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We develop a unified theoretical picture for excitations in Mott systems, portraying both the heavy
quasiparticle excitations and the Hubbard bands as features of an emergent Fermi liquid state formed
in an extended Hilbert space, which is non-perturbatively connected to the physical system. This
observation sheds light on the fact that even the incoherent excitations in strongly correlated matter
often display a well defined Bloch character, with pronounced momentum dispersion. Furthermore,
it indicates that the Mott point can be viewed as a topological transition, where the number of
distinct dispersing bands displays a sudden change at the critical point. Our results, obtained from
an appropriate variational principle, display also remarkable quantitative accuracy. This opens an
exciting avenue for fast realistic modeling of strongly correlated materials.
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Introduction:— The physical nature of the excited
states in strongly interacting quantum systems has long
been a subject of much controversy and debate. Deeper
understanding was achieved by Landau, more than half
a century ago1, who realized that in systems of fermions
the Pauli principle provides a spectacular simplification.
He showed that many properties of Fermi systems can
be understood in terms of weakly interacting quasipar-
ticles (QP), allowing a precise and detailed description
of strongly correlated matter. Modern experiments pro-
vide for even more direct evidence of such QP excita-
tions, for example from using angle-resolved photoemis-
sion spectroscopy (ARPES)2 or scanning-tunneling mi-
croscopy (STM) methods3.

The Fermi liquid paradigm, however, describes only
the low energy excitations. At higher energies, the phys-
ical properties are often dominated by incoherent pro-
cesses, which do not conform to the Landau picture. The
task to provide a simple and robust theoretical descrip-
tion of such incoherent excitations has therefore emerged
as a central challenge of contemporary physics. An in-
triguing apparent paradox is most evident around the
Mott point. Here, ARPES and STM experiments provide
often clear evidence of additional well-defined high energy
excitations (Hubbard bands) which, while being fairly in-
coherent, still display relatively well defined Bloch char-
acter with pronounced momentum dispersion, see, e.g.,
Ref.4. As a matter of fact, it is often difficult to exper-
imentally even distinguish the Hubbard bands found in
Mott insulators from ordinary Bloch bands found at high
energy in conventional band insulators. While such be-
havior can be already numerically reproduced by some
modern many-body approximations5,6, a simple concep-
tual picture for the apparent Bloch character of such high
energy charge excitations is not still available. In partic-
ular, variational methods such as the Gutzwiller Approx-
imation (GA)7 — which are often able to reproduce the
numerical results in a much simpler semi-analytical fash-
ion — generally capture only the low-lying QP features

on the metallic side, but cannot provide a description
of charge excitations around the Mott point and in the
insulating regime.

The goal of this Rapid Communication is to write an
appropriate variational wave function able to capture the
main features of both the (low energy) QP bands and the
(high energy) Hubbard bands, within the same theoret-
ical framework. A particularly interesting fact emerg-
ing from our theory is that many key attributes of both
types of excitations are encoded in the bare density of
states (DOS) of the uncorrelated system and a few renor-
malization parameters — in a similar fashion as for the
QP excitations in Landau theory of Fermi liquids. This
is accomplished, similarly as in many other theories for
many-body systems, see, e.g., Refs.8–10, by enlarging the
Hilbert space by introducing auxiliary ”ghost” degrees
of freedom. In particular, this construction sheds light
on the physical origin of the ”hidden” Bloch character of
the Hubbard bands mentioned above. Our calculations of
the single-band Hubbard model, which are benchmarked
against the Dynamical Mean Field Theory (DMFT)5,6

solution, show that the new wave function quantitatively
captures not only the dispersion of the QP but also of the
Hubbard bands. Furthermore, our theory enables us to
describe the Mott transition and the coexistence region
between the metallic and the Mott-insulator phases.
Ghost GA theory:— For simplicity, our theory will be

formulated here for the single-band Hubbard model

Ĥ =
∑
RR′

∑
σ

tRR′ c
†
RσcR′σ +

∑
Rσ

U n̂R↑n̂R↓ (1)

at half-filling. The generalization to arbitrary multi-
orbital Hubbard Hamiltonians is straightforward11.

In order to construct the Ghost-GA theory we are go-
ing to embed the physical Hamiltonian of the system
[Eq. (1)] within an extended Hilbert space obtained by
introducing auxiliary Fermionic ”ghost” degrees of free-
dom not coupled with the physical orbitals, see Fig. 1.
Let us represent Ĥ within the extended Hilbert space
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Figure 1: (Color online) Representation of a lattice including
2 ghost orbitals (α = 2, 3). The Hamiltonian of the system
acts as 0 over the the auxiliary ghost degrees of freedom. The
Hubbard interaction U acts only on the physical orbital α = 1.

mentioned above as follows:

Ĥ =
∑
RR′

∑
αβσ

t̃αβRR′ c
†
RασcR′βσ +

∑
R

U n̂R1↑n̂R1↓

=
∑
k

∑
αβσ

ε̃αβk c†kασckβσ +
∑
R

U n̂R1↑n̂R1↓ , (2)

where t̃11RR′ = tRR′ are the physical hopping parameters,

ε̃11k = εk are the eigenvalues of the first term of Ĥ, t̃αβRR′ =

ε̃αβk = 0 ∀ (α, β) 6= (1, 1) and σ is the spin.
Our theory consists in applying the ordinary multi-

orbital GA theory14–18 to Eq (2). In other words, the

expectation value of Ĥ is optimized variationally with
respect to a Gutzwiller wave function represented as
|ΨG〉 = P̂G|Ψ0〉, where |Ψ0〉 is the most general Slater

determinant, P̂G =
∏
R P̂R, and P̂R acts over all of the

local degrees of freedom labeled by R — including the
ghost orbitals α > 1 — and commutes with the total

number operator
∑
ασ c

†
RασcRασ. The variational wave

function is restricted by the following conditions:

〈Ψ0| P̂†RP̂R |Ψ0〉 = 〈Ψ0|Ψ0〉 (3)

〈Ψ0| P̂†RP̂R c
†
RασcRβσ |Ψ0〉 = 〈Ψ0| c†RασcRβσ |Ψ0〉 , (4)

which are commonly called ”Gutzwiller constraints”.
Furthermore, the so called ”Gutzwiller Approximation”7

— which is exact in the limit of infinite dimensions
(where DMFT is exact) — is employed. The minimiza-
tion of the variational energy will be performed by em-
ploying the algorithms derived in Ref.19.

Note that extending the Hilbert space by introducing
the ghost orbitals does not affect the physical Hubbard
Hamiltonian Ĥ, as all of its terms involving ghost orbitals
are multiplied by 0, see Eq. (2).

The advantage of enlarging the Hilbert space arises
from the fact that the resulting Ghost-GA variational
wavefunction is substantially richer with respect to the
ordinary GA11. In particular, |Ψ0〉 is variationally al-
lowed to be any multi-orbital Slater determinant ly-
ing within the the whole extended Hilbert space, i.e.,

to display entanglement between physical and auxiliary
degrees of freedom. However, as proven explicitly in
the supplemental material11, the Gutzwiller local oper-
ator P̂G =

∏
R P̂R, which is also variationally deter-

mined, maps |Ψ0〉 into a physical correlated wavefunc-

tion |ΨG〉 = P̂G|Ψ0〉, i.e., into a many-body state dis-
entangled from the auxiliary ghost space (consistently

with the fact that Ĥ depends exclusively on the physical
degrees of freedom). Thus, the benefit of enlarging the
Hilbert space is that it enables us to extend the ordinary
GA variational space, while retaining the mathematical
structure of the conventional GA theory.

We point out that the Ghost-GA variational construc-
tion outlined above presents insightful formal and physi-
cal analogies with the theories of Matrix Product States
(MPS) and Projected Entangled Pair States (PEPS)9,10,
which are also variational schemes involving virtual en-
tanglement and local maps from an auxiliary extended
Hilbert space into the physical space20.
Excitations:— As shown in previous works, see, e.g.,

Refs.16, the variational energy minimum of Ĥ is realized
by a wave function |ΨG〉 = P̂G|Ψ0〉 where |Ψ0〉 is the
ground state of a quadratic multi band Hamiltonian rep-
resented as

Ĥqp =
∑
kabσ

[
R̃ε̃kR̃†+λ̃

]
ab
f†kaσfkbσ=

∑
knσ

ε̃∗knψ
†
knσψknσ,

(5)
where fkaσ are related to ckaσ by a proper unitary
transformation14,16, the matrices R̃ and λ̃ are deter-

mined variationally, and ε̃∗kn and ψ†kaσ are the eigenval-

ues and eigenoperators of Ĥqp, respectively. The states

|Ψp
Gknσ〉 = P̂Gψ†knσ|Ψ0〉 and |Ψh

Gknσ〉 = P̂Gψknσ|Ψ0〉 rep-

resent excited states of Ĥ11,21,22.
The energy-resolved Green’s function of the physical

degrees of freedom (α = 1) can be evaluated in terms of
the excitations mentioned above11 and represented as

G(εk, ω)=

[
R̃† 1

ω−
(
R̃ε̃kR̃†+λ̃

)R̃]
11

=
[
ω−εk−Σ(ω)

]−1
,

(6)
where the subscript ”11” indicates that we are interested
only in the physical component α = β = 1 of the Green’s
function. As we are going to see, the Ghost-GA approx-
imation to the physical self-energy Σ(ω), see Eq. (6), is
generally a non-linear function of ω11,23,24 — while it
is linear by construction within the ordinary GA theory.
Note also that the poles of G(εk, ω) coincide with the

eigenvalues ε̃∗kn of Ĥqp, see Eqs. (5) and (6).
Application to the single-band Hubbard model:— Be-

low we apply our approach to the Hubbard Hamiltonian
[Eq. (2)] at half-filling assuming a semicircular DOS25,
which corresponds, e.g., to the Bethe lattice in the limit
of infinite connectivity, where DMFT is exact5. The half-
bandwidth D will be used as the unit of energy. The
extended Ghost-GA scheme will be applied following the
procedure of Ref.19, utilizing up to 2 ghost orbitals.
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In Fig. 2 is shown the evolution as a function of the
Hubbard interaction strength U of the Ghost-GA total
energy, the local double occupancy and the QP weight
z. Our results are shown in comparison with the or-
dinary GA theory and with DMFT in combination with
Numerical Renormalization Group (NRG). In particular,
we employed the ”NRG Ljubljana” impurity solver26.

The agreement between Ghost-GA and DMFT is quan-
titatively remarkable. In particular, the Ghost-GA the-
ory enables us to account for the coexistence region of
the Mott and metallic phases, which is not captured by
the ordinary GA theory. The values of the boundaries of
the coexistence region Uc1 ' 2, Uc2 ' 2.88 are in good
agreement with the DMFT results available in the liter-
ature27–30, i.e., Uc1 ' 2.39, Uc2 ' 2.94. The Ghost-GA
value of Uc2, which is the actual Mott transition point
at T = 0, is particularly accurate. The method also
gives a reasonable value for the very small energy scale
characterizing the coexistence region, which we can esti-
mate as Tc ' Eins(Uc1)− Emet(Uc1) ' 0.02, consistently
with both DMFT and experiments31,32. We point out
also that, as shown in the second panel of Fig. 2, the
Ghost-GA approach captures the charge fluctuations in
the Mott phase, while this is approximated by the simple
atomic limit (which has zero double occupancy) within
the Brinkman-Rice scenario33.

Interestingly, while at least 2 ghost orbitals are neces-
sary to obtain the data illustrated above for the Metallic
solution, 1 ghost orbital is sufficient to obtain our results
concerning the Mott phase. Increasing further the num-
ber of ghost orbitals does not lead to any appreciable
difference11. As we are going to show, this is connected
with the fact that the electronic structures of the Mott
and the metallic phases are topologically distinct.

Let us now analyze the Ghost-GA single-particle
Green’s function G(ε, ω), see Eq. (6). In Fig. 3 is
shown the Ghost-GA energy-resolved spectral function
A(ε, ω) = − 1

π ImG(ε, ω) in comparison with DMFT34.
Although the broadening of the bands (scattering rate),
is not captured by our approximation (as it is not cap-
tured by the ordinary GA), the positions and the weights
of the poles of the Ghost-GA spectral function encode
most of the DMFT features, not only at low energies (QP
excitations), but also at high energies (Hubbard bands).
In order to analyze how the spectral properties of the
system emerge within the Ghost-GA theory, it is partic-
ularly convenient to express the QP Hamiltonian [Eq. (5)]

in a gauge where λ̃ is diagonal35.

In the metallic phase, an explicit Ghost-GA calcula-
tion obtained employing 2 ghost orbitals shows that the
matrices R̃ and λ̃ are represented as follows:

λ̃ij = l δij(δ2i − δ3i) (7)

R̃ij = δj1

(√
z δi1 +

√
h (δi2 + δi3)/

√
2
)
, (8)

where δij is the Kronecker delta, and l, z and h are real
positive numbers determined numerically as in Ref.19.
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Figure 2: (Color online) Evolution of total energy (up-
per panel), local double occupancy (middle panel) and QP
weight (lower panel) as a function of the Hubbard interaction
strength U for the single-band Hubbard model with semicir-
cular DOS at half-filling. The Ghost-GA results are shown
in comparison with the ordinary GA and with DMFT+NRG.
The Ghost-GA boundaries of the coexistence region Uc1, Uc2

are indicated by vertical dotted lines. Inset: Integral of
Ghost-GA local spectral weight over all frequencies (see dis-
cussion in main text).

The corresponding self-energy, see Eq. (6), is36:

Σ(ω) =
ω

1 + 1

z−ω2−l2+2hω2

ω2−l2

= −1− z
z

ω + o(ω2) . (9)

Thus, the variational parameter z of Eq. (8) represents
the QP weight, whose behavior was displayed in the
third panel of Fig. 2. Note that the overall spectral
weight

∫
dω
∫
dε ρ(ε)A(ε, ω), where ρ(ε) is the semicir-

cular DOS, is not z as in the ordinary GA theory, but it
is z+h = [R̃†R̃]11, which is almost equal to 1 for all val-
ues of U (see the inset of the third panel in Fig. 2). The
additional spectral contribution h, which is not present in
the ordinary GA approximation, enables the Ghost-GA
theory to account for the Hubbard bands.

In the Mott phase, an explicit Ghost-GA calculation
obtained employing 1 ghost orbital shows that the ma-
trices R̃ and λ̃ are represented as follows:

λ̃ij = l δij(δ1i − δ2i) (10)
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Figure 3: (Color online) Poles of the Ghost-GA energy-
resolved Green’s function (bullets), see Eq. (6), in compar-
ison with DMFT+NRG. The size of the bullets indicates the
spectral weights of the corresponding poles. Metallic solution
for U = 1, 2.5 and Mott solution for U = 3.5, 5.

R̃ij = δj1
√
h (δi1 + δi2)/

√
2 , (11)

where l and h are real positive numbers determined nu-
merically as in Ref. 19. Note that h = [R̃†R̃]11 ' 1 (see
the inset of the third panel in Fig. 2). The corresponding
self-energy, see Eq. (6), is36:

Σ(ω) = −1− h
h

ω +
l2

h

1

ω
. (12)

The pole of the self energy at ω = 0, which is the source
of the Mott gap, is captured by the Ghost-GA theory.

The analysis above clarifies also why, by construction,
within the Ghost-GA approximation the self-energy can
develop poles, see Eqs. (9) and (12), but can not capture
branch-cut singularities on the real axis.

We point out that enlarging the Hilbert space has been
essential in order to capture the effect of the electron cor-
relations on the topology of the excitations — such as the
change of the number of bands at the Mott transition
(between 3 bands in the metallic phase and 2 bands in
the Mott phase). In fact, without extending the Hilbert
space, the ordinary GA theory enables only to renor-
malize and shift the band structure with respect to the
uncorrelated limit U = 0, without affecting its qualita-
tive topological structure. On the other hand, extending

the Hilbert space enables us to relax this constraint, as
G(ε, ω), see Eq. (6), is variationally allowed to have any
number of distinct poles equal or smaller to the corre-
sponding total (physical and ghost) number of orbitals11.
It is for this reasons that only 1 ghost (2 orbitals) is
sufficient to describe the Mott phase of the single-band
Hubbard model, while at least 2 ghosts (3 orbitals) are
necessary in order to describe its metallic phase — whose
spectra includes the QP excitations and the 2 Hubbard
bands. A remarkable aspect of this construction is that,
within the Ghost-GA theory, the information concerning
the spectral function — including the Hubbard bands —
is entirely encoded in only 3 parameters (z, h, l) in the
Metallic phase, and in 2 parameters (h, l) in the Mott
phase, see Eqs. (7), (8), (10), (11).

Conclusions:— We derived a unified theoretical pic-
ture for excitations in Mott systems based on a gener-
alization of the GA, which captures not only the low-
energy QP excitations, but also the Hubbard bands. The
key idea consists in enlarging the Hilbert space of the
system by introducing auxiliary ”ghost” orbitals. This
construction enables us to express analytically many im-
portant features of both types of excitations in terms
of the bare DOS of the uncorrelated system and a few
renormalization parameters, in a similar fashion as for
the QP excitations in Landau theory of Fermi liquids.
In particular, this provides us with a conceptual pic-
ture which assigns naturally a Bloch character to the
Hubbard bands even in Mott insulators. In this re-
spect, we note that our theory presents a few suggestive
analogies with the interesting idea of ”hidden Fermi liq-
uid”, previously introduced by P. W. Anderson37 within
the context of the BCS wave function (for superconduc-
tors) and the Laughlin’s Jastrow wave function (for the
Fractional Hall Effect). In fact, they both propose a
descriptions of non-Fermi liquid states related to ordi-
nary Fermi liquids residing in unphysical Hilbert spaces,
see, e.g., Ref.38. From the computational perspective,
the Ghost-GA theory constitutes a very promising tool
for ab-initio calculations in combination with Density
Functional Theory16,18,39–41, as it is substantially more
accurate with respect to the ordinary GA approxima-
tion, without much additional computational cost. In
fact, within the numerical scheme described in Refs.16,19,
our theory results in solving iteratively a finite impurity
model, where the number of bath sites grows linearly
with the total number of ghost orbitals11. Since there
exist numerous available techniques enabling to solve
efficiently this auxiliary problem, see, e.g., Refs.42–46,
this work opens an exciting avenue for realistic model-
ing of many challenging materials, including predictions
of ARPES spectra for complex orbitally-selective Mott
insulators and ”materials by design” of strongly corre-
lated electron systems. Furthermore, since the Ghost-
GA theory is based on the multi-orbital GA16,19, it can be
straightforwardly generalized to finite temperatures47–49,
to non-equilibrium problems50,51, and to calculate linear
response functions52. For the same reason, the Ghost-
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GA theory can be reformulated14,16,53 in terms of the
rotationally invariant slave boson (RISB) theory11,54,55,
whose exact operatorial foundation recently derived in
Ref.19 constitutes a starting point to calculate further
corrections56. It would be also interesting to apply the
ghost-orbital Hilbert space extension in combination with
the Variational Monte Carlo method57 or the generaliza-
tion of the GA to finite dimensions of Ref.58, which might
lead to a more accurate description of strongly correlated
electron systems, even beyond the DMFT approximation.
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G. Kotliar, Phys. Rev. Lett. 118, 126401 (2017).
20 Note also that, as the MPS, the Ghost-GA wavefunction

does not break artificially the translational invariance of
the system.

21 J. Bünemann, F. Gebhard, and R. Thul, Phys. Rev. B 67,
075103 (2003).
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U. Schollwöck, Phys. Rev. X 5, 041032 (2015).
43 H. Saberi, A. Weichselbaum, and J. von Delft, Phys. Rev.

B 78, 035124 (2008).
44 A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac,
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