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In this work we present a comparative investigation of the electronic structures of NbO2 and
VO2 obtained within the combination of density functional theory and cluster-dynamical mean field
theory calculations. We investigate the role of dynamic electronic correlations on the electronic
structure of the metallic and insulating phases of NbO2 and VO2, with focus on the mechanism
responsible for the gap opening in the insulating phases. For the rutile metallic phases of both
oxides, we obtain that electronic correlations lead to strong renormalization of the t2g subbands,
as well as the emergence of incoherent Hubbard subbands, signaling that electronic correlations
are also important in the metallic phase of NbO2. Interestingly, we find that nonlocal dynamic
correlations do play a role in the gap formation of the (bct) insulating phase of NbO2, by a similar
physical mechanism as that recently proposed by us in the case of the monoclinic (M1) dimerized
phase of VO2 (Phys. Rev. Lett. 117, 056402 (2016)). Although the effect of nonlocal dynamic
correlations in the gap opening of bct phase is less important than in the (M1 and M2) monoclinic
phases of VO2, their presence indicates that the former is not a purely Peierls-type insulator, as it
was recently proposed.

I. INTRODUCTION

Vanadium and niobium dioxides are rutile-based d1

systems which undergo simultaneous metal-insulator
transition (MIT) and structural transition with dimer-
ization of transition metal atoms. The MIT in vanadium
dioxide (VO2) occurs approximately at 340 K1 and is ac-
companied by a transition from a high-temperature rutile
(R) phase, shown in Fig. 1(a), to a low-temperature M1

or M2 monoclinic phase (see Fig. 1(b) and (c)). In the
M1 phase all the vanadium atoms dimerize and tilt with
respect to the rutile c axis. In contrast, only half of these
atoms dimerize in the M2 phase, without tilting, whereas
the other half of vanadium atoms experience a zigzag-
like distortion along the c axis. The MIT in niobium
dioxide (NbO2) occurs at much higher temperatures (≈
1081 K)2–4 and is also accompanied by a structural tran-
sition, from a rutile to a body-centered tetragonal (bct)
phase, displayed in Fig. 1(d). From the technological per-
spective, their ultrafast switching under external stimuli
is attractive to engineer new electronic devices. Indeed,
both oxides have been considered promising candidates
to integrate phase transition electronic devices, such as
electronic switches and memristors,5–7 where the NbO2

has the advantage of operating over a broad range of
temperatures.

Overall, the M1 and bct structures have similar fea-
tures. As can be seen in Fig. 1(b) and (d), in these
phases the pairs of transition metal atoms dimerize, and
tilt with respect to the rutile c axis. Within a band struc-
ture picture, Goodenough8 proposed that these distor-
tions would lead to the opening of a band gap between
the electronic states associated with the overlapping d-
orbitals along the rutile c axis, namely a1g states, and
the remaining t2g states, i.e. the eπg states. Thus, within

the Goodenough model, the gap in M1 and bct phases
opens due to the lattice distortions. Meanwhile, the fail-
ure of density functional theory (DFT) calculations to
take into account the gap opening in the M1 phase,9,10

as well as the existence of localized d electrons in the
zigzag-like chains of M2 phase,11 suggest that electronic
correlations do play a role in the gap formation of VO2

low-temperature phases. In fact, according to recent the-
oretical calculations,12,13,15 the gap appears in the M1

phase due to the interplay between lattice distortions and
electronic correlations, ruling out a purely Peierls-type
transition. The calculations performed in Refs. 12 and
13 considered appropriate model Hamiltonians and indi-
cated distinct physical mechanisms for the gap opening
of the M1 phase; on the other hand, in Ref. 15, by us-
ing modern all electron embedded dynamical mean-field
theory (DMFT) implementation, we obtained an unified
picture for the gap formation in M1 and M2 monoclinic
phases. In particular, we showed that electrons in all
phases of VO2 are in the near vicinity of a Mott transi-
tion, but with the Mott instability arrested in the dimer-
ized phase.

In NbO2, the role of electronic correlations in the gap
formation of bct phase, as well as in the electronic prop-
erties of its R phase, has not been addressed so far. Pre-
vious DFT calculations, within the local density approx-
imation (LDA), have obtained too small band gap com-
pared to experiment.20,21 Moreover, O’Hara et al.

22 have
suggested that the structural transition from the R to the
bct phase is of second order type in contrast to experi-
ment. They identified soft-mode instabilities in R phase
associated with dimerization of niobium atoms. More-
over, they proposed that the gap of bct phase appears
solely due to the structural distortions and the electronic
correlations play no role. Similar conclusion was reached
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by Eyert.20 Therefore, in contrast to VO2, previous the-
oretical works have suggested that the MIT in NbO2 is
a structurally-driven transition and that the bct phase is
a Peierls-type insulator.
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FIG. 1. Crystal structures of (a) rutile (R) (space group
P42/mnm), (b) monoclinic M1 (space group P21/c), and (c)
monoclinic M2 (space group C2/m) phases of VO2. (d) Crys-
tal structure of body-centered tetragonal (bct) phase of NbO2

(space group I41/a). Vanadium and niobium atoms are rep-
resented by black spheres while the oxygens by the orange
ones. The local axis system used throughout this work10 is
shown schematically in (a).

In this work we address the role of electronic corre-
lations on the gap formation of the insulating phases of
NbO2 and VO2, as well as in the electronic structure of
their respective metallic phases, focusing on a comparison
between the two compounds; to address these issues, we
use a combination of DFT and embedded cluster-DMFT
methods.18 Our results indicate that for the rutile metal-
lic phases the electronic correlations lead to strong renor-
malization of the t2g subbands and the emergence of inco-
herent Hubbard subbands in both oxides, signaling that
electronic correlations are also important in the metallic
phase of NbO2. Interestingly, we find the presence of siz-
able intersite electronic correlations within the niobium
dimers in the bct phase. According to our findings, these
nonlocal correlations do play a role in the gap formation
of NbO2 insulating phase, as found in the M1 phase of
VO2.

15 Therefore, our results suggest that the structural
distortions are not solely responsible for the gap opening

of the bct phase, ruling out a purely Peierls-type nature
for this phase, as it has been proposed recently.22

The paper is organized as follows. In Sec. II we de-
scribe the computational method employed in our calcu-
lations. Our results for metallic (R) and fully dimerized
(M1 and bct) phases are presented in subsections III A
and III B 1, respectively. In subsection III B 2 we show
our results for the M2 phase of VO2. A general compar-
ison between the nonlocal dynamic correlations in the
insulating phases are presented in subsection III B 3. Fi-
nally, in Sec. IV we summarize our findings.

II. COMPUTATIONAL METHOD

Our electronic structure calculations were performed
within a fully self-consistent combination of DFT and em-
bedded DMFT.23 Within our implementation we do not
construct any effective model and the electronic charge
density is obtained self-consistently. As shown in our pre-
vious report,15 the proper inclusion of ligand states as
well as the self-consistent evaluation of the charge den-
sity are of great importance to capture the mechanism
responsible for the gap opening in VO2.
In our real space implementation, the DMFT self-

energy is expanded in terms of quasi-localized atomic
orbitals (〈r|φµ

m〉),

Σiω(r, r
′) =

∑

mm′,µµ′

〈r|φµ
m〉〈φµ

m|Σ|φµ′

m′〉〈φ
µ′

m′ |r
′〉, (1)

where m,m′ denote the atomic degrees of freedom of
an atom centered at µ. The single-site DMFT approx-

imation is obtained by the truncation 〈φµ
m|Σ|φµ′

m′〉 =
δµ,µ′〈φµ

m|Σ|φµ
m′〉, while the cluster-DMFT keeps intersite

terms 〈φµ
m|Σ|φµ′

m′〉 within a given cluster, which in our
case are transition metal dimers. In particular, we em-
ployed the single-site DMFT for nondimerized atoms and
the cluster-DMFT for dimerized ones, such as V-V and
Nb-Nb dimers in the low-temperature phases. After em-
bedding the self-energy in the large Hilbert space with
all valence states included, we solve the Dyson equation

Giω(r, r
′) = [(iω + µ+∇2 − VKS(r))δ(r − r

′)

−Σiω(r, r
′)]−1. (2)

In our cluster-DMFT treatment, we adopt the sym-
metric and antisymmetric combination of orbitals within
each transition metal dimer. The associated bonding
(Σb,α) and antibonding (Σab,α) self-energies can be ex-
pressed as a linear combination of the components in the
site representation, i.e. in terms of a local (Σ11) and
intersite (Σ12) components,

Σb,α = Σ11 +Σ12, (3)

and

Σab,α = Σ11 − Σ12, (4)
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where α = {a1g, e
π
g (1), e

π
g (2)}.

Finally, we mention that the DFT part of our calcu-
lations were carried out within Perdew-Burke-Ernzehof
generalized gradient approximation (PBE-GGA),24 as
implemented in Wien2K package.25 In our DMFT calcu-
lations, the quantum impurity problem was solved using
Continuous time quantum Monte Carlo (CTQMC) cal-
culations,26 considering the Coulomb interaction U = 6.0
eV and Hund’s coupling J = 1.0 eV for all phases investi-
gated. We mention that within our implementation sim-
ilar U values were used for 3d, 4d and 5d materials.27–29

In our notation, the a1g state corresponds to the σ-type
dx2

−y2 − dx2
−y2 overlap along the c axis, while the eπg

states correspond to the π-type d− d overlap concerning
the dxz and dyz orbitals. The experimental lattice struc-
tures of VO2 and NbO2 phases are taken from Refs. 30,
33, 38, and 31, respectively.

III. RESULTS AND DISCUSSIONS

A. Metallic phases

We first investigate the R phase of both oxides within
our realistic DFT+DMFT approximation. In Fig. 2 we
show the calculated DFT+DMFT based total, t2g, and
eσg projected density of states of the rutile phase of both
oxides, at temperatures close to their respective MITs.
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FIG. 2. DFT+DMFT-based total (black dashed line) and
projected density of states of R phases of (a) VO2 and (b)
NbO2, at T = 390 K and T = 1132 K respectively. The
projections to a1g, e

π

g (1), e
π

g (2), and eσg states are shown in
blue, red, green, and brown lines, respectively. Shaded regions
indicate the DFT obtained total density of states.

In comparison with DFT obtained density of states
(grey shaded regions in Fig. 2), we notice that the t2g
states are renormalized due to dynamic correlations, with
stronger renormalization in VO2. As can be seen in
Fig. 2, these correlations also lead to the emergence
of lower and upper Hubbard bands in the spectra of
both oxides. For VO2, a lower Hubbard band (LHB) is
found at -1.1 eV, in agreement with experimental mea-

surements32 and DMFT calculations on the Hubbard
model.12 The upper Hubbard band (UHB), by its turn,
is observed at around 2.5 eV. For NbO2 the LHB is found
at ≈ -1.8 eV whereas the UHB at ≈ 3 eV. To date, there
is not any experimental spectra reported on the R phase
of NbO2, which could be used for comparison with our
findings. Overall, the LHBs come mainly from a1g states,
while the UHBs are mainly due to eπg states. Although
the correlation effects are more pronounced in spectral
properties of VO2, our findings suggest that the elec-
tronic dynamic correlations in NbO2 are still important.
To investigate the strength of correlations in both

oxides, we evaluated the quasiparticle weight Zα =
[1 − ∂ReΣα(ω)/∂ω]

−1 for each dynamical orbital α =
{a1g, e

π
g (1), e

π
g (2)}. For non-interacting systems, this

quasiparticle weight is equal to unity, while in a strongly
correlated system, such as a Mott insulator, Z vanishes.
Our calculated quasiparticle weights for both oxides are
presented in table I.

TABLE I. Quasiparticle weights (Z’s) for each dynamical or-
bital α = {a1g , e

π

g (1), e
π

g (2)} of rutile phases of VO2 and
NbO2.

VO2 NbO2

Za1g
0.28 0.32

Zeπ
g
(1) 0.33 0.51

Zeπ
g
(2) 0.40 0.57

Zavg 0.34 0.46

The obtained values of Z for each t2g state indicate
that the metallic phase of VO2 is indeed more correlated
than that of NbO2. However, we stress that the Z values
obtained for NbO2 confirm that correlations are also im-
portant in this system. In particular, we observe that the
a1g subband is the most correlated, followed by the eπg (1)
and eπg (2) subbands. The smaller values of Z obtained for
VO2 reveal that electrons in this system are closer to the
Mott transition than electrons in NbO2, which is in ac-
cordance with the more delocalized nature of 4d orbitals
of niobium in comparison with the 3d ones of vanadium
atoms.

B. Insulating phases

1. M1 and bct phases

Structurally, in the M1 phase of VO2 as well as in the
bct phase of NbO2 the transition metal atoms dimerize
and tilt with respect to the rutile c axis, as shown in
Figs. 1(b) and (d), respectively. These structural distor-
tions, within a band-theory, lead to the splitting of the
a1g subband in bonding and antibonding states, while
the eπg states are upshifted in comparison with its re-
spective position in rutile. For the M1 phase, previous
DFT+DMFT calculations showed that the gap opens due
to the interplay of structural distortions and electronic
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correlations.12,13 However, their findings pointed out dif-
ferent mechanisms for the gap formation. In fact, in the
work by Biermann et al.

12 it was found that non-local
correlations, within the vanadium dimers, renormalize
down the a1g bonding-antibonding splitting, suggesting
that the M1 phase should be a renormalized Peierls in-
sulator. In contrast, Weber et al.

13 found that the gap
formation is driven by an orbital-selective Mott instabil-
ity of the a1g electronic states, suggesting that the M1

should be a Mott-Peierls insulator.

The above distinct pictures for the nature of the
M1 phase were obtained within multiband Hubbard
Hamiltonians derived through the downfolding proce-
dure. Within their implementation the O-2p states were
removed from the low-energy model and the charge den-
sity was not calculated self-consistently. We mention that
full charge self-consistency considerably improves on one-
shot calculations, as shown in the case of metal-insulator
transition in V2O3;

14 because otherwise the Kohn-Sham
potential comes from a spurious metallic phase of the ma-
terial, since on the LDA level the monoclinic phases of
VO2 are metals (see Ref.10). Concerning their findings,
these previous downfolded DFT+DMFT calculations led
to a R phase too metallic, which in turn places this ma-
terial too far from the Mott transition boundary. We
emphasize that this indicates an issue concerning the de-
scription of the M2 phase. In addition, the insulating
state of the M1 phase was found to be too robust, which
is not compatible with the gap collapse induced experi-
mentally by ultrashort laser pulses (see Ref. 16).

More recently, we showed15 that the gap appears in the
M1 due to significant non-local correlations in the pres-
ence of strong intersite exchange within the vanadium
dimers; this rules out the previous findings in favor of a
Mott insulator in the presence of strong intersite superex-
change within V-dimers. It is worthy mentioning that
within our scenario we describe the gap collapse of M1

phase with increasing of electronic temperature, which is
reminiscent of femtosecond laser pulses experiments on
VO2

16(for more details see Ref. 15).

To compare the low temperature phases of VO2 and
NbO2, we show in Fig. 3 the calculated spectral func-
tion of M1 and bct phases, with their associated t2g and
eσg projected density of states. Within our DFT+DMFT
approach, we obtained two insulating phases with indi-
rect gaps of 0.55 and 0.73 eV, for M1 and bct phases,
respectively. As mentioned in Ref. 15, the gap obtained
for M1 is in good agreement with the experimental gap
reported by Koethe et al.32 (0.6 eV) and cluster-DMFT
calculations on the Hubbard model.12,13 In bct phase of
NbO2, we obtained the indirect gap size of 0.73 eV, which
is 0.49 eV higher than DFT(GGA) band gap and is in
good agreement with recent ellipsometric measurements
reported by O’Hara et al.

21 (gap of 0.7 eV). It is worth
mentioning, though, that our charge gap is underesti-
mated in comparison with the gap of at least 1.0 eV ob-
tained by Posadas et al.

42 through x-ray photoelectron
spectroscopic measurements of NbO2 films. We notice
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FIG. 3. Spectral function and projected density of states
of (a) M1 and (b) bct phases at 332 and 1000 K, respec-
tively. The projections to a1g, e

π

g (1), and eπg (2) dimer states
are shown in blue, red, and green lines, respectively. The
solid (dashed) blue line corresponds to the projection on the
bonding (antibonding) a1g dimer state.

also that, in both oxides, the eπg states are more coher-
ent than the a1g states, which suggests that the latter is
more correlated than the former. Further, the weak LHB
associated with the a1g antibonding state in M1 phase of
VO2 is not seen in bct phase. The a1g bonding subbands
present coherent peaks at around -0.3 and -0.7 eV in M1

of VO2 and bct phases, respectively. The respective an-
tibonding subbands are centered around 2.6 and 3.5 eV.
This indicates that the bonding-antibonding splitting en-
ergy has an increase of 1.34 eV in M1 phase and 0.74 eV
in bct phase, in comparison with our DFT calculations.
Next, in Fig. 4(a), we show the imaginary part of

the self-energies associated with the a1g dimer electronic
states, for both M1 (black) and bct (red) phases.
From these self-energies we notice a similar feature in

both systems: the absence of poles in the imaginary part
of the self-energies indicates that in bct phase, as in the
M1 phase, once the dimerization occurs, the Mott insta-
bility is arrested. In particular, we notice that the po-
sition of the peaks associated with the a1g antibonding
states, which appear at -2.58 eV (bct) and -1.0 eV (M1),
indicates that the electrons in M1 phase are closer to a
Mott transition than the ones in bct phase. This suggests
that the structural distortions are more important in the
gap opening of bct phase than in the M1 phase.
In Fig. 4(b) and (c) we show the valence histograms

of vanadium and niobium dimers in M1 and bct phases,
respectively. Probabilities of dimer states shown in these
histograms are computed within the CTQMC simulation,
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where the sampled probabilities are proportional to ma-
trix elements of the cluster (dimer) eigenstates (for more
details see Ref. 26). These histograms indicate that the
singlet states (blue arrows) associated with the V and
Nb-dimers are the states with the highest probabilities,
with occupation probabilities of 32% and 35%, respec-
tively, followed by impurity states with 3 and 1 electrons
(N = 3 and 1 in our histograms). These findings sug-
gest that charge fluctuations are more important to the
gap formation than spin fluctuations associated with the
singlet-triplet states of the dimers. In respect to this,
we mention that recent inelastic X-ray scattering mea-
surements found that the singlet-triplet spin excitation
energy is 0.42 eV,43 in disagreement with the theoreti-
cal prediction of 0.123 eV obtained by quantum Monte
Carlo calculations.44 The fact that probability for the
triplet state is relatively small in our calculation, sug-
gests that the singlet-triplet splitting is comparable to
the band gap, but the precise calculation of the many
body energy level is beyond the scope of this work.

2. M2 phase

Previous experimental works have shown that M2

phase of VO2 can be stabilized at ambient conditions by

uniaxial stress along the [110]R axis or by doping with
3+ ions, such as Cr3+, Al3+, Fe3+, or Ga3+.11,34 As can
be seen in Fig. 1(c), in this phase half of vanadium atoms
dimerize, without tilting, whereas the other half experi-
ence a zigzag-like distortion along the c axis. Further,
previous experiments reported the existence of localized
d electrons in the zigzag vanadium chains. Pouget et

al.
35 interpreted their findings using a set of noninteract-

ing independent spin-1/2 Heisenberg chains. Likewise,
D’Haenens et al.36 deduced from their findings an antifer-
romagnetic exchange coupling JAF , on the zigzag chain,
of the order of 400 K, at x = 0.45 in V1−xCrxO2 com-
pounds. More recently, such antiferromagnetic ordering
has been observed in VO2 nanorods in the M2 phase.37

As reported previously,15 in our investigation of the
M2 phase we considered paramagnetic and antiferromag-
netic states concerning the zigzag V-atoms. From our
calculated spectral functions, shown in Fig. 5(a) and (b),
we observe that in both states the M2 phase presents a
gap. In particular, we obtain gaps of 0.58 and 0.61 eV
for the antiferromagnetic and paramagnetic states, re-
spectively. This indicates that the antiferromagnetic or-
dering related to the d electrons in the zigzag-like chains
plays a minor role in the gap formation of this phase. In
both situations the gap opens between the a1g and eπg
subband, although the a1g states from the zigzag chains
provide a small contribution to the bottom of the conduc-
tion band (see central and right panels of Fig. 5(a) and
(b)). The a1g bonding subband presents a coherent peak
at -0.34 eV (-0.31 eV), whereas the antibonding subband
is centered at 2.5 eV (2.5 eV) for the paramagnetic (anti-
ferromagnetic) state. The resulting bonding-antibonding
splitting energy is ≈ 1 eV larger than obtained by DFT.
Further, the a1g states of zigzag atoms downshift and
become less dispersive in the paramagnetic phase, such
as a Hubbard-like subband. The a1g states of dimer-
ized V-atoms do not shift. Hence, the low-energy exci-
tations in the paramagnetic phase are dominated by the
a1g states of the dimerized V-atoms, in contrast to the
antiferromagnetic phase wherein both vanadium chains
contribute to the top of the valence band.

We also observe a restoration of coherence of the oc-
cupied states close to the Fermi level when comparing
the antiferromagnetic with the paramagnetic state, which
indicates that antiferromagnetic ordering suppresses the
electronic correlations. In fact, in the valence histogram
shown in Fig. 5(c) and (d), we observe that the antifer-
romagnetic ordering suppresses the spin fluctuations of
the zigzag V-atoms, while it does not affect the occupa-
tion probabilities of states associated with the dimerized
atoms. The histogram shown in Fig. 5(c) indicates that
the singlet state associated with the V-dimers has the
highest probability (occupation probability of ≈ 33%),
followed by states with N = 3, as found for the M1 phase.

To investigate the effects of electronic correlations in
the M2 phase we show in Fig. 6(a) the imaginary part
of self-energies related to the dimerized and zigzag V-
atoms. In the paramagnetic phase, we notice that the
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FIG. 5. DFT+DMFT spectral function and projected density of states of M2 phase at 332 K, considering (a) antiferromagnetic
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to each t2g state, with the contributions of the up and down(dn) spins shown in solid and dashed lines, respectively. In (c) and
(d) we show the valence histograms of the V-dimer and V states of dimerized and zigzag atoms, respectively.
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t2g states associated with the dimerized atoms do not
present any pole in the imaginary part of self-energy, as
similarly found in M1 phase. As pointed out in our pre-
vious work,15 in the antiferromagnetic phase we find that
even the t2g states associated with the zigzag atoms do
not present a Mott instability. In fact, the singularity
of the self-energy is arrested once the antiferromagnetic

ordered state is stabilized. Interestingly, as can be seen
in Fig. 6(b), the real part of a1g self-energy has a strong
frequency dependence around the Fermi level, which in-
dicates that the a1g subband is renormalized by this com-
ponent. On the other hand, in the paramagnetic phase
(see Fig. 6(a)), the imaginary part of self-energy associ-
ated with a1g states of zigzag V-atoms acquires a pole.
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As a result, the a1g subband is splitted by a Mott insta-
bility, indicating that this subband undergoes the Mott-
Hubbard transition. These findings suggest that the M2

phase is best characterized as a Mott insulator.

3. Nonlocal dynamic correlations in M1, M2, and bct phases

As observed in the previous sections, the inclusion of
nonlocal dynamic correlations increases the a1g bonding-
antibonding splitting energy in the low-temperature
phases of VO2 and NbO2. Within the transition metal
dimers, treated as a cluster in our DMFT calculations, it
is useful to look at the self-energies in the site represen-
tation, where we have the local self-energy, Σlocal = Σ11,
and the intersite self-energy, Σin = Σ12. In order to com-
pare the effects of nonlocal dynamic correlations for the
M1, M2, and bct phases, we show in Fig. 7 the real part
of intersite a1g − a1g and eπg (1) − eπg (1) self-energies for
each insulating phase.

0 10 20 30

−2

−1

0

bct

iω

R
e 

   
 (

eV
)

Σin

M1

M2

FIG. 7. Real part of intersite self-energies, on imaginary fre-
quency axis, of a1g−a1g (solid lines) and eπg (1)−eπg (1) (dashed
lines) states of M1 (indigo), M2 (AFM) (red), and bct (green)
phases. We considered T = 332 K for the monoclinic phases
and T = 1000 K in the case of bct phase.

First, we notice that the frequency dependence of the
intersite self-energies associated with eπg (1) states is neg-
ligible for all the insulating phases. In contrast, the
intersite self-energies associated with a1g states depend
strongly on frequency in the low-energy part. This indi-
cates the presence of strong intersite correlations within
the transition metal dimers. This strong frequency de-
pendence of intersite self-energy was first noticed in the
low-temperature phase of Ti2O3,

17 but a strong intersite
Coulomb interaction was required for opening the gap. In
the M1 and M2 phases of VO2 the intersite components
are almost the same, with minor difference in the iω → 0
limit, indicating that |Σin

a1g−a1g
(0)| is larger in M1 phase.

Interestingly, the intersite a1g self-energy in bct phase
is frequency dependent as well, but with smaller inten-
sity than in the insulating phases of VO2, as noticeable
when taking the iω → 0 limit. These results, within an

effective band structure picture (see supplemental mate-
rial of Ref. 15), support the smaller increase of bonding-
antibonding splitting energy in bct phase in comparison
with the monoclinic phases of VO2. Therefore, our find-
ings suggest that the Mott physics is important in both
oxides, with only somewhat stronger effects in VO2.

IV. SUMMARY

In summary, we performed fully self-consistent all-
electron DFT+DMFT calculations to investigate the role
of dynamic electronic correlations on the electronic struc-
ture of the metallic and insulating phases of NbO2 and
VO2, as well as the mechanism of the gap opening for
the insulating phases, focusing on a comparison between
the two compounds. For the rutile phase of both ox-
ides our results indicate that dynamic correlations lead
to a renormalization of t2g levels and the emergence of
Hubbard bands associated with the a1g (LHB) and eπg
(UHB) states. In particular, we find that the correlation
effects are more pronounced in the spectral properties of
VO2, although the calculated quasiparticle weights Z’s
show that electronic dynamic correlations in the rutile
phase of NbO2 are still important. The smaller values of
Z obtained for VO2 reveal that electrons in this system
are closer to the Mott transition than electrons in NbO2,
which is expected due to more delocalized nature of 4d
orbitals of niobium in comparison with the 3d ones of
vanadium atoms.

In respect to the insulating phases of both oxides, we
find charge gaps of 0.55 eV and 0.73 eV for the M1 and
bct phases, respectively, in agreement with experiments.
For the M2 phase, by its turn, we obtain charge gaps
of 0.58 eV, considering an antiferromagnetic state, and
of 0.61 eV, for the paramagnetic state. This indicates
that antiferromagnetic ordering plays a minor role in the
gap formation of this phase. Overall, we observe that
the bonding-antibonding splitting energy increases in the
presence of nonlocal dynamic correlations, in comparison
with our DFT calculations. Interestingly, we find that
nonlocal dynamic correlations do play a role in the gap
formation of the bct phase, by a similar physical mecha-
nism as in the case of M1 phase of VO2 which was pro-
posed in Ref. 15. In particular, the nonlocal dynamic cor-
relations in bct phase leads to a smaller enhancement of
bonding-antibonding splitting energy than in M1 and M2

phases of VO2. It indicates that the bct phase of NbO2

is not a purely Peierls-type insulator, as it was recently
proposed.22 According to our results, all phases of VO2

and NbO2 are in the near vicinity of a Mott transition,
but with the Mott instability arrested in the dimerized
and antiferromagnetic phases.
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