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Dirac semimetals are three dimensional analog of graphene with massless Dirac fermions as low energy elec-
tronic excitations. In contrast to Weyl semimetals, the point nodes in the bulk spectrum of topological Dirac
semimetals have a vanishing Chern number, but can yet be stable due to the existence of crystalline symmetries
such as uniaxial (discrete) rotation symmetry. We consider a model low-energy Hamiltonian appropriate for the
recently discovered topological Dirac semimetal Cd3As2, and calculate the Nernst response within semiclassi-
cal Boltzmann dynamics in the relaxation time approximation. We show that, for small chemical potentials near
the Dirac points, the low temperature, low magnetic field, Nernst response is dominated by anomalous Nernst
effect, arising from a non-trivial profile of Berry curvature on the Fermi surface. Although the Nernst coeffi-
cient (both anomalous as well as conventional) vanish in the limit of zero magnetic field, the low temperature,
low magnetic field, Nernst response, which has an almost step like profile near B = 0, serves as an effective
experimental probe of anomalous Nernst effect in topological Dirac semimetals protected by crystalline sym-
metries. Additionally, we also calculate the Nernst response for a lattice model of an inversion asymmetric Weyl
semimetal for which, in contrast to the case of Dirac semimetal, we find that the conventional Nernst response
dominates over the anomalous. Our calculations in this paper on Nernst response of Dirac semimetal and inver-
sion broken Weyl semimetal are directly relevant to recent experiments on Cd3As2 (Dirac semimetal) and NbP
(inversion broken Weyl semimetal) respectively.

I. INTRODUCTION

Dirac semimetals (DSM) are three-dimensional (3D) ana-
log of graphene, with point nodes in the bulk energy spectrum
supporting low energy excitations with relativistic energy mo-
mentum relations resembling massless Dirac fermions1,2. In
principle they can arise at the quantum critical point between a
3D topological insulator and a conventional insulator with fine
tuning of an external parameter. Topological Dirac semimet-
als are stable 3D electron systems with bulk Dirac nodes pro-
tected by crystalline symmetries3–5. In DSM, owing to the
simultaneous presence of time reversal and space inversion
symmetries, the bulk energy bands are Kramers degenerate
locally at each k (En,σ(k) = En,−σ(k)). The Kramers de-
generacy ensures that an accidental crossing between valence
and conduction bands engenders a four-fold degenerate Dirac
node. Such four-fold degenerate nodes in the bulk energy
spectrum can be stable only in the presence of additional sym-
metries, such as uniaxial discrete crystal rotation symmetries
Cn

5. This can be contrasted with three dimensional topolog-
ical Weyl semimetals (WSM)1,6–8, where (two-fold degener-
ate) Weyl nodes in the bulk energy spectrum are stable due
to the existence of a non-zero Chern number invariant associ-
ated with each Weyl node. In DSM the simultaneous presence
of time reversal and space inversion symmetry ensures that
the Chern number vanishes for each Dirac node, which can in
turn be thought as the superposition of a pair of Weyl nodes
with equal and opposite chirality.

In recent studies several materials have been theoretically
proposed to be topological DSMs3,6,9–11. On the experimental
side, Cd3As212–19 and Na3Bi20–22 have been experimentally
confirmed to support three dimensional bulk Dirac nodes with
linear energy spectrum. In this work we take a system with
a pair of four-fold degenerate Dirac nodes on a high symme-
try axis (which we choose as the kz axis as the axis of Cn

crystal rotation symmetry) as a prototypical topological DSM.
The recently discovered DSMs, Cd3As2 and Na3Bi, are both
thought to be in this class. This class of DSMs are topological
because, since the Dirac points appear on the high symmetry
axis at (kx, ky, kz) = (0, 0,±kz0) the system is invariant un-
der a discrete rotation symmetry C4 about the kz axis, which
is responsible for the stability of the Dirac points. The C4

discrete rotation symmetry about the kz axis allows one to de-
fine an additional integer topological invariant (mirror Chern
number) on the kz = 0 plane5. The mirror symmetry appears
here as a result of the combination of space inversion symme-
try and π rotation about the kz axis, which follows from the
existence of the C4 symmetry.

Although topological DSMs have certain non-trivial topo-
logical properties such as surface Dirac fermions and zero en-
ergy Fermi loops, topological thermoelectric response such as
anomalous Hall and Nernst effects, which depend on non-zero
momentum space integrals of Berry curvature across surfaces
in the Brillouin zone, must vanish in the limit of zero mag-
netic field, because of the existence of time reversal symmetry.
Since anomalous Hall and Nernst conductivities arise from the
transverse current response (odd under time reversal) to an ap-
plied longitudinal electric field and temperature gradient (even
under time reversal), independent of an applied magnetic field
(odd under time reversal), it follows that the anomalous con-
ductivities must vanish in systems that preserve time reversal
symmetry. This can also be understood from the fact that the
Chern number of the Dirac nodes in a DSM, which measures
the flux of the Berry curvature over closed surfaces around
the Dirac node, is identically zero, and thus, in the absence
of a magnetic field, the net flux of the Berry curvature van-
ishes everywhere in the Brillouin zone. In the presence of a
magnetic field, however, time reversal symmetry is broken,
and topological DSMs reduce to WSMs, evincing anomalous
Hall and Nernst response, superimposed over the conventional
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conductivities which must also be present because of a non-
zero magnetic field.

In this paper we focus on the Nernst effect (conventional as
well as anomalous) in topological Dirac semimetals for small
magnetic fields (of the order of a few Tesla) and small chem-
ical potential within the framework of Boltzmann theory in
the relaxation time approximation. Using typical parameters23

for the scattering time τ ∼ 0.1ps and ωc ∼ 1meV , we find
ωcτ � 1, thus justifying our use of Boltzmann theory. We
also make the standard assumption that any perturbation in the
system decays exponentially with a relaxation time τ , which
is valid for small (fk − f0) with fk (f0) the perturbed (equi-
librium) distribution function. In our calculations we find that
the conventional Nernst response is small due to Sondheimer
cancellation, and can be of either sign depending on tempera-
ture, but the anomalous Nernst response is large and positive
because of the peak in the Berry curvature in the limit of small
chemical potentials. At low temperatures, the behavior of the
total Nernst coefficient is characterized by an almost step like
profile at B = 0. However, exactly at B = 0 there is no
Nernst signal from either conventional or anomalous contri-
butions, because of the restoration of time reversal symmetry.
The measured low-field Nernst coefficient, thus, is dominated
by the anomalous Nernst effect, at least in the limit of small
temperatures. Our results have direct experimental relevance
for Nernst and thermoelectric measurements on the available
topological Dirac semimetals Cd3As2 and Na3Bi. Very re-
cently, an anomalous Nernst signal has been reported in ther-
moelectric experiments on the Dirac semimetal Cd3As2 by
the Princeton group24, with a step-like profile at low magnetic
fields very similar to our prediction. For related work on ther-
moelectric response, although not for topological DSMs with
a pair of Dirac points as appropriate for Cd3As2 and Na3Bi,
see Ref. [25] and Ref. [26].

Additionally in this paper we also discuss Nernst response
of an inversion asymmetric WSM. Note that both the DSM
and the inversion broken WSM are TR invariant systems, so
a non-zero anomalous Nernst coefficient should be absent in
the absence of a magnetic field. However in the presence of
a magnetic field a DSM as well as an inversion broken WSM
should show an anomalous (induced by Berry curvature) as
well as a conventional Nernst response, both of which van-
ish in the limit of zero magnetic field. The Nernst effect in
inversion broken WSM is thus expected to be similar to that
in topological DSMs. However, we find that in the inversion
broken WSM the conventional Nernst coefficient dominates
over the anomalous contribution which is opposite to the case
in DSMs. Our calculations on Nernst response in DSM and
inversion broken WSM are directly relevant to recent experi-
ments in CD3As2 and NbP respectively24,27.

This paper is organized as follows. In Sec. II we in-
troduce the low energy Hamiltonian appropriate for a topo-
logical DSM with a pair of Dirac points on a high symme-
try axis. This model should serve as an effective descrip-
tion for the available topological DSM Cd3As2. In Sec. III
we briefly sketch the derivation of Nernst conductivity within
Boltzmann theory description in relaxation time approxima-
tion in the presence of a non-trivial Berry curvature. In the

presence of a non-zero magnetic field, the Nernst response of
topological DSMs comprise conventional as well as anoma-
lous components, which are then described in Sec. IV and
Sec. V, respectively. Our central results, plots for the total
Nernst conductivity (conventional as well as anomalous) as
a function of the applied magnetic field at several different
temperatures are displayed in Fig. 5. In Sec VI we addition-
ally discuss the Nernst response of an inversion asymmetric
WSM and point out the salient experimental features. In Sec
VII we compare our findings to that of the recent experiments
on Nernst response in Dirac semimetals and inversion broken
Weyl semmetals. We end with a brief discussion and conclu-
sion in Sec. VIII.

II. HAMILTONIAN FOR TOPOLOGICAL DSM

The effective low energy Hamiltonian for the Dirac
semimetal Cd3As2, in the basis |s, ↑〉, |px + ipy, ↑〉, |s, ↓〉,
|px − ipy, ↓〉 can be written as5,28

Hk = a(k)σzs0 + b(k)σxsz + c(k)σys0

+ d(k)σxsx + e(k)σxsy (1)

In Eq. 1, σ and s are Pauli matrices representing the orbital
degree of freedom and spin degree of freedom respectively.
The matrix s0 ≡ I2 is the two-dimensional identity matrix in
spin space. The functions a(k)− e(k) are defined as

a(k) = m0 −m1k
2
z −m2(k2x + k2y), (2)

b(k) = ηkx, (3)
c(k) = −ηky, (4)

d(k) = (β + γ)kz(k
2
y − k2x), (5)

e(k) = −2(β − γ)kzkxky, (6)

The parameters m0, m1, m2, η, β and γ depend on the mate-
rial. For example for Cd3As2 ab-inito calculations upto or-
der k2 yield m0 = .02eV , m1 = −18.77eV Å2, m2 =
−13.5eV Å2, η = 0.89eV Å29. This Hamiltonian produces
two Dirac points at K = (0, 0,±

√
m0/m1) where the energy

dispersion exactly vanishes. Fig. 1 shows the band structure
for the prototype DSM obtained by numerically diagonaliz-
ing Eq. 1. The effect of an external magnetic field B, cou-
pling to the spin degree of freedom can be now introduced
by adding the Zeeman term HZ = bzσ0sz in the Hamilto-
nian, where bz = −µ · B, µ being the spin-magnetic mo-
ment, µ = −µBgss/~. For typical experimental parameters
for NbP and Na3Bi (gs ∼ 20 − 40 and m∗ ∼ 0.11m0)23,30

we find that the Zeeman energy scale is ∼ 2meV and the
typical orbital energy scale ~ωc ∼ 0.9meV . Therefore for
the sake of simplicity in the following we ignore the orbital
coupling of the magnetic field to the Dirac electrons. With
the applied magnetic field the Hamiltonian now produces a
TR broken Weyl semimetal, with four Weyl points located at
(0, 0,±

√
(±bz +m0)/m1). Each Weyl node now carries a

non-trivial Chern number, which is also its chirality quantum
number. Fig. 1 also shows the band structure for the TR bro-
ken Weyl semimetal. Near half-filling, the Fermi surface for
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FIG. 1. Left panel: Band structure of the Dirac semimetal given
by Eq. 1 consisting of two four-fold degenerate Dirac points at
(0, 0,±

√
m0/m1). Right panel: The spin-degeneracy is lifted by

a magnetic field producing a total of four doubly-degenerate Weyl
points located at (0, 0,±

√
(±bz +m0)/m1). The parameters31

used were m2 = −η/5, m0 = −2η, m1 = −4η, β = −η/5,
γ = η, and bz = 0 (bz = 3η/5) for the (left) right panels. Bottom
panels: Fermi surfaces for the doped Dirac (Weyl) metals on the left
(right), when bz = 0 (bz = 3η/5), for µ = 0.16η. The parameter η
was chosen to be η = 50meV .

a Dirac semimetal consists of two disconnected spheres, as
shown in Fig. 1, for µ > 0. The Zeeman field then splits
each sphere into two disconnected surfaces around each Weyl
point. Although the topological DSM described by the Hamil-
tonian in Eq. 1 is characterized by a vanishing Berry curva-
ture, the topological WSM described by H = Hk + HZ has
a nontrivial profile of Berry curvature in the Brillouin zone.
The expression for the Berry curvature is given by32,

Ωnab = i
∑
n6=m

〈n|∂H/∂ka|m〉〈m|∂H/∂kb|n〉 − (a↔ b)

(εn − εm)2

(7)

The Hamiltonian H = Hk + HZ produces four bands which
we have labeled by the index n in the above expression. Also,
|n〉 is a Bloch eigenstate of the Hamiltonian H with eigen-
value εn. In Fig. 2 we have plotted the Berry curvature distri-
bution for the DSM with Zeeman coupling described by the
Hamiltonian H = Hk +HZ .

III. NERNST EFFECT IN THE PRESENCE OF BERRY
CURVATURE

The Nernst effect refers to the generation of a transverse
electric field in the presence of a longitudinal temperature gra-

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

ky

k
z

-1.0 -0.5 0.0 0.5 1.0

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ky

k
z

FIG. 2. Berry curvature flux for the topological DSM described
by the Hamiltonian given in Eq. 1, in the presence of a magnetic
field (in the presence of a magnetic field the system is effectively a
Weyl semimetal). The plot on the left shows the Berry curvature
in the plane kx = 0 suggesting a sink and source of Berry flux
near each Dirac point at (0, 0,±

√
m0/m1). On the right, we have

the Berry curvature distribution zoomed in near a single Dirac point
(0, 0,+

√
m0/m1) ≈ (0, 0, 0.7) (now split into two Weyl points at

≈ (0, 0, 0.6), and≈ (0, 0, 0.8) when bz 6= 0). A similar distribution
(not shown specifically by zooming) exists around the other Dirac
point (0, 0,−

√
m0/m1).

dient. Conventionally, the Nernst effect can occur only in the
presence of an external magnetic field, which provides a trans-
verse velocity to the electrons by the Lorentz force. However,
a non-trivial Berry curvature Ω, can also give rise to a Nernst
response as a result of an anomalous velocity term33. In the
presence of an external electric field E and a temperature gra-
dient −∇T , one can write the following linear response rela-
tions for the charge current J and thermal current Q:(

J
Q

)
=

(
σ̂ α̂
ˆ̄α κ̂

)(
E
−∇T

)
(8)

The tensors ˆ̄α and α̂ are related to each other by Onsager’s
relation: ˆ̄α = T α̂. In the absence of charge current (J = 0),
we have E = σ̂−1α̂∇T . The Nernst coefficient ν can be
derived to be

ν =
Ey

(−dT/dx)
=
αxyσxx − αxxσxy

σ2
xx + σ2

xy

, (9)

Berry curvature significantly contributes to the conductivities
σ and α. In the presence of Berry curvature Ωk, the semi-
classical equation of motion for an electron takes the form33,34

ṙ = 1
~
∂ε(k)
∂k + ṗ

~ ×Ωk. The first term is the familiar relation
between semi-classical velocity ṙ and the band energy dis-
persion ε(k). The second term is the anomalous transverse
velocity term originating from Ω(k). In the presence of elec-
tric and magnetic fields we also have the standard relation
ṗ = eE + eṙ × B. These two coupled equations for ṙ and
ṗ can be solved together to obtain35,36

ṙ = D(B,Ωk)
(
vk +

e

~
(E× Ωk) +

e

~
(vk · Ωk)B

)
(10)

ṗ = D(B,Ωk)

(
eE +

e

~
(vk ×B) +

e2

~
(E ·B)Ωk

)
(11)

where D(B,Ωk) = (1 + e(B · Ωk)/~)−1.
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Using the semi-classical Boltzmann equations in the pres-
ence of a non-zero electric and magnetic field and a Berry cur-
vature, one can derive the following thermoelectric and charge
conductivity tensors (σ and α) which include contributions
from the B and Ωk

25,26,37,38.

σxx = −e2
∫

[dk]v2xτ

(
−∂feq

∂ε

)
(cx −D) (12)

σxy = −e2
∫

[dk](v2ycy + vxvy(cx −D))τ

(
−∂feq

∂ε

)
+
e2

~

∫
[dk]Ωzf0 (13)

αxx = e

∫
[dk]v2x

(
τ
ε− µ
T

(
−∂feq

∂ε

)
(cx −D)

)
(14)

αxy = e

∫
[dk](v2ycy + (cx −D)vxvy)

(
τ
ε− µ
T

(
−∂feq

∂ε

))
+
kBe

~

∫
[dk]Ωzsk (15)

where vx ≡ ~−1∂εk/∂kx, and vy ≡ ~−1∂εk/∂ky are the
band velocities, εF is the Fermi energy, τ is the scatter-
ing time, [dk] ≡ d3k

(2π)3 , f0 is the Fermi-Dirac distribution,
sk = −f0 log f0 − ((1 − f0) log(1 − f0)) is entropy density
for the free electron gas. The scattering time τ usually has a
non-trivial energy and momentum dependence. In this work
we have assumed τ to be a phenomenological constant, which
suffices for our discussion and does not change our qualitative
results. The correction factors cx, cy , andD in Eq. 12-15 have
lengthy expressions and have been discussed elsewhere25. In
the absence of Berry curvature D → 1, and cx − D → −1
(up to zeroth order in B). It is important to note that the longi-
tudinal conductivities (σxx, αxx) are also modified from their
standard Boltzmann expressions due to Berry curvature cor-
rections. If these corrections can be ignored, then Eq. 12, 14
reduce to the following39

σxx = e2
∫

[dk]v2xτ

(
−∂feq

∂ε

)
, (16)

αxx = − e
T

∫
[dk]v2xτ(ε− µ)

(
−∂feq

∂ε

)
, (17)

Similarly, if the Berry curvature corrections to the conven-
tional B-dependent conductivities are ignored, then Eq. 13, 15
reduce to33,39

σxy = −e
3τ2B

~

∫
[dk]

(
−∂f0
∂ε

)(
v2x∂

2ε

∂k2y
− vxvy∂

2ε

∂kx∂ky

)
+
e2

~

∫
[dk]Ωzf0 (18)

αxy =
e3τ2B

T~

∫
[dk](ε− µ)

(
−∂f0
∂ε

)(
v2x∂

2ε

∂k2y
− vxvy∂

2ε

∂kx∂ky

)
+
kBe

~

∫
[dk]Ωzsk (19)

FIG. 3. Berry curvature Ωz in the kx = 0 plane for the Weyl
semimetal phase of the Hamiltonian in Eq. 1, for bz = η/5. The
Berry curvature peaks around the nodal (Weyl) points on the kz axis.
For a small chemical potential, when the Fermi surface just encloses
the Weyl points, the Nernst response is primarily dominated by the
anomalous Berry curvature dependent contributions.

IV. CONVENTIONAL NERNST RESPONSE

The conventional Nernst coefficient can be deduced by us-
ing Eqs. 16-19 in the limit Ωk → 0, and the definition of
ν (Eq. 9). In conventional metals, the quasiparticle Nernst
coefficient is usually small as a result of Sondheimer can-
cellation40,41. For example, the Nernst coefficient ν/B is
3.9nV/KT for Al, and−21.6nV/KT for Cu42,43. In the limit
of small µ, the conventional Nernst coefficient for a linearized
Dirac Hamiltonian (εk = ~vFσ · k) can be derived to be25

ϑ0 = −π
2

3

k2BT

e

eBv2F τ

~
, (20)

where τ parametrizes the scattering time. If τ is large, then
the Nernst coefficient can also be parametrically large even in
the presence of Sondheimer’s cancellation. For our model and
the chosen parameters29 for Cd3As2, using Eqs. 16-19 with
Ωk → 0 and τ ∼ 0.1ps23, we found that the conventional
Nernst coefficient is at least one order of magnitude smaller
than the anomalous Berry curvature dependent response, due
to the peaks in the Berry curvature near µ = 0 at the four
nodal Weyl points (see Fig. 3). Importantly, the sign of the
conventional Nernst coefficient is not directly related to the
sign of the dominant charge carriers in the material. It can
be either positive or negative for an electron or a hole-like
Fermi surface, depending on the detailed Fermi surface topol-
ogy41,44. Our model produces a negative conventional Nernst
signal (for positive bz) at low temperatures (T ∼ 10K), and a
positive Nernst signal (for positive bz) at higher temperatures
(T ∼ 100K). Further, electron (µ > 0) or hole (µ < 0)
doping does not change the sign of the conventional Nernst
coefficient.

Though the conventional quasiparticle Nernst signal is
known to be small, the Nernst effect has been used as a probe
for high-Tc cuprate superconductors, where vortex movement
is well-known to give rise to a large positive Nernst signal41,45.
This also forms the commonly used convention to assign a
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FIG. 4. Top panel: Sondheimer’s cancellation for conventional
quasiparticle Nernst effect. The magnitudes of the Hall angle ΘH

and the Peltier angle ΘP are close to each other, with sgn(ΘH) =
sgn(ΘP ), resulting in a small Nernst signal in the presence of a
longitudinal temperature gradient −∇T and a perpendicular mag-
netic field B. The red arrows represent the current direction due
to the electric field and temperature gradient. Bottom panel: The
Hall and the Peltier angles no longer have the same signs for the
anomalous Nernst response in a Dirac semimetal, resulting in no net
Sondheimer’s cancellation. The magnetic field breaks TR symmetry
giving rise to a Weyl system with a measurable Nernst signal (electric
field generated in the y direction for a temperature gradient −∇T in
the x direction), which is primarily anomalous response due to the
peaking of the Berry curvature for small chemical potentials.

definite sign to a Nernst signal. We have followed this sign
convention in our work.

At low temperatures, the Mott relation gives αij as a deriva-
tive of σij with respect to the chemical potential39. Specifi-
cally,

αij = −π
2

3

k2BT

e

∂σij
∂µ

(21)

The Mott relation (at least at low temperatures) remains valid
for both conventional and anomalous conductivities. Using
the Mott relation, the Nernst coefficient ν can be derived to be

ν = −π
2

3

k2BT

e

∂ΘH

∂µ
, (22)

where ΘH = σxy/σxx is the Hall angle, in the limit σxy �
σxx. Expanding ∂ΘH/∂µ, we have

ν = −π
2

3
k2BT
eσ2

xx

(
σxx

∂σxy

∂µ − σxy
∂σxx

∂µ

)
= αxx

σxx
(ΘP −ΘH) , (23)

where ΘP is the Peltier angle, with ΘP = αxy/αxx. For a
Dirac node having a spherical Fermi surface the longitudinal
conductivity (σxx), which depends on the area of the Fermi
surface, increases (decreases) for an electron (hole) doped sys-
tem, with increasing µ. The Hall conductivity (σxy), which
correlates with the Fermi surface curvature is negative (pos-
itive) for electron (hole) doping. However, σxx > 0, and

-4 -2 0 2 4
Bz(T)

-5

0

5

/T
(V
/K
2 )

10-6
T=10K
T=20K
T=40K
T=50K
T=60K
T=70K
T=80K
T=90K
T=100K

FIG. 5. Nernst coefficient (ν/T ) as a function of applied magnetic
field B, for the Dirac semimetal at µ = 0.01eV (with an electron-
like Fermi surface). The full Nernst coefficient has been plotted,
although we find that the response is primarily dominated by the
anomalous contribution which is an order of magnitude larger than
the conventional contribution. At lower temperatures, the behavior
is characterized by an almost step like profile near B = 0. How-
ever, exactly at B = 0 there is no Nernst signal from either conven-
tional or anomalous contributions. The estimated Nernst coefficient
is of the order ∼ µV/K2. Recently, an anomalous Nernst signal
has been reported in thermoelectric experiments on topological Dirac
semimetal Cd3As2 by the Princeton group24, with a step-like profile
similar to above. The values of parameters were chosen from the
ab-initio calculations29 for Cd3As2 DSM as given below Eq. (6) and
τ ∼ 0.1ps23.

∂σxy/∂µ < 0 for both electron and hole-like Fermi sur-
faces. Hence the Hall and Peltier angles carry the same sign
in Eq. 23. Sondheimer’s cancellation40,41,45 occurs when the
angles ΘH and ΘP are close to each other in magnitude and
have the same sign, sgn(ΘH) = sgn(ΘP ). This is the case in
our calculation of the conventional Nernst response, resulting
in a conventional Nernst coefficient much smaller in magni-
tude than the anomalous Nernst coefficient, which does not
undergo Sondheimer cancellation. This has also been illus-
trated in Fig. 4, where the currents due to charge conductivity
tensor σ and the Peltier coefficient α, oppose each other, in
the case of conventional Nernst response.

V. ANOMALOUS NERNST RESPONSE

In the presence of Berry curvature (Ωk), Eq. 16-19 can be
used to compute the Nernst coefficient. The anomalous trans-
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verse conductivities can be extracted to be

σAxy =
e2

~

∫
[dk]Ωzf0, (24)

αAxy =
kBe

~

∫
[dk]Ωzsk, (25)

The quantity σAxy depends on the Berry curvature of the filled
bands, but αAxy is a Fermi surface quantity, because sk is zero
for completely filled and empty bands. It is for this reason,
that an insulator can give rise to an anomalous Hall response
(σAxy), but not αAxy . The Dirac semimetal itself does not result
in an anomalous Nernst signal, as the net flux of Berry curva-
ture exactly vanishes everywhere in the Brillouin zone. Under
the application of an external magnetic field B, each Dirac
node splits into two Weyl nodes, and near half-filling a Weyl
semimetal is realized. The transition from a Dirac semimetal
to a Weyl semimetal under the application of a magnetic field
has been highlighted in Fig. 1. A Weyl semimetal has a non-
trivial distribution of magnetic flux (as illustrated in Fig. 2)
and Fig. 3, and an anomalous Nernst signal can thus be ex-
pected.

Unlike the conventional Hall conductivity (σxy), the
anomalous Hall conductivity (σAxy) has a different behavior
with respect to changes in the chemical potential. The magni-
tude of the anomalous Hall conductivity peaks near the band-
touching points at µ = 0, as in the vicinity of these points
the Berry curvature is sharply peaked (Fig. 3). For small elec-
tron or hole doping, when µ 6= 0, the Berry curvature ef-
fects reduce and the magnitude of σAxy decreases. The Mott
relation (Eq. 21), thus produces opposite signs of αAxy for
electron (positive sign) and hole doping (negative sign). The
anomalous Peltier coefficient αAxy = 0 for an arbitrary µ, if
the underlying quasiparticle dispersion is that of of an un-
bounded linearized spectrum of Weyl fermions, because then
σAxy is robust to changes in the Fermi energy25,26. Specifi-
cally, σAxy = e2

2π2~k0 for a simple linearized model of a Weyl
semimetal with node separation given by k0 in momentum
space8,46,47. However, for a physical Weyl semimetal with an
ultraviolet cutoff, αAxy remains generically finite25.

Now we note that for the anomalous conductivities (σAxy ,
αAxy), the Hall (ΘH ) and Peltier (ΘP ) angles, irrespective
of their own magnitudes (which may or may not be of the
same order), have opposite signs of each other, sgn(ΘH) =
−sgn(ΘP ) (in contrast to the case of conventional Nernst re-
sponse where sgn(ΘH) = sgn(ΘP )). This suggests that the
Sondheimer’s cancellation does not take place, generating a
measurable anomalous Nernst signal, stronger than the con-
ventional quasiparticle Nernst signal. This feature has also
been illustrated in Fig. 4. The angles ΘH and ΘP carrying
opposite signs result in a net non-zero electric field Ey in
the transverse direction. The overall sign of the anomalous
Nernst signal in the present case correlates with the sign of
the anomalous Hall conductivity σAxy .

We numerically compute the full Nernst coefficient, includ-
ing contributions from the the conventional B-dependent re-
sponses and the anomalous responses, using Eq. 12-15. In
Fig. 5, we plot the estimated Nernst coefficient (ν/T ) as a

function of external magnetic field B applied in the ẑ direc-
tion. As suggested by our previous discussion, the Nernst re-
sponse is primarily dominated by the anomalous contribution.
This is further confirmed by our numerical results, where the
conventional Nernst coefficient was found to be at least one
order of magnitude smaller than the anomalous Nernst coef-
ficient. At lower temperatures (∼ T < 100K), the behavior
of the Nernst coefficient (ν/T ) is characterized by an almost
step like profile at B = 0. The distribution of the flux of the
Berry curvature determines the anomalous Hall conductivity
σAxy . For B < 0, σAxy < 0, and for B > 0, σAxy > 0. Exactly
at B = 0, one does not expect a finite σAxy , or a finite ν, as
Ω(B=0) = 0. As pointed out before, the sign of ν directly
correlates with the sign of σAxy .

VI. NERNST RESPONSE FOR INVERSION BREAKING
WSM

Our motivation for this section comes from another recent
experiment, where the Nernst response in an inversion asym-
metric Weyl semimetal has been measured27. As in a DSM
discussed in previous sections, inversion broken WSMs do not
break TR, therefore we do not expect anomalous (induced by
Berry curvature) Nernst response in the absence of a mag-
netic field. In the presence of broken TR symmetry by a mag-
netic field, however, we expect both anomalous and conven-
tional Nernst response. In this section we calculate the total
(sum of conventional and Berry curvature induced) Nernst re-
sponse for an inversion breaking WSM. The low energy lattice
Hamiltonian for an inversion breaking WSM can be written
as48,

H(k) = −(m(1− (cos kz)
2 − cos ky)

+ 2tx(cos kx − cos k0))σ1 − 2t sin kyσ2 − 2t cos kzσ3
(26)

The Hamiltonian in Eq. (26) produces four Weyl points at
(±π/2, 0,±π/2) as shown in Fig. 6. We will briefly com-
ment about the symmetries of the above lattice Hamiltonian
under the action of two symmetry operators, namely P (in-
version symmetry operator) and T (time-reversal symmetry
operator). Following Ref. [48], we can choose a definite rep-
resentation of the operators, P = σ1 and T = K, where K
is the complex conjugation operator (as we are considering
spinless fermion bands), we note that P†H(−k)P 6= H(k),
and T †H(−k)T = H(k), indicating that the low energy ef-
fective Hamiltonian breaks inversion symmetry but preserves
time-reversal symmetry. To account for contribution from
an external magnetic field (bz) we add the term bzσ3 to the
above Hamiltonian. The total Nernst coefficient normalized
by the temperature for inversion broken WSM described by
the Hamiltonian in Eq. (26) is shown in Fig. 6. For this model
we find that the conventional contribution is much higher than
the anomalous contribution, therefore the Nernst signal con-
stitutes mostly conventionalB−dependent signal. The Nernst
coefficient ν/T is ∼ 100µV/K2, which is of the same order
of magnitude as in the experiments27. We also note that the
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FIG. 6. Upper panel: Band structure of inversion broken WSM given
by Eq. (26) consists of four Weyl points located at (±π/2, 0,±π/2).
For our numerical calculations we have used the parameters 48,49

k0 = π/2, tx = t/2, m = 2t, µ = t/5, t = 5meV , τ = 0.1ps.
Lower panel: Total Nernst signal (ν/T ) as a function of applied mag-
netic field B (in Tesla) for an inversion broken WSM described by the
Hamiltonian in Eq. 26 at µ = t/5. The plot shows the full Nernst
signal for different temperatures. When the magnetic field is zero the
total Nernst signal vanishes, as expected, and it gradually decreases
with increase in temperature. Although the full Nernst signal has
been plotted, in contrast to the case of DSM (Fig. 5), the conventional
contribution is significantly larger than the anomalous contribution.
As a result, the total Nernst signal has a maximum at a finite value of
the magnetic field, in contrast to the Nernst response in DSMs dom-
inated by the anomalous contribution which has a step-like profile
near B = 0.

Nernst signal has a maximum at a finite value of the magnetic
field, in contrast to the behavior of anomalous contribution
dominated Nernst coefficient in DSMs which peaks and satu-
rates at low magnetic fields producing a step-like feature near
B = 0 (Fig. 5). Our results consisting of a finite magnetic
field peak for conventional Nernst signal and the low field sat-
uration leading to a step-like feature near B = 0 for anoma-
lous Nernst signal are consistent with the experiments24.

VII. EXPERIMENTAL IMPLICATIONS

Recently an anomalous Nernst signal has been reported
in thermoelectric experiments on topological Dirac semimet-
als24, with a step-like profile similar to our theoretical pre-

diction. In this section we will briefly compare our findings
to these recent experiments. The Nernst signals observed in
these experiments reveal a large anomalous Nernst coefficient,
suggesting the existence of Berry curvature produced by the
separation of the Weyl nodes. For samples which reveal an
anomalous response, the observed anomalous Nernst signal
shows a step-like profile near B = 0, with significant beat-
ing effect in the quantum oscillations of the Nernst signals at
higher B. The step-like characteristic feature is similar to our
prediction, however the beating effect is not revealed in our
calculations indicating breakdown of the quasi-classical limit
at higher values of B. On the other hand, samples which re-
veal a conventional response, the Nernst signal rises steeply
to a sharp Drude-like peak at a finite value of B and then
decreases towards zero for higher B. This feature is also
captured in Fig. 6, which shows the Nernst coefficient for
inversion broken WSM which is dominated by the conven-
tional contribution. The order of magnitude of anomalous
Nernst signal observed in the experiments also seems to be
at least one order of magnitude bigger than the observed con-
ventional Nernst signal, as in our calculations. The orders
of magnitude of the Nernst coefficient predicted in our work
for Dirac semimetals (Fig. 5) and for inversion asymmetric
Weyl semimetals (Fig. 6) are similar to the ones seen in exper-
iments in Ref. [24] and Ref. [27], respectively. In particular
in Ref. [27] the Nernst thermopower (αxyz) for T = 10.5K is
of the order of 100µV/K. On the other hand from our numer-
ical calculations in Fig. 6 the Nernst coefficient ν/T varies
between 15µV/K2 to about 60µV/K2 for temperatures be-
tween T = 22K and T = 15K respectively, which trans-
lates into a value for the Nernst thermopower ranging from
300µV/K−900µV/K. The slight disagreement between ex-
perimental values and numerical ones can be due to uncer-
tainty in the values of τ which we take to be ∼ 0.1ps, which
is only an order of magnitude estimate48,49. There is a sim-
ilar factor of 2-5 difference between the experimentally re-
ported values of ν/T in Ref. [24] (ν/T ∼ 1µV/K2)24, and
our numerical values for the same quantity given in Fig. 5, al-
though they are similar in the order of magnitude estimates.
This slight discrepancy can also be due to uncertainties in the
values of τ which again is taken to be τ ∼ 0.1ps as in Fig. 6.

VIII. CONCLUSIONS

Three dimensional topological Dirac semimetals are char-
acterized by nodes in the bulk energy spectrum with a van-
ishing Chern number. Because of the vanishing flux of the
Berry curvature through any surface in the Brillouin zone,
anomalous Hall and Nernst conductivities vanish in a topo-
logical DSM in the absence of a magnetic field. In the pres-
ence of a magnetic field, however, a topological DSM reduces
to a Weyl semimetal, evincing a non-zero Hall and Nernst re-
sponse, which have contributions from both conventional as
well as anomalous (Berry curvature mediated) components.
In this paper we consider a topological DSM with a pair of
Dirac nodes on a high symmetry axis (axis of four fold rota-
tional symmetry, C4), which is an appropriate description of



8

the experimentally realized Dirac semimetal Cd3As2. For this
system we compute the total Nernst coefficient (conventional
as well as anomalous) in the presence of a small finite mag-
netic field ( a few Tesla) and small chemical potential, within
the Boltzmann description in the relaxation time approxima-
tion.

In Boltzmann formalism we find that the conventional
Nernst response in topological DSMs is typically small due
to Sondheimer cancellation, and can be of either sign de-
pending on temperature, small and negative at low tempera-
tures (∼ 10 K), and small and positive at higher temperatures
(∼ 100 K). In contrast, we find that the anomalous Nernst
response is large and positive because of the peaking of the
Berry curvature in the limit of small chemical potentials and
due to the absence of Sondheimer cancellation. Our calculated
anomalous Nernst coefficient is almost one order of magni-
tude larger than the conventional Nernst coefficient at simi-
lar temperatures and magnetic field. The measured low-field
Nernst coefficient, thus, is expected to be dominated by the
anomalous Nernst effect, at least in the limit of small temper-
atures. At low temperatures, the behavior of the total Nernst
coefficient is characterized by an almost step like profile at

B = 0. However, exactly at B = 0 there is no Nernst sig-
nal, from either conventional or anomalous contributions, be-
cause of the restoration of time reversal symmetry. Our results
have direct experimental relevance for Nernst and thermoelec-
tric measurements on the experimentally available topological
DSMs Cd3As2 and Na3Bi, as an anomalous Nernst signal can
directly probe Berry curvature in these materials. Recently an
anomalous Nernst signal has been reported in thermoelectric
experiments on topological Dirac semimetals24, with a step-
like profile similar to our theoretical prediction.

Additionally we have also discussed Nernst response of an
inversion asymmetric WSM. Since both the DSM and the in-
version broken WSM are TR invariant systems, the Nernst
effect in inversion broken WSM is thus expected to be simi-
lar to that in a DSM. However, we find that in the inversion
broken WSM the conventional Nernst coefficient dominates
over the anomalous contribution which is opposite to the case
in DSM. Our calculation on Nernst response in an inversion
broken WSM is also directly relevant to recent experiments in
NbP27.

We acknowledge support from ARO Grant No: (W911NF-
16-1-0182).
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