-localized emergent bulk solutions. The reason is as
follows. Consider the unitary, Hermitian operator

U = U† ≡
N∑
j=1

|N − j + 1〉〈j| ⊗ 1d, U2 = 1dN ,

which implements a mirror transformation of the lattice,
by acting trivially on internal states. The transformed
Hamiltonian is the Hermitian block-Toeplitz matrix

H̃N = UHNU = 1N ⊗ h0 +

R∑
r=1

(T r ⊗ h†r + T r † ⊗ hr),

in which the hopping matrices have been exchanged as
hr ↔ h†r. Therefore, the left-localized emergent bulk

solutions for H̃N are dictated by the matrix K̃−(ε) with

entries [K̃−(ε)]ij = [K−(ε)]†ij . If |ψ̃−〉 denotes a left-

localized emergent solution for H̃N , then

0 = PB(H̃N − ε)|ψ̃−s 〉 = UPB(H − ε)U |ψ̃−s 〉,

implying that the state U |ψ̃−s 〉 =
∑s0
j=1 |N−j+1〉|ũ−sj〉 is

an emergent bulk solution for HN , localized on the right

edge. Similarly, the left-localized emergent bulk solutions
of HN are in one-to-one correspondence with the right-

localized emergent solutions of H̃N . This conclusion re-
lies havily on the commutation relation PBU = UPB ,
which is always necessarily true for closed systems (Her-
mitian Hamiltonians), as we considered here.

But how can we compute the right-localized emergent
bulk solutions directly in terms of HN? In Sec. III C 2,
we answered this question with the help of the matrix
K+(ε) ≡ K−(ε)†. We will justify this answer here. Let

|ψ̃−s 〉 =
∑s0
j=1 |j〉|ũ−sj〉, s = 1, . . . , s0, denote the left-

localized emergent solutions associated to H̃N , and let

|ψ+
s 〉 ≡

s0∑
j=1

|N − s0 + j〉|u+
sj〉 = U |ψ̃−s 〉, s = 1, . . . , s0,

denote the corresponding right-localized emergent solu-
tions of HN , so that |u+

sj〉 ≡ |ũ−s,s0−j+1〉. Our goal is

to show that the arrays |u+
s 〉 =

[
|u+
s1〉 . . . |u+

ss0〉
]T
,

s = 1, . . . , s0, are annihilated by K+(ε). Because |u+
s 〉 =

Ũ |ũ−s 〉, with Ũ = Ũ† =
∑s0
j=1 |j〉〈s0− j+ 1|, we conclude

that K+(ε) is related to K̃−(ε) via K+(ε) = ŨK̃−(ε)Ũ .
This leads to the entries

[K+(ε)]ij = [K̃−(ε)]s0−i+1,s0−j+1 = [K−(ε)]†ji,

thanks to the fact that K−(ε) is a block-Toeplitz matrix.
Hence, K+(ε) = [K−(ε)]†, as desired.
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