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Abstract 
 
We report the results of magnetization measurements with the magnetic field applied along the 
c-axis on superconducting La1.9Ca1.1Cu2O6+δ       single crystals processed under ultra high 
oxygen pressure. Strong fluctuation effects were found in both low and high field regimes. 
Scaling analysis of the high field magnetization data near the critical temperature (Tc = 53.5 K) 
region reveals the characteristics of critical fluctuation behavior of quasi-two-dimensional (2D) 
superconductivity, described by Ginzburg-Landau theory using the Lowest Landau Level 
approximation. Low field magnetic susceptibility data can be successfully explained by the 
Lawrence-Doniach model for a quasi-2D superconductor, from which we obtained the ab plane 
Ginzburg-Landau coherence length of this system, ξab(0) = 11.8 ± 0.9 Å.  The coherence 
length along the c-axis, ξc(0), is estimated to be about 1.65Å, which is in-between those of 2D 
cuprate systems, such as Bi2Sr2Ca2Cu3O10 and Bi2Sr2CaCu2O8, and quasi-3D cuprate systems, 
such as overdoped La2-xSrxCuO4 and YBa2Cu3O7-δ .  Our studies suggest a strong interplay 
among the fluctuation effects, dimensionalities, and the ratios of the interlayer Cu-O plane 
spacing, s, to the c-axis coherence lengths.  A high s/ξc(0) was observed in the high pressure 
oxygenated La1.9Ca1.1Cu2O6+δ, and that apparently drives this system to behave more like a 
quasi-2D superconductor. 
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I. Introduction: 
 

The discovery of high-Tc superconductivity in the La-Ba-Cu-O system by Bednorz and 
Müller1 started an avalanche of scientific discovery which has persisted to the present days.  
High-Tc superconductors (HTS) are essential not only for applications, but also for serving as a 
testbed of fundamental physics problems, such as studies of exotic quantum effects2 and 
order-disorder transitions3,4.  Two of the best-known families of high-Tc materials: bismuth 
strontium calcium copper oxide (BSCCO) based, such as Bi2Sr2Ca2Cu3O10 (Bi2223) and 
Bi2Sr2CaCu2O8, (Bi2212) and rare-earth barium copper oxide (REBCO) based, such as 
YBa2Cu3O7-δ , are characterized by layered (perovskite) structures, where the superconductivity 
takes place in the copper oxide planes.5  However, a major distinction between these two 
families is that the c lattice constant in YBCO (orthorhombic unit cell) is ~ 11.6 Å, while in 
BSCCO the c lattice constant is on the order of 30.9 Å (in Bi2212).6  In BSCCO, this 
characteristic distance far exceeds the superconducting coherence length, ξ, and is one of the 
factors essential for the rise to 2D superconductivity. 
 The transverse spatial correlations in BSCCO at high magnetic fields are limited by the 
field and the quasi-particles to low Landau levels.7  This confinement reduces the 
dimensionality of the system and increases the importance of the phase fluctuations in the order 
parameter.7,8  It has been shown that the fluctuations at the lowest Landau levels (LLL) 
effectively dominate the H–T superconducting phase diagram above a characteristic field 

1/2
2 2 0( ) (1/ 3) ( ) ( / 3)[ ( ) (0) / ]c i c cH T H T G H T H T T= + in a 2D system,7 where Hc2(T), T and Tc0 

stand for the upper critical field, temperature and the mean-field transition temperature at zero 
field, respectively. The scaling properties of the Ginzburg Landau Lowest Landau Levels 
(GL-LLL) theory suggest that the free energy obeys the form: ( , ) ( )F T H THf At= , where f(At) 

is a scaling function of the field and a temperature-dependent variable [ ( )] / ( )n
ct T T H TH= − (n 

= 1/2 or 2/3 for a 2D or 3D system, respectively). The 3D scaling behavior was shown in YBCO 
single crystals in magnetization,8 electrical conductivity,9  Ettinghauser effect,10 and specific 
heat11 measurements. 
 Magnetization studies have also been pivotal in revealing the quasi-two-dimensional 
character of the high-Tc superconductivity in the BSCCO family, both in the decade following 
its discovery,12–21 as well as in more recent times.22  One of the better-known signatures 
associated with fluctuation-induced magnetization is the so-called “crossing point” effect, i.e., 
all the temperature-dependent magnetization scans for different fields (applied parallel to the 
crystallographic c-axis) cross each other at a given point at a temperature near the critical 
temperature, Tc.23  This crossing point has been ubiquitously observed in BSCCO, and more 
specifically – in Bi221212–14and Bi222315–17as well as in some Tl-based cuprates18,22.  A 
number of theories have emerged attempting to explain the crossing point effect: Bulaevskii, 
Ledvij and Kogan dealt with the low magnetic field (H ≤ 1 T) limit and suggested it to be a 
result of the positional fluctuation of vortices,19 while Tešanović et al. suggested that the 

crossing at high fields (H≫1 T) is due to phase fluctuations of the superconducting order 



parameters.20  Particularly good has been the agreement between these theories and 
experimental data taken with H parallel to the c axis.14–18 
 The lanthanum calcium copper oxide [among which, La2CaCu2O6 (La2126)] family has 
been shown to be the simplest bilayer structure among the copper oxide superconductors (see 
Fig. 1).24  In a stoichiometric compound (La2126, as shown in Fig. 1a), the interstitial oxygen 
site O (3) marked in Fig. 1b is not occupied.  High pressure oxygen annealing has been shown 
to introduce interstitial oxygen on to the O (3) site, which effectively bridges two CuO5 
pyramids in a bilayer to two CuO6 octahedra as shown in Fig. 1b. La2126 has neither the 
additional carrier reservoir layers in the superconducting compounds of Bi2212 and 
Tl2Sr2CaCu2O8 (Tl2212), nor the square planar Cu-O chain in the superconducting compound 
of YBCO.24 Furthermore, high oxygen pressure annealed La2CaCu2O6+δ (La2126+δ) is still a 
bilayer system, and a bilayer cuprate is thought to be a typical example of a stronger coupling 
within the bilayer and a relatively weak one between bilayers.25 The dimension of the 
conducting bilayer in La2126+δ  has been known to lie between those of the conduction layers 
in YBCO and BSCCO, raising the question as to whether the La2126+δ system will display 
superconductivity closer to YBCO (3D) or BSCCO (2D). 
 Here, we report the analysis results of a magnetization measurement on a 
La1.9Ca1.1Cu2O6+δ single crystal, and thereby we show that the scaled form of the magnetization 
at high-fields suggests the presence of a two-dimensional superconductivity according to the 
GL-LLL fluctuation theory. Furthermore, based on the Lawrence-Doniach model, the low-field 
magnetic susceptibility was shown to behave more like a quasi-2D system. Comparing the 
superconducting parameters obtained from the scaling results in this work with those reported 
for the traditional 2D BSCCO and 3D YBCO, it is interesting to note that (i) the large 
anisotropy, and (ii) the large ratio of effective spacing of the superconducting layers to the

(0)cξ , are essential for 2D superconductivity while the opposite is true for 3D superconducting 

behavior. Although the high oxygen pressure annealed La1.9Ca1.1Cu2O6+δ  crystal exhibits 
similar anisotropy to that of YBCO, it still behaves more like a 2D superconductor, suggesting 

the importance of the ratio of effective spacing of superconducting layers to the (0)cξ , which is 

properly related to the crystal structure. 
 The paper is organized as follows: In Section II we present the preparation of the 
experimental sample along with the synthesis conditions for its making and the conditions for 
the magnetization measurements performed. In Section III we present the data analysis on the 
magnetization data, with a discussion of the scaling behavior of our La2126 sample, and its 
implications on the superconductivity. Finally, we finish with a brief summary section which 
recaps our findings and conclusions. 
 

II. Materials and Methods: 
A. Materials Synthesis 

 
A single crystal La1.9Ca1.1Cu2O6+δ  was grown by the floating zone method. The crystal 

was grown under oxygen pressures of 11 bars. The details of the crystal growth have been 



reported elsewhere.24  The as-grown single crystal was annealed under 1400 bars oxygen 
pressure at 1200 ºC for 10 hours. The X-ray diffraction pattern of the sample reveals the 
crystallographic dimensions of the unit cell, which are as follows: a = b = 3.8578(8) Å and c = 
19.967(4) Å.  We have used transmission electron microscopy (TEM) techniques to compare 
the structure of superconducting crystals with the as-grown, non-superconducting starting 
material.  A minority non-superconducting phase (less than 2%) of La2−xCaxCuO4 (La-214) is 
detected.  Layers of the La-214 phase are found to be coherently interspersed along the 
c-axis direction of the primary La-2126 phase.  The occurrence of the La-214 
intergrowth-like defects does not seem to harm the superconductivity of the La-2126 phase, 
nor does it change the overall magnetization behavior and our interpretations. 
 

B. Magnetization Measurements 
 

The large crystal used in our study weighed 271 mg. All magnetization, M, measurements 
were carried out in a field applied parallel to the crystalline c-axis by using a superconducting 
quantum interference device (SQUID) magnetometer by Quantum Design, Inc. with a 6-cm 
scan length, where the field inhomogeneity was estimated to be no more than 0.005 %. The 
reversible magnetization data were taken by measuring the magnetic moment versus 
temperature from the irreversible temperature data up to 300 K.  A 2-min delay was introduced 
after each temperature change to stabilize the system, so that the system temperature was 
always within ±0.02 K of the target temperature prior to measurement. An accuracy of better 
than 2×10-6 emu (equivalent to 6×10-4Oe for the value of 4πM) for magnetic momenta was 
obtained.  The linear magnetization data were fitted from 90 K to 130 K as the baseline, 
which was utilized to correct for the background and normal-state contributions of the 
magnetization results.7,15  It was also noticed that there is a phase transition point around 150 
K, which greatly influences the magnetization. And our fitting points are far away from the 
transition area.  We note that the results in this study are not artifacts of a specific form of 
the normal-state background. 
 

III. Results and Discussion: 
 

We performed magnetization measurements with zero-field cooled (ZFC) and 
field-cooled (FC) thermal histories on the La2126+δ single crystal at a field of 2 Oe with the 
magnetic field applied parallel to the c-axis (see Fig. 2a).  Due to the large and irregular size 
of the sample, it is necessary to rescale the real field H by taking into account the 
demagnetization factor N according to H = Ha –NM, where Ha is the external field which is 2 
Oe here.  The resulting M(H) curve for H || c is shown in Fig. 2b, from which we estimate N to 
be 0.542 for H || c and apply the value for plotting Fig. 2a. The slope of the fitted line in the 
linear region is -0.985(5) ≈ -1, which is very close to the Meissner line plotted in Fig 2b, 
suggesting the full shielding within the Cu-O plane.  The critical temperature, Tc = 53.5 K, 
was obtained by linearly extrapolating the 4πM/H(T) data to the zero line, while another 
linear fit through the bottom horizontal line was used to define the transition width (ΔTc ~1.5 
K).  We note that a small step-like feature was observed around 12.5 K (see Inset of Fig.2a), 



indicating flux penetration into small defects in these crystals.  Our sample comprises large 
single-crystal domains with the unavoidable presence of a very small amount of a CaO 
secondary phase, which is embedded in the La2126 matrix.24  Actually, according to the result 
shown in Fig. 2a, the superconducting volume of our crystal is around 89.2 % and is estimated 
to contain roughly 2% of superconducting secondary phases (Tc ~ 12.5 K) by volume which 
agrees with previous observations.28,29   Such a small amount of defects is not expected to 
have a significant influence on the magnetization behavior of the crystal around or above the 
Tc  region.  
 
 The magnetization, M, was measured at fields of 10,000 Oe, 30,000 Oe and 50,000 Oe, 
applied parallel to the c-axis (see Fig. 3 for a plot of 4πM versus temperature). The 
well-defined crossover behavior of various 4πM(H, T) versus T curves is clearly shown in the 
figure as evidence of the strong fluctuation effects present.  The crossing point was found at 
the same location for each 4πM(H, T) versus T curve within experimental error, where the 
crossing-point temperature, T*, was shown to be T* = 51.0 ±0.2 K, and crossing-point 
magnetization, 4πM* = –1.3 ±0.1 G. At fields near the Hc2(T) line, this crossover behavior 
was defined to be the result of the entropy associated with the fluctuation of vortices by 
Tešanović et al.20   The vortex positions (or the phase fluctuation of the superconducting 
order parameter) at low fields (near Tc(H)) are important, while the amplitude fluctuations 
become significant in the high-field regime (near the Hc2(T) line).14 
 Similar critical fluctuations in the thermodynamics of quasi-2D type-II superconductors 
have been extensively studied and described in terms of a non-perturbative scaling theory, as 
long as the description of Ginzburg-Landau (GL) field theory on a degenerate manifold 
spanned by the lowest Landau levels (LLL) for Copper pairs is valid (GL-LLL).20   The 
GL-LLL scaling in the case of a 2D system has suggested that in the vicinity of the upper 
critical field, Hc2(T), the free energy, F(T, H), scales with the field and temperature as 

( , ) ( )F T H THf At= , where f(At) is a scaling function of the temperature-dependent variable 

1/2[ ( )] / ( )ct T T H TH= −  and A is a numerical constant.20,30,31   This theory, has been widely 

and successfully used for scaling the Bi-based high-temperature superconductors with 2D 
critical fluctuation behavior, which has furthermore provides an explicit closed-form 
expressions for the scaling functions of the free energy, f(x), as well as for the magnetization, 
entropy, and specific heat.14,20   In the particular case of the magnetization, the scaling 
functions are given by:20 

0
( , ) ( )F T H s f x
TH

φ =
, x At= ,

1/2
0 0( / 2 )A a s b Uφ′= , 

2 2 11 1( ) 2 sinh ( / 2)
2 2

f x x x x x−= − + + +
,                                 (1) 

20 2( , ) ( ) 2cs HM H T f x x x
AHT

φ ′ ′= − = − +
,                                 (2) 

where a and b are the GL coefficients, 0φ is flux quantum (equals to hc/2e), s is effective 



spacing of the superconducting layers and U0 (U0 = 0.8 around Hc2(T) 14) is the vortex 
interaction constant.20   As shown in Eq. (2), the only adjustable parameters involved are 

2cH ′ and Tc0, where 2 2 /c cH dH dT′ =  at T = Tc0. 

 In order to ascertain the dimensionality of the superconductivity, we scaled the 
magnetization versus temperature data according to 2D and 3D theories (see Fig. 4).20  Fig.4a 
shows a plot of the scaled fluctuation magnetization under 2D behavior, where only the high 
field data at 10,000, 30,000, and 50,000 Oe are plotted for clarity. The fitting temperature 

region used in this study is in the temperature regime 0 23 /c cT T H H ′≥ − , where the scaling 

theory applies. The optimum fit yields Tc0 = 54.2 K and 2 3.33cH ′ =  T/K.  It was also noticed 

that the scaling behavior of the data was much more sensitive to the Tc0 value than the choice of

2cH ′ , which was also observed in the scaling of other quasi-2D systems reported.14   Thus, the 

2cH ′ value could range from 3.18 to 3.65 without any distinguished changes between the curves, 

while only 1% of the change in Tc0 could significantly distort the scaling plot. Fig. 4a shows 
how all lines neatly fall onto one single curve using 2D scaling, which strongly suggests that 
our sample is very close to quasi-2D behavior.  As for a comparison, an assumed 3D scaling 

fitting, for which universal curves of the form M/(TH)2/3  versus 2/3[ ( )] / ( )cT T H TH− are 

expected, is also performed and shown in Fig. 4b.  Fig. 4b clearly shows that the splitting near 

the transition region for different fields inevitably exists, with any choice of 2cH ′  and Tc0.  

Thus, 3D scaling does not work as well as the 2D scaling near the transition region, which 
demonstrates that the superconducting transition of La2126+δ is 2D in nature. 

Furthermore, based on the static models proposed by Lawrence and Doniach, Klemm, and 
Prober and Beasley,15 the temperature dependence of the weak-field fluctuation diamagnetic 
susceptibility, χ(T), above Tc will exhibit the relationship χ(T) / T ∝ Tc / (T - Tc)n, where n is 
1 for a 2D system, and 1/2 for a 3D system. This relation is only valid in the weak-field 

regime defined by Klemm,32 which corresponds to B < S0 = 0φ  / (sL), where L is the effective 

length in the ab plane, which is of the same order of magnitude as the average grain size (~ 10 μm) 
and we take half of the unit cell parameter for the s value here.  As a result, the weak-field regime 
here is around several kOe for the applied field.  We studied the temperature dependence of T/χ  at 
300 Oe and 500 Oe, which is shown in Fig. 5a. The data show very close linear behavior at 
both fields between 58 K and 63 K. In principle, a linear behavior is expected for the 2D 
system based on the model. Our data indicate that the La2126+δ  system behaves more like a 

2D system.  The mean-field transition temperature, 58.13(5)MF
cT = K, was obtained as the 

intercept of the straight line in Fig.5a, which is 4.6 K higher than that from a 2-Oe shielding 
measurement.  Fig. 5b shows a fit of a 2D LD model to the data for χ(T) with Tc = 58.13 K via Eq. 
(3). 
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where 0χ contains the normal-state contributions in the absence of fluctuations and is assumed to be 

independent of T. effg is the effective number of complex s-wave order parameters in the Cu-O 

plane, which is taken as 2 for the bilayer Cu-O planes in La2126+δ  within the 2D fluctuation 
regime. Although it is difficult to fit the data precisely because of the slightly nonlinear behavior 

observed in Fig. 5a, we can nevertheless estimate the (0)abξ from Eq. (3). The fit of the data for both 

of the fields (300 Oe and 500 Oe) yields (0) 10.95 12.60abξ = − Å. Table I shows the comparison 

of our La2126+δ  crystal to the Bi2223 2D system, as well as the 3D YBCO system.  
La2126+δ  exhibits Ginzburg-Landau coherence lengths comparable to those of 

Bi2223( (0) ~ 9.6abξ  Å) and YBCO ( (0) ~ 16abξ Å) in the ab plane (see Table I). 

In order to put the 2D superconductivity in La2126+δ  in perspective, one needs to 
understand the structural as well as transport properties of the system in hand. Structurally, 
La2CaCu2O6+δ  is recognized as the simplest bilayer system.35  La2CaCu2O6+δ has been shown 
to possess Cu-O bilayers, but without the Cu-O chains present in YBCO.35  Its unit cell 
comprises of two CuO5 pyramidal planes, separated by a cation monolayer.35 The interstitial 
oxygen has been shown to go on the O(3) site upon high pressure annealing (see Fig. 1), and 
effectively bridging the two CuO5 pyramids in a bilayer to two CuO6 octahedra.28,29,33 The 
interstitial oxygen plays an important role on the superconductivity although the detailed role 
is still unclear.  In addition, there are La-O and Ca-O layers between the CuO6 octahedra, 
which is similar with the structure arrangement in Bi2223.  Thus, from the aspect of 
structural properties, La2126+δis structurally closer to the 2D Bi2223 system.  

High temperature superconductors possess H – T phase diagrams which are characterized 
by large areas where the fluctuations in the order parameter are important. As a matter of fact, 
the relative importance of the thermal fluctuations is given by the Ginsburg parameter, Gi, 
which is heavily determined by the coherence length, ξ, and the dimensionality of the system, 
D.36  The correlations grow weaker at reduced dimensions,37 thus the effect of the fluctuations 
is more pronounced in 2D compared to 3D, particularly when it comes to the contributions of 
the fluctuations to magnetization measurements.36 Two indications which would suggest that 
the system is either 2D or 3D would be (i) the relationship between the superconducting 
coherence length and the spacing between the conduction planes,38 and (ii) the strength of the 
Josephson coupling. The latter item is related to the superfluid density and its assessment is 
beyond the scope of the present paper.39 

A decisive factor determining the dimensionality of a superconductor, is the field 
anisotropy, γ  (for comparison of ξ's and γ's in La2126, Bi2223 and YBCO, please see Table I).  
As we can see, γBi2223 is much larger than γYBCO (γYBCO ~ 4 – 7)43, 44 or γLa2126 (γLa2126 ~ 7)40, 
leading to the extremely small c-axis coherence length, ξc (0), observed in Bi2223(ξc

Bi2223(0) ~ 
0.2 Å).  From the anisotropy value for La2126+δ, we can similarly estimate its ξc

La2126(0), 



and we show that it is around 1.65 Å (clearly lying much above ξc
Bi2223(0), while being below 

ξc
YBCO(0)).  In fact, the dimensionality of a superconductor can be changed by slightly 

changing the doping level.  Such a behavior was observed by Li et al. in La2-xSrxCuO4 
(LSCO) system,7  which clearly showed that its dimensionality moves from 2D-like behavior 
to 3D-like behavior as the Sr-content increases.7  Qualitatively speaking, increasing the 
charge concentration makes the system less anisotropic, and decreases the effective layer 
spacing.7 In an intermediate- and strong-coupled layered superconductor, s may not be taken 
as the physical distance between two relatively weakly-coupled superconducting layers.7  It 
is the effective separation including the positional correlation in the neighboring layers. 
However, there is no quantitative description of the relation between the crossing point 
magnetization and the anisotropy for a layered superconductor.7  Most notably, the 2D to 3D 
crossover happens as a result of a shrinking effective s* and/or decreasingγ (with a 
subsequent increase in ξc), suggesting the importance of the ratio of s to ξc. 

It is interesting to note that the ratio of conduction interlayer separation and coherence 
length of a 2D system is very large, as compared to a 3D one (see Table I).38  The 
interspacing distance, s in La2126, is again an intermediate value between the respective 
distances in Bi2223 and YBCO, sBi2223 and sYBCO.  Most significantly, Bi2223 and YBCO 
exhibit 2D and 3D superconductivity, respectively, which would be suggested by the relation 
of conduction layer spacings to superconducting coherence lengths (see Table I).  We can 
explain this by introducing the cooper pair coupling behavior as plotted in Fig. 6.  In this 3D 
plot, it is clearly shown that a strong coupling between superconducting layers is observed in 
the 3D superconductor, while 2D system exhibits the separately distribution of the cooper pair 
coupling inside the superconducting layers.  Our La2126 sample shows the crossover 
behavior between 2D and 3D but much closer to 2D system due to the much larger s/ξc(0) 
ratio.  The fluctuation character of the superconductivity in La2126 appears to be very robust 
unlike the one observed in i) MgB2, where fluctuation effects occur at only the very low fields 
(H ~ 100 Oe),45or ii) Pb nanoparticles, in which case the first-order fluctuation correction is 
found to be valid only outside the critical region, where it accurately describes the diamagnetic 
magnetization for magnetic fields (only not too close to the critical field),46  –  all 
observations consistent with GL-LLL.  Our La2126 system also did not exhibit 
non-conventional fluctuation diamagnetism as the one observed in some underdoped systems, 
such as Y1-xCaxBa2Cu3Oδ,47,48  and attributed to thermally-excited vortices which need be 
properly accounted via a Coulomb-gas theoretical approach,49 albeit this may be a behavior that 
we may anticipate to see at much lower applied fields. 
 

IV. Conclusions: 
 

In conclusion, the analysis of the magnetization data presented here show that the 
magnetization properties of a superconducting La1.9Ca1.1Cu2O6+δ  single crystal near Tc(H) in 
high fields can be described quite nicely by GL-LLL fluctuation theory for a 2D 
superconductor.  The low-field fluctuation diamagnetic susceptibility χ(T) above Tc can be 
fitted in terms of the 2D Lawrence-Doniach model. Our findings suggest that 
La1.9Ca1.1Cu2O6+δ is a quasi-2D superconductor from the aspects of both its structural and 



transport properties: it is suggested that the large anisotropy in La1.9Ca1.1Cu2O6+δ, manifest in 
the large ratio between the superconducting interspacing distance and the coherence length 
along the c axis, is the cause behind the 2D nature of the fluctuation superconductivity in it. We 
suggest future optical spectra and μSR measurements to assess the superfluid density, i.e., the 
strength of the Josephson couplings between the different conduction bilayers. 
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Fig.1 (color online) Crystal structure of (a) La2CaCu2O6 and (b) La2CaCu2O6+δ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Fig. 2 (color online) (a)Temperature dependence of the magnetic susceptibility of 
La1.9Ca1.1Cu2O6+δ.(b) Low-field parts of M(H) at various temperature for H|| c with 
demagnetization correct, respectively. The solid line is the “Meissner line”. Here, the field H is 
equal to Ha – NM, which has already taken into account the demagnetization factor N at applied 
field Ha = 2 Oe. 
 
 
 
Table I. Superconducting transition temperature Tc, anisotropy γ, Ginzberg-Landau coherence 
length in the ab plane [ξab (0)] and along the c axis [ξc (0)], superconducting interspacing 
distance s and superconducting volume fractions in a particular quasi-2D superconductor 
M*/M*th for La1.9Ca1.1Cu2O6, Bi2Sr2CaCu2O8, Bi2Sr2Ca2Cu3O10 and YBa2Cu3O7-δ. All the data 
from comparison samples is from literature. The Ginzberg-Landau coherence length along c 
axis ξc (0) of our crystal is calculated through the anisotropy data reported in the ref.40. The 
superconducting volume fraction of YBa2Cu3O7-δ was estimated and calculated using the data 
from ref.9. 

Compounds Tc (K) γ ξab (0) (Å) ξc (0) (Å) s (Å) M*/M*th 

La1.9Ca1.1Cu2O6+δ 53.5 7.140 11.8±0.9 1.65 (cal) 9.8 29.8 % 
Bi2Sr2CaCu2O8

14, 41, 42 84.2 >50 20.4 0.37 15.395 82 % 

Bi2Sr2Ca2Cu3O10
15 107.5 >50 9.6 0.2 18.6 60 % 

YBa2Cu3O7-δ
9, 43 92.1 ~5.3 16 3 5.8 <10% (cal) 

 
 
 



 

Fig. 3 (color online) Temperature dependence of the magnetization of 
La1.9Ca1.1Cu2O6+δ  in various magnetic fields parallel to the c axis. 
 

 

 

 



 
 

Fig. 4 (color online) (a) 2D scaling of the magnetization data for La1.9Ca1.1Cu2O6+δ 
measured at 10000, 30000, and 50000 Oe with magnetic fields parallel to the c axis.  (b) 3D 
scaling of the same magnetization data as shown in (a). 
 

 

 

 



 

Fig. 5.(color online) Temperature dependence of T/χ (a) and χ (b), measured at 300 Oe and 
500 Oe. The solid line in (a) represents the linear fit of the data and the solid curve in (b) is a 
theoretical fit to the data of 300 Oe using Eq. (3). 
 



 

 

Fig. 6. 3D plot of Cooper pair coupling behavior based on the data listed in Table I. We 
choose Bi2Sr2Ca2Cu3O10, La1.9Ca1.1Cu2O6+δ  in this paper and YBa2Cu3O7-δ for 2D, 2D to 
3D crossover and 3D behavior, respectively. Here, we fix the interspacing distance between 
layers s for all the samples and ξc (0) changes according to the ratio of ξc (0)/s listed in Table I. 
The anisotropy value γ is applied to decide ξab (0). The different colors represent the electron 
concentration levels, where the red part means the highest concentration (set to 1 in the color 
bar) and the dark blue (set to be 0 in the color bar) shows the lowest concentration.  The 
pictorial representation where the overlap is the greatest corresponds to the 3D system where 
the coherence length is longer than the interlayer spacing, while the one where the two lobes 
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are completely separated corresponds to the bona fide 2D case with the crossover scenario 
being in the middle.  


