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The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice
model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the
lattice translation symmetry and particle number conservation are strictly imposed. In this paper,
we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of
one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective
of quantum anomalies. We first note that, they can be both described by the same low-energy
effective field theory with the same effective symmetry realizations on low-energy modes, wherein
non-on-site lattice translation symmetry is encoded as if it is an internal symmetry. In spite of
the identical form of the low-energy effective field theories, we show that the quantum anomalies of
the theories play different roles in the two systems. In particular, we find that the chiral anomaly
is equivalent to the LSM theorem, whereas there is another anomaly, which is not related to the
LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional
LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric
insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of
the gapless-ness local in the parameter space.
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I. INTRODUCTION

Predicting possible macroscopic behaviors of many-
body systems from a given kinematical input data, such
as spatial dimensions, the presence of a certain set of sym-
metries, etc., is a central question in many-body physics.
More precisely, predicting spectral properties (e.g., pres-
ence/absence of a spectral gap above ground states) and
the nature of ground states (e.g., long/short-range entan-
gled, trivial, etc.) would be of great interest.

In this regard, we will discuss the following three
classes of problems (systems) in this paper:

(i) The LSMOH theorem: The Lieb-Schultz-Mattis
theorem and its generalization by Oshikawa and
Hastings1–4 dictates that when the lattice transla-
tion symmetry and U(1) charge (electric charge,
spin, etc.) conservation are preserved, the sys-
tem must be gapless or its ground state must be
long-range entangled if the particle number (or spin
quantum number) per unit cell is fractional (non-
integral). In one spatial dimension, this in partic-
ular means that the system has to be gapless.

(ii) SPT boundaries: The boundaries of a symmetry-
protected topological (SPT) phase5–7 cannot be
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gapped trivially, i.e., they must be either gap-
less or exhibit topological order, so far as the
symmetries protecting the bulk SPT phase are
enforced. For (1+1)-dimensional boundaries of
(2+1)-dimensional SPT phases, this in particular
means that they have to be gapless.

(iii) Fermi “surfaces”: There are a class of lattice
fermion systems in which the single-particle spec-
trum supports zeros in the Brillouin zone, i.e.,
Fermi (nodal) points/lines/surfaces, etc., in the
presence of a certain set of symmetries. For no-
tational simplicity, we will call such zeros of the
single particle spectrum Fermi “surfaces”, although
one should bear in mind that such zeros can form
a hypersurface of various dimensions.

We distinguish systems in Class (iii) from those in
the other classes by their perturbative stability. I.e., the
gapless nature in Class (iii) is only perturbatively or lo-
cally stable; The impossibility of trivial gapped states
dictated by the LSMOH theorem and at SPT bound-
aries is non-perturbative in the sense that it relies only
on the kinematical input data (e.g., the filling faction,
symmetries), but not on the interaction strength. On
the other hand, the local stability in Class (iii) excludes,
in the parameter space, symmetric trivial insulators only
in the vicinity of a given gapless low-energy theory. In
other words, a trivial insulator may exist if the system
is perturbed far away from the low-energy theory. This
may become particularly important when the Fermi “vol-
ume” inside the surface is zero, e.g., nodal points and
lines. One way to understand the perturbative stability
of Fermi surfaces is to note that since by the fermion-
doubling theorem, these Fermi surfaces always appear
in pair. Hence unless enough symmetry conditions are
imposed, by adding strong enough perturbations, these
systems are ultimately gappable by “pair annihilating”
these Fermi surfaces. Nevertheless, some of Fermi sur-
faces are expected to be stable locally or perturbatively.
With further symmetry constraints, it would be possible
to turn systems in Class (iii) into systems in Class (i),
which are stable beyond the perturbative level. For ex-
ample, for the case of Fermi surfaces with a finite Fermi
volume in Class (i), imposing translation and charge con-
servation symmetries turns the system into the class (i).

Among (i-iii), the “mechanism” behind the obstruc-
tion for trivially gapping out the SPT boundaries [class
(ii)] is understood in terms of quantum anomalies.8–15 In
particular, when the symmetries protecting SPT phases
are strictly on-site, i.e., for such “strong” SPT phases,
the relevant anomalies are ’t Hooft anomalies. Here, a ’t
Hooft anomaly is an obstruction to gauge on-site global
symmetries of the theory.

More precisely, for bosonic systems whose Hilbert
space H is factorized into local Hilbert spaces, H =∏
xHx where Hx is the Hilbert spaces for a given “lattice

site” x, a unitary symmetry g is said to be on-site if g
factorizes similarly as g =

∏
x gx. (This property of g is

also called splittable.) For fermionic systems, there is no
natural factorization of the fermion Fock space due to the
Fermi statistics. Nevertheless, we will assume that the
similar notion of on-site symmetries exists, when a uni-
tary operator g transforms fermion creation/annihilation
operators purely locally.

In the typical setting of SPT phases, we start from bulk
phases where symmetry actions are purely on-site. At
non-trivial SPT boundaries, however, symmetries cannot
be made purely on-site. This is in fact another way to
state that SPT boundaries suffer from (or enjoy) quan-
tum anomalies (’t Hooft anomalies). Boundaries of topo-
logically distinct SPT phases are characterized by differ-
ent ’t Hooft anomalies. In fact, the topological invariants
characterizing bulk SPT phases are in one-to-one corre-
spondence with ’t Hooft anomalies of SPT boundaries –
the fact known as the bulk-boundary correspondence. In
other words, the boundaries of SPT phases cannot exist
on their own (i.e., cannot be put on a proper lattice),
if we require the relevant symmetries be strictly on-site
– the boundary theories of an SPT phase cannot be de-
coupled or “disentangled” from its bulk because of the
anomalies. The impossibility of realizing boundaries of
SPT phases as an isolated local system is usually called
as the no-go theorem.

The purpose of this paper is, by taking simple exam-
ples, to give a detailed comparison between the LSMOH
theorem and SPT boundaries. In particular, given that
the impossibility of trivially gapping SPT boundaries
is due to quantum anomalies (’t Hooft anomalies), we
will make an attempt to interpret the LSMOH theorem
in terms of quantum anomalies. For precursors of the
current work, discussing the relationship between SPT
phases and the LSMOH theorem, see, for example, Refs.
16–20. We will also touch upon the origin of the pertur-
bative stabilities of Fermi surfaces using quantum anoma-
lies. It should be noted that the stability of Fermi sur-
faces has been so far discussed mainly at the level of the
single particle physics. Our discussion using quantum
anomalies should shed light on the stability of Fermi sur-
faces in the presence of interactions.

In the rest of the Introduction, we will list and briefly
describe some of the key issues in discussing the similari-
ties and distinctions among the three classes of problems
(i-iii). See Sec. I A, I B and I C below. They also serve
as a short summary for Sec. II, III, and IV in the main
text.

A. LSMOH and no-go theorem; On-site v.s.
non-on-site symmetries

To explore a possible connection between the LSMHO
theorem and quantum anomalies (and SPT boundaries),
we will first note that the low-energy physics of lattice
models dictated to be gapless by the LSMOH theorem
and SPT boundaries can be described by an identical con-
tinuum field theory. For example, in Sec. II, we will dis-
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cuss a (1+1)d lattice fermion model at fractional filling.
For the low-energy effective field theory of this model,
we will find that there is a (2+1)d SPT phase (a ver-
sion of the quantum spin Hall effect) whose boundary is
described by the same continuum field theory. Here, the
relevant symmetry in the (1+1)d lattice fermion model is
the U(1) particle number conservation and lattice trans-
lation symmetry, whereas on the SPT side the relevant
symmetry is the U(1) particle number conservation and
U(1) or Z internal (spin) rotation symmetry.

Since the LSMOH theorem concerns isolated lattice
systems without referring to any higher dimensional bulk
systems, this may look seemingly against the no-go the-
orem. The trick of evading the no-go theorem is that,
while symmetries in the bulk SPT phases are realized on-
site, symmetries entering into the corresponding LSMOH
theorem are non-on-site. In the typical setting of SPT
phases, we start from bulk phases where symmetry ac-
tions are purely on-site. On the other hand, in the con-
text of the LSMOH theorem, it typically involves non-
on-site symmetries. E.g., lattice translation symmetries.
This is the reason why, even if the LSMOH theorem
may be related to some sort of quantum anomalies, rel-
evant systems can still be put on a lattice without hav-
ing a higher dimensional bulk. Evading the no-go “the-
orem” is also possible in higher dimensions. For exam-
ple, the “duality” between the composite Fermi liquid in
the half-filled Landau level and the (2+1)d boundary of
(3+1)d topological insulators has been discussed exten-
sively recently.21–26 See Sec. II.

We will also note in Sec. II that the lattice transla-
tion symmetry within the low-energy field theory can
be encoded as an effective symmetry. In the rational
filling ν = p/q for mutually-prime p and q, the trans-
lation symmetry (up to some gauge choice and changes
in band structures) can be further reduced as Zq, i.e.,
there may be symmetry-reduction G = Z→ Geff = Zq.
Hence, we may consider the effective translation symme-
try Geff = Zq as an on-site internal symmetry in the
low-energy limit.

B. LSMOH v.s. SPT anomalies

Having confirmed that the low-energy theories for the
fractionally filled 1d lattice fermion model and for the
SPT boundary are identical, we will discuss quantum
anomalies within the low-energy theory in Sec. III. The
identification/computation of quantum anomalies can be
done within the low-energy theories since anomalies are
preserved along the RG flow – the ’t Hooft anomaly
matching.27 If the low-energy effective theory has a ’t
Hooft anomaly, one would then expect that the theory
at any energy scale and at any interaction strength can-
not be deformed to a symmetrical trivial insulator.

That an SPT boundary and a lattice model for which
we apply the LSMOH theorem can be described by the
same low-energy effective theory would imply that the

both systems have the same anomalies. However, we will
show that there are some subtleties – instead of the full
’t Hooft anomaly, we need to consider the chiral anomaly
for the LSMOH theorem.

In Sec. III we will illustrate this by considering the
(1+1)-dimensional lattice fermion model at filling ν, in
the presence of the lattice translation symmetry and
global U(1) charge conservation symmetry. Here, by the
full ’t Hooft anomaly, we mean the ’t Hooft anomaly of
the whole global symmetries (= an effective on-site ver-
sion of lattice translation × charge U(1)). On the other
hand, the chiral anomaly involves the two symmetries
and partially gauging the symmetries, e.g., only one of
the two symmetries. It effectively “measures” the con-
flict of the two symmetries, or violation of one global
symmetry when the other symmetry is gauged. This
chiral anomaly implies that both the symmetries can-
not be gauged consistently and thus the obstruction to
a symmetric trivial insulator. In some sense, the chiral
anomaly can be thought of as a part of (a subset of) the
full ’t Hooft anomaly.

As the chiral anomaly is the subset of the full ’t Hooft
anomaly the chiral anomaly gives rise to a “cruder” clas-
sification of SPT phases when it comes to the interacting
classification. We will show that the no-go condition for a
symmetric insulator from the LSMHO theorem is identi-
cal to the non-trivial chiral anomaly. The chiral anomaly
hence provides a non-perturbative stability of the gap-
lessness.

C. Effective symmetry and perturbative stability

In contrast to the chiral anomaly, we will discuss the
other part of the full ’t Hooft anomaly (the system with
vanishing chiral anomaly) in Sec. IV. For the theory
emergent from the (1+1)d lattice system, we will ar-
gue that the other part of the full ’t Hooft anomaly im-
plies the perturbative stability of Fermi surfaces. This
perturbative stability detected by the anomaly is the
one-dimensional analogue of the classification of (some)
nodal fermions emerging from accidental band crossings
in higher dimensions, e.g., classification of the nodal
fermions in (3+1)d systems.28–33 This is particularly im-
portant when the filling is rational ν = p/q (for mutually
prime p and q). For the filling, when the band structure is
fine-tuned, the low-energy translation symmetry can be
effectively reduced to Zq, a subset of full translation sym-
metry Z. Then the anomaly signals that the system must
be gapless only when the translation symmetry is strictly
Zq, but not bigger than this. In other words, when the
full translation symmetry Z is considered, the theory
with this anomaly only can be gapped out symmetrically.
However, to have a symmetric gap to the spectrum, we
need non-perturbative processes, e.g., to introduce extra
“trivial” degrees of freedom, non-quadratic interaction
terms or to change the band structures. [Here, the oppo-
site of the non-perturbatively stability, i.e., the pertur-
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batively gappablity, is equivalent to the condition that
we can gap out the spectrum within the quadratic terms
(“mass terms”) without any further modification of the
given low-energy theory. This is slightly different from
the “perturbative” stability in the renormalization group
theory sense, i.e., the absence of relevant directions of
the theory in the parameter space. (Note that when the
strong forward scattering is present, some multi-fermion
terms may become relevant in Luttinger liquids.)]

The different origins of the low-energy symmetries in
the two systems are at the heart of the different roles
of the SPT anomaly in the two systems. Though the
translation symmetry of the lattice model at the low-
energy limit may look identical to an on-site symmetry
of some SPT phase, the translation symmetry is intrin-
sically non-on-site. Hence, it can never be gauged in the
precise manner, and, the SPT anomaly, an obstruction
of gauging global symmetries, may not have much im-
plication on the “non-perturbative” nature of the theory
emergent from the lattice. (In this context, it may be
interesting to ask: When it is possible to gap the sys-
tem trivially (i.e., anomaly-free), is there any way one
can adiabatically deform the system to make translation
symmetry on-site?)

In Sec. V, we will also consider the (3+1)d chiral
anomalies and relate the anomaly to the “perturbative”
stability. In contrast to the (1+1)d chiral anomaly de-
tecting the no-go conditions for the LSMOH theorem, we
show that (3+1)d chiral anomaly only detects the sta-
bility of the gaplessness only near the given low-energy
theory in the parameter space.

D. Summary

The above considerations can be summarized from the
view point of continuum field theories as follows. Let
us consider a (d + 1)-dimensional continuum field the-
ory F . To be concrete, suppose F is a theory of rela-
tivistic fermion. This theory may or may not arise as a
low-energy effective theory of a given lattice model of the
same spacetime dimension. Let there be a global symme-
try G respected by F . Let there be a ’t Hooft anomaly
for G. The ’t Hooft anomaly has a one-to-one corre-

spondence with Ωd+2,tors
Spin/Spinc(BG), the Pontryagin dual of

the torsion subgroup of the equivariant spin/spinc bor-
dism groups with the symmety group G.34 Taking this
’t Hooft anomaly “naively”, one would conclude that the
theory must be realized as a boundary theory of a (d+2)-
dimensional bulk theory.

Let us now assume that we actually know that F is a
low-energy effective theory of a (d+1)-dimensional lattice
model. Then, at least one of the following must be true:
(a) G is not on-site for the (d + 1)-dimensional lattice
model. (b) G is not the true symmetry of the problem;
It is a symmetry only emergent in the low-energy physics.
These two possibilities correspond to the LSMOH theo-
rem and Fermi surfaces. In addition, it should be also

noted that, in particular for the case of the LSMOH the-
orem, there is no reason to consider relativistic fermions
to start with. In other words, we need to care about the
high-energy scale origins of the low-energy symmetries
and interpret the meaning of the anomalies carefully.

The rest of the paper is organized as follows.
- In Section II, we first review briefly the edge of the

2d quantum spin Hall effect (QSHE) and show that the
exactly same low-energy theory can arise from the 1d
lattice model with spinless fermion at fractional filling.

-In Section III and IV, We discuss the implications
of the anomalies. With the anomaly-based understand-
ings of the LSMOH theorem, in section III, we will
extend the conventional LSMOH theorem, concerning
singly-charged particles in general, to the multiple par-
ticle species with the different charge assignments, e.g.,
a mixed system of charge-2 spinless boson at half-filling
with charge-1 spinless electrons at integral filling. We
construct several novel symmetric insulators, which can-
not be adiabatically deformed into a Slater-type insula-
tor.

- In Section V, we consider the (3+1)d chiral
anomalies35–37 in Weyl and Dirac semimetals28–33 and
relate the anomaly to the “local” stability. In contrast
to the (1+1)d chiral anomaly detecting the no-go con-
ditions for the LSMOH theorem, we show that (3+1)d
chiral anomaly only detects the stability of the gapless-
ness only near the low-energy theory in the parameter
space. We apply these results to the (3+1)d Weyl and
Dirac semimetals.

- We finish by providing conclusions and outlooks in
Section VI.

- Note Added : After the completion of the work, we
became aware of the work by Jian, Bi, and Xu,38 in which
the similar consideration is made.

II. 2D SPTS AND 1D LATTICE MODELS

In this section, we consider 1d lattice models, which
are enforced to be critical by the LSMOH theorem, and
compare their low-energy theory to the edge theories of
2d SPTs. We will find that the lattice model gives rise to
exactly the same effective low-energy theory as the edge
of the SPTs. We will discuss the quantum anomalies
relevant for the low-energy theories.

A. (2+1)d QSHE

We start by revisiting the simplest (2+1)d fermionic
SPT phase, the QSHE, protected by unitary on-site
U(1)Q × U(1)Sz symmetry. The 2d bulk of this SPT
phase can be constructed on the honeycomb lattice by
following Kane and Mele39

H = −t
∑
〈r,r′〉

Ψ†rΨr′ + iλ
∑
〈〈r,r′〉〉

Ψ†rσz ẑ · (d̂1
rr′ × d̂2

rr′)Ψr′ ,
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where r labels the lattice site and Ψr = (cr↑, cr↓)
T a

spinful fermion; d̂1,2
rr′ is a vector connecting the next

nearest-neighbor sites r and r′ on the honeycomb lat-
tice. The lattice Hamiltonian clearly respects the sym-
metry U(1)Q × U(1)Sz at the ultraviolet (UV) scale

U(1)Q : Ψr → eiφΨr,

U(1)Sz : Ψr → eiσzθ/2Ψr. (1)

The ground state is simply the combinations of the com-
pletely filled Chern band with Chern number ν = 1 for
spin-↑ electrons and the completely filled Chern band
with ν = −1 for spin-↓ electrons.

When the open boundary condition is imposed, along a
spatial direction x, say, gapless edge states emerge. They
can be described by the low-energy Hamiltonian

H =

∫
dx Ψ†(x)(−ivF∂x)σzΨ(x), (2)

where Ψ(x) = (ψ↑(x), ψ↓(x))T and vF is the Fermi veloc-
ity. The action of the U(1)Q × U(1)Sz symmetry on the
edge mode is still given by (1), if the fermionic operators
there are replaced by their boundary counterparts. It is
straightforward to check that there is no gapping term
when the symmetry (1) is strictly imposed on the edge.
Hence the gaplessness of the edge theory is protected by
the symmetry.

To facilitate to establish a connection with filling-
enforced gapless states on the 1d lattice, we note that
the criticality (as well as the quantum anomaly) of the
1d edge survive even if we lower U(1)Sz down to ZSz ,
i.e., instead of U(1)Sz , we can consider the discrete spin
rotation

ZSz : Ψr → eimθFσzΨr, m ∈ Z, (3)

with some θF ∈ (0, 2π). When we fine-tune θF = π/N ,
we can further “lower” the symmetry, Z → ZN . Note
also that, at the level of non-interacting fermions, the
classification of the 2d SPT with U(1) × ZN , for any
N > 1, is still Z, since one can easily verify that there is
no mass term allowed to the theory (2).

B. (1+1)d lattice spinless fermions

We now consider the model of spinless fermions hop-
ping on a 1d lattice consisting of L lattice sites:

H = −t
L∑
x

(c†xcx+1 + h.c.)− µ
L∑
x

c†xcx. (4)

The model is invariant under the charge U(1)Q, and, with
periodic boundary condition, lattice translation symme-
try ZL with L� 1. In the thermodynamic limit L→∞,
we have the two symmetries

U(1)Q : cx → eiφcx,

Ztrans : cx → cx+1. (5)

Note that the translation symmetry Ztrans is manifestly
non-on-site at this UV scale.

The ground state can be easily found by filling the
single particle states below the chemical potential µ,

|GS〉 ∝
( ∏
|k|≤kF

c†k

)
|vac〉,

where |vac〉 is the Fock vacuum. The system realizes
gapless metal, which can be easily seen from the band
structure of (4), if the filling ν = kF

π /∈ Z. Further-

more, the LSMOH theorem2 in 1d dictates that if the
translation symmetry Ztrans and U(1)Q are not broken,
then the ground state should be always gapless even in
the presence of interactions; it is a filling-enforced critical
state.

To reveal the connection between this 1d lattice model
and the edge of the QSHE, we now proceed to the con-
tinuum IR limit of the theory (4)

H =

∫
dx Ψ†(x)(−ivF∂x)σzΨ(x), (6)

where Ψ(x) = (ψR(x), ψL(x))T is the low-energy fermion
field near the Fermi point. Here, the microscopic fermion
operator cx can be expanded in terms of the slowly vary-
ing low-energy fields ψR/L as

cx ≈ ψR(x)eikF x + ψL(x)e−ikF x. (7)

Here we take a convention that the kF is the right-most
momentum of the filled state.

The symmetry actions of U(1)Q × Ztrans within this
low-energy theory (6) can be easily derived,

U(1)Q : Ψ(x)→ eiφΨ(x),

Ztrans : Ψ(x)→ eikFσ
z

Ψ(x). (8)

Here, in the continuum (conformal) limit where the UV
cutoff, i.e., the lattice constant, is completely ignored, the
translation symmetry Ztrans, which is non-on-site at UV
scale, acts as if it is a purely on-site internal symmetry
on the infrared (IR) field Ψ(x).

In summary, the continuum IR limit (6) with the sym-
metry U(1)Q × Ztrans (8) is identical to the edge theory
(2) of the QSHE with the symmetry U(1)Q×ZSz (up to
the Fermi velocity which is irrelevant for the discussion
of quantum anomalies). In the IR limit, the two theories
realize the same Z-symmetry actions (or appropriate sub-
group of Z if the filling is rational fraction – see below)
although the symmetry has very different origins at the
UV scales. Furthermore, on the lattice scale, the transla-
tion symmetry is non-on-site (5), but becomes on-site (8)
on the IR scale and looks like the internal symmetry (spin
rotation symmetry) of the edge of the 2d QSHE. In other
words, the 1d spinless fermion lattice model at fractional
filling evades the no-go theorem. This is exactly parallel
to the proposed dual description of the half-filled Landau
level, which turns out to be identical to the (dual) low-
energy theory of the 2d boundary of the 3d topological
insulator.
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C. Effective symmetry

It is also important to note that when the filling is
rational, e.g., ν = 1/q, then the translation symmetry in
Eq. (8) can be reduced to an effective Z2q. If the center
of momentum is shifted to π

2q (by some fine-tuning of the

band structures or by applying the background gauge
field), then the translation symmetry is in fact reduced
further to Zq such that

U(1)Q : Ψ(x)→ eiφΨ(x),

Zq : Ψ(x)→ ei
π
q (σz−1)Ψ(x). (9)

Thus, the lattice translation symmetry is effectively low-
ered to Zq – this reduced symmetry will be called effective
symmetry.

At the free fermion level and within the low-energy
theory (6), both the symmetry groups U(1)Q × Z and
U(1)Q × Zq can protect the gapless-ness of the theory.
At this stage, the lowering of the symmetry as well as
treating the translation symmetry as the on-site symme-
tries are seemingly innocuous. However, when it comes
to the multiple copies and interactions, then we will see
that these treatments may give rise to subtle effects, i.e.,
it now matters if the system comes from the lattice or
from the edge and if the symmetry in the low-energy
limit is effective, as we will see from the discussions of
the anomaly.

D. Other examples

Evading the no-go “theorem” is also possible in higher
dimensions. For example, the “duality” between the
composite Fermi liquid in the half-filled Landau level and
the (2+1)d boundary of (3+1)d topological insulators
has been discussed extensively recently.21–26 In this ex-
ample, the low-energy theory of the half-filled Landau
level is claimed to be the same (in terms of the par-
ity anomaly, field contents, and symmetry actions) as
that of the surface of 3d topological insulators. Both of
these theories contain a dynamical gauge field and a sin-
gle Dirac fermion with the anti-unitary symmetry. The
anti-unitary symmetry looks on-cite in space when acting
on the low-energy fermion fields. This seems against the
no-go theorem since the Landau level can be constructed
from two-dimensional lattices (with the projection to the
Landau level). However, the anti-unitary symmetry in
the Landau level, which emerges after the projection to
the lowest Landau level, is actually non-on-site at lattice
scales.

It is also instructive to contrast our work with those
which deal with weak SPT phases, e.g., Ref. 19. Ref. 19
considered (d− 1)-dimensional lattice models as the sur-
face of d-dimensional weak SPT phases, and then finds
the classification of possible topological orders respecting
the translational symmetries from the d-dimensional SPT

index, Hd+1[Zdtrans×G,U(1)]. Here Zdtrans is the transla-
tion symmetry, and G is the on-site symmetry. Through
the Kunneth formula, it is found that this index for the
weak SPT can be given in terms of those of the lower-
dimensional strong SPTs with on-site symmetry G, i.e.,
Hr+1[G,U(1)] (r < d), which is stacked inside the weak
SPT. Though this formula helps to understand the in-
dex of the weak SPT clearly, this treats the translation
symmetry physically different from the on-site symme-
try. The anomalous nature of the symmetrically-gapped
phases of the (d−1)-dimensional lattice models manifests
as the non-trivial indices for this weak SPT phase. On
the other hand, we will consider e.g. the d = 2 SPT case,
or one-dimensional lattice models, which are forced to be
critical instead of gapped. The translation symmetry in
the lattice models are interpreted as the on-site symme-
try in the strong SPT side. This makes the non-on-site
translation symmetry and on-site global symmetry, e.g.,
charge conservation, of the lattice model to be treated
on an equal footing in the SPT side. Furthermore, the
anomalous nature of the lattice models manifests as the
proper generalizations of the chiral anomaly, which are
a “more historic” diagnosis of gapless theories than the
indices. Currently, the link between the weak SPT in-
dex and the anomaly discussed in this paper is not ob-
vious, and thus clarifying the relationships between the
cohomological indices Hd+1 and chiral anomalies in one-
dimensional lattice models and three-dimensional rela-
tivistic semimetals will be an interesting future problem.

III. ANOMALY AND LSMOH THEOREM

Having confirmed that the 1d lattice model and the
SPT boundary are described by the same low-energy ef-
fective theory with the identical action of the global sym-
metry U(1)Q × ZN , we now proceed to discuss quantum
anomalies. Here, as emphasized in the previous section,
one should keep in mind the different origins of the ZN
symmetry in the LSMOH and SPT contexts. Neverthe-
less, in the following we will first take the low-energy
theory on its own as a relativistic quantum field theory,
without asking how it arises. An obstruction to gauge
this global symmetry, i.e., ’t Hooft anomaly would be
labeled by the elements in the three-dimensional equiv-
ariant spinc cobordism group with ZN symmetry40

Ω3
Spinc(BZN ) ∼= ZεN ·N × ZN/εN , (10)

where εN = 1 for odd N and εN = 2 for even N . (For the
known results of Ω3

Spinc(BZN ), see Ref. 41 and 42.) If the
low-energy theory is interpreted as the SPT boundary,
Ω3

Spinc(BZN ) agrees with the classification of the bulk
SPT phases protected by the unitary on-site symmetry
U(1)Q × ZN .

More concretely, let us consider the following, slightly
more extended version of the (1+1)d continuum theory
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with the U(1)× ZN global symmetry:

H =

∫
dx

Nf∑
a=1

[
ψ†L,ai∂xψL,a − ψ

†
R,ai∂xψR,a

]
, (11)

with Nf the number of species. Henceforth, the veloc-
ity is scaled to 1 for simplicity. We encode the U(1)Q
symmetry into the fermion fields as

U(1)Q : ψR,a(x)→ eiδφqaψR,a(x),

ψL,a(x)→ eiδφqaψL,a(x), (12)

in which the fermion field ψR/L,a carries an odd integer
electric charge qa. In particular, for the electronic sys-
tems, all qa = 1. On the other hand, the ZN symmetry
acts as

ZN : ψR,a(x)→ e2πisR,a/NψR,a(x)

ψL,a(x)→ e2πisL,a/NψL,a(x), (13)

where sR/L,a are integers such that the whole symmetry
group is exactly U(1)×ZN (up to any redefinition of the
ZN transformation by the U(1)Q symmetry). Then, the
full ’t Hooft anomalies of U(1)×ZN in the relativistic field
theory (11) can be calculated explicitly, and are charac-
terized by the following two indices (derived in Appendix
A) ∑

a

νa ·
sR,a + sL,a

εN
mod Z,∑

a

νaqa mod Z. (14)

[Here νa = (sR,a − sL,a)/N is equivalent to the lattice
filling. See the discussions below.] This matches with
Ω3

Spinc(BZN ) ∼= ZεN ·N ×ZN/εN . As we will see in details,

the second index in (14) is related to the familiar chiral
anomaly in (1+1)d.

As the simpler field theory discussed in the previous
section, the field theory (11) can be interpreted as either
describing a SPT boundary with U(1)Q × ZN symme-
try, or the low-energy effective theory of a 1d LSMOH
lattice model. If the theory originates from the 1d lat-
tice, then the filling νa of the a-th fermion per unit
cell fixes the relative difference between the two Fermi
points, i.e., kaF,R = 2πsR,a/N and kaF,L = 2πsL,a/N , by

νa = (kaF,R − kaF,L)/2π. The specific positions of kaF,R/L
in momentum space depend on the band structure.

Once we specify the microscopic origin of the field the-
ory (11), the two anomaly indices (14) have to be in-
terpreted properly. As mentioned already, if the low-
energy theory (11) is interpreted as a SPT boundary,
Ω3

Spinc(BZN ) agrees with the classification of the bulk
SPT phases protected by the unitary on-site symmetry
U(1)Q × ZN . In this case, any of non-zero anomalies
in the above implies a non-pertubative obstruction for a
symmetric trivial gapped state at the boundary.

On the other hand, in the LSMOH context we show
that only the second index, the chiral anomaly, is rele-
vant; The second index is (a slight extension of) the con-
ventional LSMOH theorem. In the usual LSMOH theo-
rem, the charge is taken to be 1, i.e., all qa = 1. Then
the absence of the chiral anomaly with qa = 1 for all a is
equivalent to the conventional LSM theorem. However,
here we allow generic qa here (we assume the existence
of the minimal charge-1 fermion in the spectrum). We
will also include the bosons later in the section III A by
using the momentum pumping argument.

Given the identification of the chiral anomaly to the
LSMOH theorem, the first index must be something in-
trinsic to the SPT boundaries where ZN is truly on-site,
and it is unrelated to the LSMOH theorem. We call this
the anomaly “ZN anomaly” below to distinguish it from
the chiral anomaly. We will find that it does not gauran-
tee the non-perturbative stability for the lattice models
but implies only the local stability.

A. Chiral anomaly and the LSMOH theorem

We now give some details for the identification of the
second index as the chiral anomaly. We will also see that
it is nothing but the LSMOH theorem.

1. Chiral Anomaly: Field Theory

To see the second index is equiavelent to the chiral
anomaly we “promote” the Z symmetry (or ZN ) to the
continuous axial U(1)A and use the standard anomaly
equation. For the case of the single-flavor model, the
violation of the axial charge conservation in the presence
of the electromagnetic (vector) gauge field is quantified
by

dQ5

dt
= ∂µj

µ
5 =

1

π

∫
dx qEx, (15)

where the axial charge, the number difference between
the left mover and the right mover, corresponds to the
momentum up to constant because the momentum is P =

kF (ψ†RψR−ψ
†
LψL) = νπQ5, where Q5 is the axial charge;

Ex is the electric field along the x-direction and q is the
electric charge. When we have multiple species of the
fermions {Ψa} with multiple charge qa at the filling νa,
the total momentum transfer in the system is the sum of
the momentum transfer of each species a, i.e.,

dPtot
dt

=
∑
a

νaπ
dQ5,a

dt
=
∑
a

νaqa

∫
dx Ex. (16)

Now we imagine to thread a magnetic flux
∫
dx Ax = 2π

adiabatically to the system. Then during the process,
the change in the momentum is

4Ptot =
∑
a

νaqa

∫
dxdt ∂tAx = 2π

∑
a

νaqa. (17)
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Hence, the momentum (axial charge) is not conserved
during the process if 4Ptot is non-zero.

Remembering now that the relevant symmetry is Z
(instead of the axial U(1)A), which is derived from lattice
translation symmetry, we know that Ptot is conserved
only modulo 2π. Hence, the anomaly-free condition is
given by ∑

a

νaqa = 0 mod Z. (18)

Otherwise, the translation symmetry and the charge con-
servation are in conflict. Note that classically U(1) and
the translation Z commute each other and hence we do
not expect the change in Z under the insertion of the flux
U(1). This classical expectation is violated and the two
symmetries are in conflict at the quantum level.

The above momentum pumping argument for the chi-
ral anomaly can be also computed by using bosonization.
We leave the detail of its derivation in Appendix B.

The above result can also be derived in a more general
and formal setting. Consider (intrinsically-continuum)
Dirac fermions which carry odd electric charges in the
presence of the background U(1) gauge field on a closed
manifold M . Specifically, we formulate the fermion the-
ory (11) on a generic closed Riemannian two-manifold
(M, g) endowed with a spinc structure, where a well-
defined spinc connection, denoted as A, exists. (Only
for this part of the discussion, we temporarily restrict
fermions to carry odd charge qa ∈ 2Z + 1 (and bosons
to carry even charge) to use the spinc connection.) Here
we work in Euclidean signature. [At this stage, one may
worry that we are imposing two much structures (e.g.,
spin structure and continuum manifold with metric g),
unrelated to the lattice fermions. However, these are only
for the concreteness.] Since there is no (gauge) anomaly
for U(1)Q the partition function Z{Ψa}(M ; g,A) is well-
defined on any such two-dimensional spinc manifold M .
However, Z{Ψa}(M ; g,A) might in general not be invari-
ant under Geff = Zq (or G = Z), which is a symme-
try of the classical action of (11) with background gauge
field A. This is a discrete analog of the usual chiral (ax-
ial) anomaly of the continuous axial symmetry for Dirac
fermions, and one can similarly use Fujikawa’s method
to compute such a discrete chiral anomaly The anomaly
comes from the nontrivial transformation of the path in-
tegral measure

∏
aDΨaDΨ̄a under Geff :43,44

Z{Ψa}(M ; g,A)

Geff−→ exp

(
2πi

∑
a

νaIqa(M ; g,A)

)
Z{Ψa}(M ; g,A),

(19)

where Iqa(M ; g,A) is the index of the charge-qa Dirac
operator i/∂ − qa /A on M endowed with a metric and a
spinc structure. Since any two-dimensional spinc mani-
fold M is bordant to a multiple of CP1 ∼= S2,45 that is,
[M ] = kM · [CP1] for some integer kM , where [ · ] de-
notes the equivalence class under bordism, and the index

Iqa( · ) is a bordism invariant, we have

Iqa(M ; g,A) = kM · Iqa(CP1; gc, Ac)

= kM · qa
∫
S2

c1(Fc)

= −kMqa, (20)

where c1(Fc) is the first Chern class of the field strength
Fc = dAc of the spinc connection Ac on CP1 equipped
with the canonical spinc structure arising from the holo-
morphic structure. Then, it is obvious that the anomaly-
free condition for the theory on any M is given by

exp
(
− 2πikM

∑
a

νaqa
)

= 1 ⇐⇒
∑
a

νaqa ∈ Z. (21)

2. Chiral Anomaly: Pumping Argument

Note that the above discussions rely on the specific
assumptions on the ground state: Fermi liquid (or Lut-
tinger liquid). Here, we derive the same anomaly-free
condition without assuming a particular ground state.
This allows us to include the interacting bosonic case
to the discussion. This is a reformulation of Oshikawa’s
argument2.

We start from a length-L system of charge-q particle cx
with the Hamiltonian H(Φ) in which the flux Φ specifies
the twisted boundary condition, cx+L = cxe

iqΦ. To com-
pare with the field theoretic discussion, the phase factor
Φ can be generated by the uniform gauge field Ax = Φ/L,
i.e., the flux Φ =

∮
Ax threaded into the circle.

Next we imagine that we introduce a flux insertion
operator F̂ which winds Φ by 2π adiabatically, i.e.,
F̂ : Φ → Φ + 2π. Then, the ground state |GS〉 of H(0)

will evolve into another state F̂ |GS〉 after the 2π-flux in-
sertion. On assuming that |GS〉 is translation symmet-

ric, F̂ |GS〉 is also translation symmetric since the flux
insertion does not break the translaion symmetry2, i.e.,
T̂1F̂ = F̂ T̂1.

Following the field theoretic discussions, we calculate
the relative change in the momentum of F̂ |GS〉 to that of
|GS〉. Thus we consider the eigenvalue of the translation
symmetry.

Note that the momentum is a gauge-dependent quan-
tity. Hence, to correctly compare the momentum of
F̂ |GS〉 which is obtained after the 2π-flux insertion,
we need to use the translation symmetry at the gauge
Ax = 2π/L. This translation operator T̂ (2π) can be ob-
tained by the large gauge transformation of the usual
translation operator T̂1 : cx → cx+1.

T̂1(2π) = UT̂1U
† = T̂1 exp(−2πiqν),

with U = exp[2πi
∑
x x

n̂x
L ].2 Hence we have

T̂1(2π)F̂ |GS〉 = e−2πiqν T̂1F̂ |GS〉 = eiP0e−2πiqνF |GS〉,
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where we have used T̂1F̂ = F̂ T̂1 and T̂1|GS〉 = eiP0 |GS〉.
Thus the momentum pumped into the system is 2πqν.
This nicely matches the chiral anomaly calculation. Note
that when we have multiple species of particles, the phase
factors from each species will add up. Hence, the triv-
iality of the momentum pumping is

∑
a qaνa = 0 mod

Z.
It should be also noted that, within this pumping argu-

ment, we do not make an assumption about the statistics
of the particles and the particular form of the ground
states. Hence, the criteria is now independent of the
statistics. Note also that the minimum transparent flux
2π is imposed by assuming the presence of the charge-1
particle in the spectrum, which may be gapped or gap-
less.

B. Extension of the LSMOH theorem: a stability
analysis

From the comparison between the chiral anomaly cal-
culation and the LSMOH theorem, we expect that when
the anomaly free condition (18) is satisfied, it should be
possible to gap the system trivially without symmetry
breaking. This section is devoted to construct the sym-
metric insulators explicitly by using bosonization. More
specifically, let us write [ν, q] to represent the ”equiva-
lence class” of the physical Hamiltonian of the charge-q
particle, either fermionic or bosonic, system at the fill-
ing ν, under the consideration based on the (generalized)
LSMOH theorem. Then, we prove the followings:

[ν, q] = 0, if νq ∈ Z; (22a)

[ν1 + ν2, q] = [ν1, q]⊕ [ν2, q]; (22b)

[ν, q1 + q2] = [ν, q1]⊕ [ν, q2]. (22c)

Here we use ⊕ to denote the direct sum of various sys-
tems. We also need to define the trivial class (phase),
denoted as 0 above, as follows:

(1) A system that can be gapped (with the considera-
tion of interactions) in a symmetry-preserving fash-
ion is trivial;

(2) (“Stably-trivial” condition) If a system can be
gapped, when coupled to some trivial systems of
the first kind, in a symmetry-preserving fashion,
then it is also trivial.

The properties (22a)-(22c) are naturally satisfied from
the point of view of anomalies, as [ν, q] can actually be
characterized by the chiral anomaly index νq mod Z.
(In this case, ”⊕” represents an usual addition of num-
bers in R/Z.) Nevertheless, here we perform a stabil-
ity analysis to provide another evidence to conform the
anomaly argument presented before.

It should be noted that the meaning of being trivial
in the current context is different from the SPT context.
First, for the non-perturbative stability of lattice sys-
tems, the trivial system is solely identified through their

chiral anomaly. The other part of the ’t Hooft anomaly
is not important. In other words, trivial systems in this
context may accidentally have non-trivial ZN anomaly
(the other part of the full ’t Hooft anomaly). Second,
here we use the full translation symmetry Z, instead of
the effective ZN with fixed N . Hence, trivial systems
in the present context are different from trivial systems
in the SPT context where we classify SPT boundaries
with U(1) × ZN with fixed N . The different meaning
of trivial states is also reflected in how we “add” (and
“subtract”) systems. In the SPT context, we are allowed
to add only systems with vanishing full ’t Hooft anoma-
lies, which should be contrasted with our Condition (2).
Also in the SPT context we do not add trivial systems
with the “extended” symmetries than the symmetry of
edge theories. In other words, the label N should not
be treated as a fixed symmetry label, but as indicating
a representation under the microscopic translation sym-
metry (rather than effective symmetry).

Our result for symmetric insulators,
∑
a νaqa = 0

mod Z, and the following field theory discussion have
some resemblance to the recently-discovered lattice ho-
motopy argument.17 The statement in the lattice homo-
topy argument is that, as far as the lattice symmetry in
concern is not changed (in our case, it is the translation
symmetry), the system can be deformed into a simpler
lattice by adding the symmetry charges from each lattice
sites. For example, imagine a system of two spin- 1

2 ’s per
unit cell, e.g., two lattice sites in the unit cell, and we
want to impose the translation symmetry only. Then,
as far as the translation symmetry is concerned, we can
deform the lattice so that the two lattice sites are sit-
ting on top of each other, and combine the two spin- 1

2
into a single spin-1 or spin-0 object. Then we know that
the integral spin inside the unit cell gives a trivial insu-
lator. In our case, we are adding up the electric charges
of particles per unit cell. Then the criteria we obtained
is equivalent to having an integral charge per unit cell.
Hence, our anomaly seems to be the manifestation of the
lattice homotopy for the translation symmetry case.

a. Purely Fermionic Case: To show (22a), (22b)
and (22c), we go through a few steps. In addition, we
assume that there is a charge-1 particle in the spectrum.
We first warm up with the fermionic case. For this case,
we use the subscript F to represent the fermion, i.e.,
[ν, q]F .

Step 0. For the property (22a), it is easy to show
that [ν, q]F = 0 when ν ∈ Z, as one can introduce a
conventional backscattering term to have a symmetric
gapped ground state. When ν = k/q /∈ Z, let us consider
the low-energy theory

H =

∫
dxΨ†1(−i∂x)σzΨ1. (23)

Here the Ψ1 is the charge-q fermion field at the filling k/q
with the translation symmetry

trans : Ψ1 → eiπk/qσ
z+ik̄Ψ1. (24)
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Without losing generality, we can take the center of the
momentum k̄ = 0 for this fermionic system.

To gap out the system, we couple the system to other
two systems at integral filling which consist of particles
carrying unit charge; both of these systems are trivial.
We then find possible gapping potentials. For example,
we consider

[k/q, q]F ⊕ [0, 1]F ⊕ [0, 1]F , (25)

for which the corresponding Hamiltonian is given by

H =

∫
dx

3∑
a=1

Ψ†a(−i∂x)σzΨa, (26)

where Ψ2,3 are the fermion fields from the [0, 1]F sectors.
Under the translations, trans : Ψ2,3 → Ψ2,3 because they
are at zero filling. Next we use the bosonization repre-
sentation to write Ψ1 ∼ (eiφ1 , eiφ2), Ψ2 ∼ (eiφ3 , eiφ4) and
so on, where φi are properly compactified bosonic fields.

We can then construct bosonic fields Φj ∼ exp(i~lj · ~φ)

with ~φ = (φ1, φ2, · · · , φ6) and

~l1 = (1, 1,−q, 0, 0,−q),
~l2 = (q,−q, 2,−2, 0, 0),

~l3 = (0, 0, 1,−1,−1, 1). (27)

By adding the interaction term ∝ −
∑
j(µjΦj + h.c.),

with large enough µj , which will condense the bosons
Φj , we obtain a gapped ground state which is symmetric.
We have thus shown [k/q, q] = [k/q, q]⊕ [0, q]⊕ [0, q] = 0.
This confirms Eq. (22a).

Step 1. Independence to the center of momentum: For
the gappability conditions, we can show that the center
of momentum (i.e., the center between the left-mover’s
and right-mover’s momenta) is not important. Although
the center of momentum is 0 when the lattice model has
accidental parity symmetry, it needs not to be so. Here,
we will show that the center of momentum can be forgot-
ten for those conditions and can be taken to be 0 without
losing generality.

To show this, we need to show that the charge-q
fermionic system [ν, q, k̄]F (with the third index to rep-
resent the center of the momentum) at filling ν with the
center of momentum at k̄ ∈ (−π, π) is equivalent to an-
other charge-q fermionic system [ν, q, 0]F at filling ν with
vanishing center of momentum. For this, we show that

[ν, q, k̄]F = [ν, q, 0]F . (28)

This can be shown by constructing a symmetric gap for
the coupled two fermionic systems, [ν, q, 0]F and [1 −
ν, q, k̄]F with arbitrary k̄.

For the coupled system, [ν, q, 0]F and [1−ν, q, k̄]F with
arbitrary k̄, let us consider the Hamiltonian

H =

∫
dx
∑
a

Ψ†a(−i∂x)σzΨa (29)

with U(1)δφ : Ψa → eiqδφΨa. The translation symmetry
is encoded as

trans : Ψ1 → eiπνσ
z

Ψ1,

Ψ2 → eiπ(1−ν)σz+ik̄Ψ2. (30)

To construct the symmetric gap, we use the stably-
trivial condition and include the following two trivial
charge-q fermion fields Ψ3 and Ψ4 which transform under
translation as

trans : Ψ3 → e−iπσ
z

Ψ3,

Ψ4 → eik̄Ψ4. (31)

Note that Ψ3 is at filling ν = 1 and Ψ4 at ν = 0 and thus
they are trivial. To gap out a = 1, 2, 3, 4 all together
in a symmetric fashion, we need to consider the gapping
potentials generated by the following vectors

~l1 = (1, 0, 1, 0, 0,−1, 0,−1),

~l2 = (0, 1, 0, 1,−1, 0,−1, 0),

~l3 = (1, 1, 0, 0,−1,−1, 0, 0),

~l4 = (0, 0, 1, 1, 0.0,−1,−1). (32)

The bosons to condense are given by Φj ∼ exp(i~lj · ~φ),

where ~φ = (φ1, φ2, · · · , φ8) with the bosonization repre-
sentation Ψ1 ∼ (eiφ1 , eiφ2), Ψ2 ∼ (eiφ3 , eiφ4) and so on.
We can show that the condensed bosons do not break
any symmetry.

Hence, with this, for the given filling ν and charge q,
we can now take the center of momentum to be zero, i.e.,
k̄ = 0, to study the symmetric gappability. So, from here
and on, we drop the index k̄ from [ν, q, k̄]F to represent
systems and simply write [ν, q]F .

Step 2. To verify the property (22b), we show
that [ν1, q]F ⊕ [ν2, q]F ⊕ [ν1 + ν2, q]

−1
F is trivial, where

[ν, q]−1
F = [−ν, q]F is the inverse of a phase [ν, q]F (as

[ν, q]F ⊕ [−ν, q]F can be trivially gapped). A simple way
to do this is by coupling it to a trivial phase, say, [0, q]F ;
that is, we instead consider

[ν1, q]F ⊕ [ν2, q]F ⊕ [ν1 + ν2, q]
−1
F ⊕ [0, q]F (33)

and examine its stability. In fact, a set of null vectors (in
the above order of the bosonized fields) can be chosen as

~l1 = (1, 0, 1, 0, 0,−1, 0,−1),

~l2 = (0, 1, 0, 1,−1, 0,−1, 0),

~l3 = (1, 1,−1,−1, 0, 0, 0, 0),

~l4 = (0, 0, 0, 0, 1, 1,−1,−1), (34)

such that the ground state is symmetry invariant. This
confirms Eq. (22b).

Step 3. Finally, the property (22c) can be derived in a
similar way. We consider the following combination:

[ν, q1]F ⊕ [ν, q2]F ⊕ [ν, q1 + q2]−1 ⊕ [−ν, 0]F , (35)
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where the extra term [−ν, 0] is a trivial phase, as it ca be
trivially gapped. Then a set of null vectors (in the above
order) for gapping such a system can be chosen as

~l1 = (1, 0, 1, 0, 0,−1, 0,−1),

~l2 = (0, 1, 0, 1,−1, 0,−1, 0),

~l3 = (1,−1,−1, 1, 0, 0, 0, 0),

~l4 = (0, 0, 0, 0, 1,−1,−1, 1), (36)

This confirms (22c).
b. Boson-Fermion Conversion: Next we prove

[ν, q]B = [ν, q]F where the subscript B represents that
the system is made of bosons. To show this, we show

[ν, q]B ⊕ [ν, q]−1
F = [ν, q]B ⊕ [1− ν, q]F = 0. (37)

The low-energy theory of the bosons [ν, q]B is given by

Φ(x) ∼ eiφ,

ρ(x) ∼ 1

π
∂xθ +

∑
n 6=0

ρne
in(2kF x+2θ), (38)

with 2kF = 2πν, and [∂xθ(x), φ(x′)] = iπδ(x − x′) (θ is
compactified as θ ≡ θ + π, i.e., e2iθ is the smallest local
field involving θ). Here Φ(x) represents the fundamental
local boson field.

Without losing generality, we can take the low-energy
theory of [1− ν, q]F whose center of momentum is zero.

trans : φ1 → φ1 + π(1− ν),

φ2 → φ2 − π(1− ν), (39)

where the fermions are written as Ψ = (eiφ1 , eφ2) with
the usual kinetic term. Now the symmetric gapping po-
tentials are given by the following two operators Bi ∼
exp(i~li · ~φ) such that

~φ = (φ, θ, φ1, φ2),

~l1 = (−2, 0, 1, 1), ~l2 = (0, 2, 1,−1). (40)

The vectors ~li are chosen so that ~li · K−1 · ~lj = 0 with
K−1 = ( 1

2σx)⊕ σz.
Hence, with this conversion between fermions and

bosons, we can now ignore the distinction between
fermions and bosons in terms of the symmetric gappabil-
ity. Thus, when the filling ν and the charge q are given,
we can in general take the charge-q fermionic system to
represent [ν, q] to investigate the gappability conditions.
Hence, from here and on, we can forget about the statis-
tics for the symmetric insulator conditions (22a), (22b),
and (22c).

c. Novel Symmetric Insulators: Now, using the
above results, we present a few novel symmetric insu-
lator states, which are beyond the conventional LSMOH
theorem. Note that in the conventional LSMOH the-
orem, usually a single-species of charge-1 particles are
considered (the important exception to this is the Kondo
system, where the mixture of the spin and fermion is
considered).

(i) We have a trivial symmetric insulator of charge-
3 fermion at the filling ν = 1/3. This insulator
requires the help from the charge-1 trivial fermionic
systems.

The gapping potentials are inherently multi-
fermion operators, which make the insulator be-
yond the conventional Slater insulator.

(ii) We have a trivial symmetric insulator of the mixed
system of charge-1 boson at ν = 1/2 and charge-1
fermion at ν = 1/2. This system may be realizable
in the optical lattice system.46,47

(iii) We have a trivial symmetric insulator of charge-2
boson at half-filling. This insulator needs the help
from the charge-1 fermion systems at the integer
fillings. This is related to the superconductors of
the fermions, where the Cooper pair of the fermion
is bound to the boson and is turned into a neutral
boson.

Microscopic lattice Hamiltonians for realizing these in-
sulators as well as their higher-dimensional analogues will
be left for the future studies .

IV. ZN ANOMALY AND LOCAL STABILITY

Having discussed the physics of the chiral anomaly
in relation to the LSMOH theorem, we now investi-
gate the physics of the first index in Eq. (14), the ZN
anomaly, assuming that the continuum theory (11) is de-
rived from the low-energy effective theory of a (1+1)d
lattice fermion model. This is the part of the full ’t
Hooft anomaly, which is unrelated to the LSMOH theo-
rem. They can be non-zero even when the LSMOH theo-
rem does not enforce the gaplessness. In other words, the
theory with the non-zero first index only (i.e., with the
vanishing chiral anomaly) can be gapped symmetrically
in the lattice system. This is in sharp contrast with SPT
boundaries, where the both ZN and the chiral anomalies
(the full ’t Hooft anomaly) signal the non-perturbative
stability. The difference can be traced back to using the
effective translation symmetry Geff = ZN instead of the
full translation symmetry G = Z. When Geff is prop-
erly extended by using the full symmetry G, then the ZN
anomaly can be completely gone and the system can be
gapped symmetrically.

This is best illustrated in the following example of the
double copies of the low-energy fermions U(1)× (Geff =
Z2).

H =

∫
dx

∑
a=1,2

Ψ†a(−i∂x)σzΨa (41)

with Z2 : Ψa → eiπ(σz−1)/2Ψa. In terms of Eq. (13),
we have 2π sRN = π and sL

N = 0. Given the natural
(Geff = Z2)-ness of the low-energy symmetry, we first
take N = 2, i.e., sR = 1 and sL = 0. For this state,
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the first index is non-zero while the second index (chiral
anomaly) vanishes. This non-trivial first index implies
that we cannot find the symmetric insulator phase within
the U(1)×Geff symmetry.

However, the stability enforced by the ZN anomaly in-
dex is not non-perturbative in the lattice system as we
saw in the section of the LSMOH theorem: we can always
find a way to gap out the spectrum without breaking
symmetries when the chiral anomaly is absent. Indeed,
if we allow to extend (Geff = Z2) → Z4, which is still
the subgroup in Z, then N = 4 with sR = 2 and sL = 0.
This generates the completely trivial anomalies, i.e., it is
labeled by the ’t Hooft anomaly (0, 0), and hence it can
be gapped without breaking the symmetry U(1)×Z4 (for
filling ν = 1

N , by extending the symmetry ZN → ZN2 ,
we can remove the ZN anomaly completely for any N).
Note that, in the way of such a symmetry extension, we
usually add some extra degrees of freedom (e.g. addi-
tional systems of electrons), which transform under an
exact U(1) × Z4 symmetry group and have vanishing ’t
Hooft anomaly, to the original system, such that they can
help gap the whole (combined) system. The idea here is
similar to the construction of gapped boundary states of
SPT phases via symmetry extension.48

That being said, we may ask what this ZN anomaly
means to the low-energy theory of the fermionic lattice
system. The first thing to note is that, the non-zero ZN
anomaly implies that the given theory cannot be gapped
within the quadratic term because the theory must be
realizable as the non-trivial SPT boundary. The non-
zero ZN anomaly implies that the system is perturba-
tively stable. Furthermore, we can explicitly show that
the electronic lattice systems which can be gapped by
adding quadratic terms do not possess ZN anomaly, see
Appendix C for detail. This implies that to gap out the
theory with the ZN anomaly, we need to include non-
perturbative ingredients to the theory, e.g., a help from
the extra trivial gapless modes and interactions beyond
the terms quadratic in fermions (see, for example, the
gapping potentials in the section of LSMOH theorem
III B). Thus the non-zero ZN anomaly provides a per-
turbative stability of the given low-energy fermionic the-
ory. (Note that the converse is not true. Even when the
ZN anomaly is absent, the system may be perturbatively
stable.)

V. (3+1)D CHIRAL ANOMALY AND WEYL
SEMIMETALS

Given the relation between the (1+1)d chiral anomaly
and the LSMOH theorem in (1+1)d, we now ask if the
(3+1)d chiral anomaly also contain any stability infor-
mation. Here we will show that the (3+1)d (abelian)
chiral anomaly provides the local stability by consider-
ing the (3+1)-dimensional relativistic semimetals28,30–33

and chiral anomaly35–37,43,44,49,50 captured by the trian-
gular G-U(1)-U(1) diagram with G being unitary spatial

symmetry. For example, in the Weyl semimetal, G is the
translation symmetry. U(1) is the external non-dynmical
electromagnetic guage field.

To illustrate that the (3+1)d chiral anomaly does not
give non-perturbative stability related to the filling and
the translation, we take a specific two-band model with
the Bloch Hamiltonian32

H(k) = sin(kx)σx + sin(ky)σy

+ +M(cos(kz)− cos(Q))σz

+m(2− cos(kx)− cos(ky))σz. (42)

This model has the two Weyl points at kz = ±Q. Re-
markably, the Weyl points appear at zero energy, which
makes the system exactly at half-filling for any Q. Since
the system is spinful, the half-filling means that there
is one electron per unit cell, and thus it can be triv-
ially gapped while preserving the translation and charge
conservation symmetries. Indeed, by changing Q → 0,
we can achieve such a symmetric trivial insulator within
the Bloch Hamiltonian (42) at half-filling. However, this
process involves the change in the dispersion from the
relativistic dispersion to the non-relativistic dispersion,
which is a non-perturbative process seen from the low-
energy Wely fermion Hamiltonian.

On the other hand, in the low-energy limit, the two
Weyl points,

H =

∫
d3xΨ†τzσ · kΨ, (43)

cannot be gapped while keeping the translation symme-
try along z

Tz = exp(iQτz). (44)

(The other two translation symmetries along x and y
directions are trivial in this fine-tuned model.) Given
the allowed symmetric insulator with translation and
the filling, any stability condition of the Weyl semimetal
must be only local in the parameter space. This local
stability then can be captured by the chiral anomaly
Tz − U(1)− U(1) diagram:

δS =

∫
d4x

2Q

16π2
εµνλρFµνFλρ, (45)

which can be obtained by the change in the path integral
measure by the translation symmetry in the presence of
the electromagnetic gauge field.

There is another reason why the non-trivial chiral
anomaly (45) may not be equivalent to the filling-
constrained gapless-ness of the original lattice model
(42). We essentially show that the number of electrons
relevant for the physical (semi-classical) picture35–37,51 of
the chiral anomaly deviates from that of the original lat-
tice problem. For this, we count the number of electrons
in the system in the presence and in the absence of the
mangetic field for the Weyl semimetal.
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First, in the absence of the magnetic field, we note that
the spectrum has the (accidental) particle-hole symme-
try, i.e., E = ±|E(k)|. See (C) of Fig. 1 for kx = ky = 0
band structure. We now count the number of the states
below the chemical potential µ = 0. Then, there is a
single band below the chemical potential. Hence, there

is a single filled state per each momentum ~k. The total
number of electrons in the system thus equals to the num-
ber of the allowed momentum. The spacing between the
momentum along a-direction (a = x, y, z) is 2π

La
and the

each momentum spans from −π to π. Thus, the number
of the filled states are:

Ne =
∏

a=x,y,z

( 2π

2π/La

)
= LxLyLz, ν =

Ne
LxLyLz

= 1.

Hence there is one electron per unit cell.
Next, if we apply the magnetic field along z direction,

then the band structure is changed into the series of the
Landau levels. At zero chemical potential, there is a
chiral mode passing through each Weyl point. See Fig.
1(D). There chiral modes are equivalent to the “0th Lan-
dau level” of the Weyl fermions. Now, let us count the
number of the filled states in this case.

We start with counting with the fully filled bands.
Given a momentum kz, there are Nf−LL ∈ Z filled Lan-
dau levels with Nf−LL varying with the strength of the
magnetic field. Then, each kz has the following number
of the filled states

Ne:f−LL =
(
Nf−LL ×

LxLy
2πl2B

)
× 2π

2π/Lz

= Nf−LL
LxLyLz

2πl2B
. (46)

Here l2B = 1/B, in which B is the magnetic field strength.
Here, to impose the periodic boundary condition along x
and y, the number of the states inside the Landau level,

or
LxLy
2πl2B

, must be integral, and hence Ne:f−LL is also

integral. We next count the number of electrons in the
0th Landau level. The momentum kz inside the filled 0th
Landau level expands from −Q to Q, (see (D) of Fig. 1)
and hence the counting gives

Ne:0−thLL =
LxLy
2πl2B

× 2Q

2π/Lz
=
LxLyLz

2πl2B

2Q

2π
. (47)

Now we take a filling, which is the number of electrons
divided by the volume,

ν =
Ne

LxLyLz
=

1

2πl2B

(
Nf−LL +

2Q

2π

)
, (48)

where Ne = Ne:f−LL + Ne:0−thLL. Obviously, this de-
pends on the separation between the Weyl points 2Q and
the magnetic field B, and it is not necessarily ν = 1.
Hence, the (3+1)d chiral anomaly, which can be faith-
fully understood from this Landau level physics, loses
information about the microscopic filling of the original

E

𝑘𝑧

𝑄−𝑄

(C)
E

𝑘𝑧𝑄−𝑄

(D)

(A)
E

𝑘

(B)
E

𝑘

FIG. 1. Semi-classical illustrations of Anomaly. (A) (1+1)d
metallic state. (B) On adiabatic insertion of the flux by 2π,
one state at the left is pumped to the right. Equivalently, the
momentum labeling each state is shifted by 2π

L
. (C) Spectrum

of the Wely semimetal in cubic lattice. Number of the state
below the chemical potential µ = 0 is precisely Lx×Ly ×Lz,
which is equivalent to the number of the electrons. (D) On
applying the mangetic field, the band structure is changed.

model, which is crucial for the existence of a trivial insu-
lator allowed by the LSMOH theorem.

We now compare this with the 1d chiral anomaly. In
the 1d case, we apply only an electric field adiabatically
to encode the pumping associated with the anomaly and
this effectively is encoded through k → k+A(t), in which
A(t) is the time-dependent gauge field varying from 0 to
2π/L. This process does not change the band structure
but only the momentum is shifted. Hence we shift the
state from left end to the right end as in (A) and (B)
of Fig. 1 after inserting 2π flux. During the process,
the filling is not changed and we can directly access the
information of the filling and thus directly to the LSM
theorem.

For the Dirac semimetals, e.g., distorted spinel, Na3Bi
and Cd3As2,28–30 where the accidental band crossings are
protected by spatial symmetries, we can also find a sim-
ilar G-U(1)-U(1) chiral anomaly. This can be found in
Appendix D.

VI. CONCLUSIONS AND OUTLOOKS

In this paper, we have compared the physics of the
LSMOH theorem and the boundaries of strong SPT
phases from the perspective of quantum anomalies. We
have shown that the same form of the effective theory
of the edge of the SPT state can be constructed within
the lower-dimensional lattice models. Hence, the no-go
theorem for the boundary of the SPTs is circumvented
by encoding some on-site symmetry in the strong SPT as
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the non-on-site translation symmetry in the correspond-
ing lattice model.

From the connection, we further clarify the implica-
tions of the anomalies on the stabilities of the gapless-
ness in the two systems. Though the two systems have
the identical low-energy theory with the effective symme-
try, the anomalies are different in the two systems. The
central distinctions between the edge of the SPT and the
lattice systems are originated from the non-on-site-ness
of the translation symmetry and also from the effective
reduction of the translation symmetry.

By viewing the LSMOH theorem as the anomaly, we
have expanded the LSMOH theorem to the case of the
multi-charge and multi-species problems and constructed
several exotic symmetric insulators.

Finally, we also briefly discussed the (3+1)d chiral
anomaly and have shown that they provide local stability
of topological semimetals.

There are several directions to extend the studies here.

An obvious direction is to include time-reversal sym-
metry and other spatial symmetries.17,52 There are sev-
eral extensions of the LSMOH theorem, i.e., obstruc-
tions to construct a symmetric trivial insulator, by in-
cluding time-reversal and several crystalline symmetries.
It would be desirable to interpret these extensions in the
language of anomalies.

Next, given the connection between SPT boundaries
and the lattice systems, another interesting direction is
to clarify, if any, the distinction between fermionic and
bosonic systems in lattice models. Note that, on SPT
boundaries, fermions and bosons are fundamentally dif-
ferent. This can be seen from the fact that the SPT clas-
sifications of interacting fermion systems assumes spin
structures, which the bosons are not sensitive to. Note
that, in the lattice systems, we know that spin-statistics
connection is not required, and thus naively we do not
expect to have much distinctions for the no-go conditions
of trivial symmetric insulators between the fermions and
the bosons in the lattice models. However, from the lights
of the physics of SPT phases, it would be interesting how
far the bosons and fermions are identical or different in
the lattice systems.
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Appendix A: Derivation of the two anomaly indices
in (14)

In this appendix, we compute the two indices in
(14) that characterize the ’t Hooft anomaly of (1+1)d
non-chiral fermions in any (spin- 1

2 ) representation of
Spinc(2)× ZN .

Let ξ = {ξI , ξII} be a couple of (2+1)d massive Dirac
fermions that have masses with opposite signs and trans-
form in a representation RqsR,sL of U(1)Q×ZN , where q,
the U(1) charge, is an odd integer (as we are considering
Spinc(d) groups) and sR/L ∈ ZN are charges associated
to the ZN transformation

ξI → e2πisR/NξI , ξII → e2πisL/NξII . (A1)

When ξ is defined on an open three-manifold, the (stan-
dard) boundary state of ξ would consist of a set of (1+1)d
non-chiral fermions {ξI |bdy := ψR, ξII |bdy := ψL} trans-
forming in a representation of U(1)Q×ZN with the same
U(1) charge and ZN transformation as the bulk fermions.

The boundary theory including both ψR and ψL is free
of perturbative gravitational and U(1) gauge anomalies.
However, there might be a global anomaly, associated
with the whole Spinc(2)×ZN group, when the boundary
theory is coupled to a background ZN gauge field (and
a spinc structure). Such an anomaly is characterized by
the topological-quantum-field-theory (TQFT) partition
function of the bulk fermions ξ – in the large-mass limit
– on any closed three-dimensional spinc manifold with a
ZN gauge bundle – an element of the equivariant spinc

cobordism group Ω3
Spinc(BZN ). (To be more precise, the

TQFT partition function is an element of the torsion sub-
group of Ω3

Spinc(BZN ). In the case here, however, this

torsion subgroup is exactly Ω3
Spinc(BZN ) itself.)

The partition function of ξ, when formulated on a
closed three-manifold M endowed with a spinc structure
and a background ZN gauge field, is presented by a com-

plex number e2πiηSpinc (M,RqsR,sL
), which is a cobordism

invariant.12 Here ηSpinc(M,RqsR,sL) is the eta-invariant
of the Dirac operator acting on ξ in the representa-
tion RqsR,sL . Since any such three-manifold M is bor-
dant to a linear combination, with integral coefficients,
of the lens space L(3; 1, 1) := S3/τ(1, 1) with the nat-
ural spinc structure (inherited from S3) and ZN struc-
ture (by the identification π1(L(3; 1, 1)) = ZN ), where
τ(1, 1) = e2πi/N ⊕ e2πi/N is a representation of ZN in
U(2) and its action on the three-sphere S3 ⊂ C2 is fixed-

point free, and the “twisted lens space” L̃(3; 1, 1), a three-
dimensional lens space with the same ZN structure as
L(3; 1, 1) and with the spinc structure twisted by the
complex line bundle which corresponds to the represen-
tation e2πi/N ,41,42 we have

ηSpinc(M,RqsR,sL) ≡ aηSpinc(L(3; 1, 1), RqsR,sL) (A2)

+ bηSpinc(L̃(3; 1, 1), RqsR,sL) mod Z

for some integers a, b. Therefore, the ’t
Hooft anomaly αRqsR,sL of the representation
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RqsR,sL of U(1)Q × ZN can be represented
by the two indices (ηSpinc(L(3; 1, 1), RqsR,sL)

mod Z, ηSpinc(L̃(3; 1, 1), RqsR,sL) mod Z).

The value of the eta-invariant on the lens space mod-
ulo integers can be evaluated using the Todd polynomi-
als Tdm(x), where m is a nonnegative integer.42 (For
m = 0, 1, 2, Td0(x) = 1, Td1(x) = 1

2

∑
i xi, Td2(x) =

1
12 [
∑
i<j xjxj + (

∑
i xi)

2].) Defining an auxiliary func-

tion Tdk(u;x) :=
∑
m+n=k u

mTdn(x)/m!, we have42

ηSpinc(L(3; 1, 1), RqsR,sL) (A3)

≡ − 1

N
[Td2(sR + q − 1;N, 1, 1)− Td2(q − 1;N, 1, 1)]

+
1

N
[Td2(sL + q − 1;N, 1, 1)− Td2(q − 1;N, 1, 1)] mod Z

≡ − 1

2N

[
s2
R − s2

L + (N + 2q)(sR − sL)
]

mod Z

and

ηSpinc(L̃(3; 1, 1), RqsR,sL) (A4)

≡ − 1

N
[Td2(sR + 2q − 1;N, 1, 1)− Td2(2q − 1;N, 1, 1)]

+
1

N
[Td2(sL + 2q − 1;N, 1, 1)− Td2(2q − 1;N, 1, 1)] mod Z

≡ − 1

2N

[
s2
R − s2

L + (N + 4q)(sR − sL)
]

mod Z.

One can further simplify these two indices by a group
isomorphism – as e2πiηSpinc for all representations of
U(1)Q × ZN form a subgroup of Ω3

Spinc(BZN ) – as

αRqsR,sL
∼=
(
s2
R − s2

L

εN ·N
mod Z,

(sR − sL)q

N
mod Z

)
,

(A5)

where εN = 1 for odd N and εN = 2 for even N .

It is straightforward to generalize the above result for
multiple-flavors Dirac fermions in a generic representa-
tion R = ⊕aRqasR,a,sL,a :

αR ∼=

(∑
a

s2
R,a − s2

L,a

εN ·N
mod Z,

∑
a

(sR,a − sL,a)qa
N

mod Z

)
. (A6)

Expressed in terms of the fillings νa = (kaF,R−kaF,L)/2π =

(sR,a − sL,a)/N , the two indices in (A6) become

∑
a

νa ·
sR,a + sL,a

εN
mod Z,∑

a

νaqa mod Z. (A7)

Appendix B: Chiral anomaly from bosonization

Let us again start from the low-energy Hamiltonian

H =

∫
dx Ψ†(x)(−i∂x)σzΨ(x),

where Ψ(x) = (ψ↑(x), ψ↓(x))T. We first need to imple-
ment the twisted boundary condition by U(1)Q on the
circular edge x ∼ x+ L as

Ψ(x) = e−iΦΨ(x+ L). (B1)

We call the resulting “ground state” in the presence of
this boundary condition as |Φ〉.

A convenient way to construct and study |Φ〉 is to use
(abelian) bosonization. By bosonization, we represent
the fermionic operators as ψ↑ ∼ eiφ↑ and ψ↓ ∼ eiφ↓ with
the following commutators

[φσ′(x′), ∂xφσ(x)] = 2πi · sgn(σ)δσ,σ′δ(x− x′), (B2)

where σ, σ′ = ↑, ↓ and sgn(↑) = +1, sgn(↓) = −1. Cor-
respondingly, the densities of the ψ↑ and ψ↓ fermions are
given by ρ↑(x) = 1

2π∂xφ↑(x) and ρ↓(x) = − 1
2π∂xφ↓(x).

The conserved charge and the momentum can be con-
structed as Q = Q↑ + Q↓, P = νπ(Q↑ − Q↓), where
Q↑ =

∫
ρ↑(x)dx and Q↓ =

∫
ρ↓(x)dx.

The ground state |Φ〉 in the presence of the twisted
boundary condition Ψ(x) = e−iΦΨ(x+ L) obeys(

ψσ(x)− e−iΦψσ(x+ L)
)
|Φ〉 = 0. (B3)

By the standard operator-state correspondence in
CFT,53–55 we can represent such state by

|Φ〉 = lim
τ→−∞

VΦ(τ)|0〉,

VΦ(τ) ∼ ei Φ
2π (φ↑(τ)−φ↓(τ)), (B4)

where |0〉 is the ground state of the untwisted sec-
tor. Now the (relative) quantum number carried by
|Φ〉 can be directly read off from the operator VφQ be-
cause [Q,VΦ]|0〉 = QVΦ|0〉 = Q|Φ〉, where we have used
Q|0〉 = 0. On the other hand, [Q,VΦ] = 0 from the di-
rect computation of the commutator. Hence, |Φ〉 does
not carry any charge. On the other hand, one verifies
[P, VΦ] = Φν and |Φ〉 carries the momentum P = Φν.
Hence, when Φ = 2π, the state has momentum 2πν rel-
ative to the untwisted sector Φ = 0. This is consistent
with the field theory calculations in Sec. III A 1.

Appendix C: Vanishing ZN anomaly in
Perturbatively-gappable Electronic Systems

Here we prove that trivial electronic systems, which
can be perturbatively gapped without breaking the trans-
lation and charge U(1) symmetries, must have vanishing
ZN anomaly.
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Imagine that we have Nf species of electrons a =
1, 2, · · ·Nf at filling νa = pa

n with pa ∈ Z such that∑
a=1···Nf pa = z · n with z, n ∈ Z (so that the chiral

anomaly vanishes). Furthermore, by some fine-tuning,
translation symmetry is realized as ZN symmetry, so that

kR,a = 2π
sR,a
N

, kL,a = 2π
sL,a
N

, (C1)

with sR,a and sL,a taking their values in Z.
Now when this system can be gapped perturbatively,

i.e., in the quadratic level, we must have the backscat-
tering term which respects the translation symmetry.
Hence, we can order the momentum in the following way

kL,1 = kR,2, kL,2 = kR,3, · · · , kR,1 = kL,Nf . (C2)

With this, we can now show that∑
a

νa
(sR,a + sL,a)

εN
= 0 mod Z (C3)

To see this, we note that the momenta are labeled as
following

sR,1 = s̄, sL,1 = s̄+
p1

n
N,

sR,2 = s̄+
p1

n
N, sL,2 = s̄+

p1 + p2

n
N,

· · · · · ·

sR,Nf = s̄+

∑Nf−1
a=1 pa
n

N, sL,Nf = s̄+

∑Nf
a=1 pa
n

N

(C4)

with pa
N
n ∈ Z for all a (to keep the translaion symmetry

as ZN ) and s̄ ∈ Z.
Now the ZN anomaly in this system is

1

εN
(2s̄Nf + zN + 2zNNf − 2

Nf∑
a=1

apa
N

n
) ∈ Z, (C5)

where we have used pa
N
n ∈ Z and so 2

∑Nf
a=1 apa

N
n ∈ 2Z.

Thus it has vanishing ZN anomaly.
Hence the electronic system which can be perturba-

tively gapped (equivalently, which can be gapped by the
quadratic terms) has a vanishing chiral and ZN anomaly.

Appendix D: Dirac Semimetals and Chiral Anomaly

Here we show that the Dirac semimetals28–30 have the
G-U(1)-U(1) chiral anomaly, which is a manifestation of
the local stability given by the spatial symmetries.

Here we note a few points about the spatial symmetry
G. In the Dirac semimetal, we distinguish the two sym-
metry groups: H to realize the relativistic Dirac spec-
trum in a lattice model, and G for prohibiting the rel-
ativistic mass terms to the Dirac spectrum. When seen

from the low-energy theory, some elements in H may be
superfluous and are not required for the stability. In gen-
eral, G is a subgroup of H.

Typically, H must contain (i) inversion and (ii) time-
reversal symmetries to gaurantee the four-fold degener-
acy at the band crossings of Dirac fermions. Further-
more, they accompany (symmorphic or non-symmorphic)
rotational symmetries. Otherwise, the dispersions may
be gapped or deformed away from the relativistic Dirac
spectrum, e.g., line-nodal spectrum. However, as soon
as we get to the relativistic spectrum and concentrate
only on the relativisitic mass-gap deformation, some of
the symmetries in H is not necessary for stabilizing the
Dirac semimetal. Hence, G can be smaller than H.

For the known materials of Dirac semimetals, we can
show that G can be generated by only a few orientation-
preserving space groups inside H, and consider G-U(1)-
U(1) anomaly.

1. Dirac semimetal: disorted spinel

It has a single Dirac point at the zone boundary. It
is an accidental band crossing, not related to the Lieb-
Schultz-Mattis theorem. The low-energy Hamiltonian in
the chiral basis is given as

H =

∫
d3kΨ†kτ

zσ · kΨk (D1)

with two-fold rotation C2 in xy-plane, inversion P , and
time-reversal symmetry T . They are given as following:

C2 = τzσz, P = τy, T = iσyτzK. (D2)

To keep the relativistic Dirac spectrum, all the three sym-
metries are required. However, within the relativistic the-
ory, C2 ∝ τz is enough to remove the relativistic mass
terms. Obviously, it is captured by the C2-U(1)-U(1)
chiral anomaly.

δS =

∫
d4x

1

16π
εµνλρFµνFλρ (D3)

We may extend the symmetry group G to be generated
by C2 and P , which will be isomorphic to D8.

2. Dirac semimetal: Na3Bi and Cd3As2

They have two Dirac points on the kz axis, symmetric
under the rotations. They are “accidental band cross-
ings”, not related to the LSM theorem. The low-energy
Hamiltonian in the chiral basis is given as

H =

∫
d3kΨ†kµ

0 ⊗ σz(τ · k)Ψk (D4)

in which µa is the Pauli matrix acting on the “valley”
index. Symmetries are: inversion P , time-reversal sym-
metry T , and 3-fold rotation for Na3Bi (4-fold rotation
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for Cd3As2). They are given by

T = µxσziτyK, P = µyσy. (D5)

Translation along z-direction is given by

Tz = exp(iQµz) (D6)

where (0, 0,±Q) are the positions of the Dirac points.
The symmorphic 3-fold rotation C3 for Na3Bi is

C3 = exp
(
i
π

3
σz ⊗ µz

)
⊗ exp

(
i
2π

3
τz
)

(D7)

The symmorphic 4-fold rotation C4 for Cd3As2 is

C4 = µz ⊗ σz ⊗ τz exp
(
− iπ

4
τz
)
. (D8)

The “stability” statements involve rotation, inversion
and time-reversal. In particular, inversion and time-
reversal are invoked to gaurantee the four-fold degener-
acy at the zero energy (not about the gapless-ness).

- Anomaly : Now the relativistic gapless-ness is guar-
anteed if we impose Tz and Cn. However, Tz and Cn
are not anomalous in g-U(1)-U(1) diagram in which g is
generated by composing Tz and Cn.

To see the anomaly structure carefully, we introduce
the U(1) valley gauge field aµ such that µz = +1 fermion
carries the charge-Q and µz = −1 fermion carries the
charge-(−Q), i.e., the covariant derivative of the fermions
is Dµ = ∂µ− iAµ− iQµzaµ. Now it is straightforward to
compute the triangle diagram in the presence of the field
strength of Aµ and aµ, i.e., Cn-A-a, e.g., for C3 case is

L =
2π/3

16π2
×Q× εµνλρFµνfλρ, (D9)

where f is the field strength of aµ. Note that aµ is the
“gauge field” by gauging on-site version of the transla-
tion. Hence, this anomaly can be thought of as C3-“Tz”-
U(1), where “Tz” is the on-site version of the translation.
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