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Recent developments in the techniques of ultrafast pump-probe photoemission have made possible
the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic
scattering processes and a retarded interaction, we simulate time- and angle- resolved photoemission
spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode
excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude
mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice
the quasi-steady-state maximum gap size after pumping. We comment on the necessary conditions
for detecting the amplitude mode in trARPES experiments.

The amplitude mode of the superconducting order pa-
rameter, also known as the Higgs mode, is fundamental to
superconductivity and arises because of the broken gauge
symmetry of the superconducting state. Observing this
mode is interesting from the perspective of understanding
the collective behavior of a macroscopic quantum state
out of equilibrium and has been the subject of several
experimental studies performed on s-wave superconduc-
tors using Raman and THz pump-probe spectroscopy1–3.
However, these experimental techniques are most likely
not as well-suited as the quickly advancing technique
of time- and angle- resolved photoemission spectroscopy
(trARPES) for studying the Higgs mode in materials
such as the high-Tc cuprate superconductors which have
a superconducting order parameter with d -wave symme-
try. We demonstrate that future trARPES experiments
may be an ideal candidate to address the question of
whether the Higgs mode of a d -wave superconductor ap-
pears as a single amplitude mode associated with the
value of the superconducting gap maximum or as a spec-
trum of modes arising from the nodal nature of the su-
perconducting order.

Since the Higgs mode is a scalar boson without charge
or spin, it does not couple linearly to electromagnetic
fields and is difficult to observe via the standard experi-
mental probes of the equilibrium state4,5. Traditionally
the Higgs mode has been detected indirectly through Ra-
man spectroscopy which relies on the interpretation that
the observed 2∆ excitations borrow Raman activity from
the coexisting charge density wave via electron-phonon
coupling1,2. As an alternative to probing the equilib-
rium state, recent advancements in time-domain spec-
troscopies make possible the direct detection of ampli-
tude modes by driving systems out of equilibrium6. In
a pump-probe experiment, an ultrashort pump pulse ex-
cites the system to a nonequilibrium state for which the
original magnitude of the order parameter in the equi-

librium state is no longer a minimum of the free energy.
Because the order is partially melted by a pump pulse,
the amplitude mode appears as the oscillation of the or-
der parameter about a new, smaller value due to the
decrease in quasiparticles involved in ordering7.

The first time-domain experiment to successfully de-
tect the Higgs mode was a terahertz pump-probe mea-
surement of the optical conductivity in the s-wave super-
conductor Nb0.8Ti0.2N3. However, this technique does
not straightforwardly provide information about the mo-
mentum dependence of the Higgs mode in a d -wave su-
perconductor. In contrast, the emerging pump-probe
technique of time- and angle- resolved photoemission
spectroscopy (trARPES) is an ideal candidate for study-
ing the Higgs mode in d -wave superconductors since
it is a nonequilibrium technique with the time, energy,
and momentum resolution required to directly probe the
Higgs mode by observing the behavior of the supercon-
ducting gap size on a femtosecond timescale across the
Brillouin zone8. Recently, trARPES has successfully
been used to study unoccupied bandstructure, relaxation
dynamics, and collective modes in various materials, pro-
viding new information beyond the reach of equilibrium
spectroscopies6,9–22. For instance, trARPES was used to
directly probe the single-particle spectral function and
observe the amplitude mode corresponding to oscillations
of the charge-density wave order parameter6.

Our previous work demonstrates that time- and angle-
resolved photoemission spectroscopy in principle pro-
vides a direct way to detect the Higgs mode8. We ex-
tend upon this work here, building upon the same for-
malism which simulates the pump-probe process by self-
consistently solving the Nambu-Gor’kov equations within
the Migdal-Eliashberg approximation. Such a treat-
ment of the interactions and pump process goes beyond
the typical theoretical methods used to study the Higgs
mode. Previous theoretical work often relies on the sim-
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ple framework of Bardeen-Cooper-Schrieffer (BCS) the-
ory which neglects inelastic scattering processes and is
often limited to performing a quantum quench of the
pairing interaction which neglects important dynamical
processes present in real materials such as the melting
of superconducting order by the pump pulse7,23–26. In
contrast, our calculation includes inelastic scattering pro-
cesses (which are important for the dynamics out of equi-
librium) and a frequency dependent pairing interaction.
Within this framework, we investigate the effect of d -
wave pair symmetry on the characteristics of the Higgs
mode. Our calculation also naturally captures the dy-
namic process of melting of the superconducting state
by the pump pulse and subsequent relaxation due to
electron-boson scattering.

We solve the time-dependent equations of motion
for the Holstein model with a momentum-dependent
electron-boson coupling27

H =
∑
k

εkc
†
kck + Ω

∑
k

b†kbk

− 1√
N

∑
k,q

g(k,q)c†k−qck(b†q + b−q).
(1)

The trARPES spectrum is obtained from the double-time
lesser Green’s function on the Kadanoff-Baym-Keldysh
contour and a Gaussian probe pulse of width σp=16 fs,
the gauge-invariant trARPES intensity at time t0 is given
by28:

I(k, ω, t0) = Im

∫
dt dt′ p(t, t′, t0)eiω(t−t

′)G<
k̃(t,t′)

(t, t′)

(2)

where p(t, t′, t0) is a two-dimensional normalized Gaus-
sian with a width σp centered at (t, t′) = (t0, t0) and
G<

k̃(t,t′)
(t, t′) is the lesser Green’s function. To calcu-

late the double-time Green’s functions on the contour,
we self-consistently solve the Nambu-Gor’kov equations
of motion. We use units where c = ~ = e = 1. The cou-
pling to the field is treated semi-classically and included
to all orders via the Peierls substitution k(t) = k−A(t)
where A(t) is the time varying vector potential in the
Hamiltonian gauge. We ensure that the single-particle
ARPES spectra are gauge invariant by performing the
constructive transformation described by Ref.29 which
gauge shifts the momentum variable of the Green’s func-
tion. For a more complete description of the equations
of motion and gauge shifting procedure see the Supple-
mental Material30. The field of the pump pulse in all
simulations below is applied along the diagonal direction
of the Brillouin zone and takes the form of a sinusoidal
oscillation (energy of 1.5 eV) with a Gaussian envelope
(FWHM of 9.3 fs).

Superconductivity in our model is mediated through a
generic bosonic mode which is included in the electron

self-energy at self-consistent Born level. This self-energy
is given by

Σck(t, t′) =
i

Nk

∑
k′

|g(k,k′)|2τ3Gck′(t, t′)τ3D
c
0(t, t′), (3)

where Dc
0 is the bare propagator for a bosonic mode with

frequency Ω, Nk is the number of momenta, τ3 is the
z-direction Pauli matrix in Nambu space, and the su-
perscript c indicates contour-ordering on the Kadanoff-
Baym-Keldysh contour. We consider |g(k,k′)|2 = gs +
gddkdk′ where gs and gd are constants which set the
electron-boson coupling strength, dk = 1

2 [cos(kx) −
cos(ky)] is a momentum-dependent form-factor with d -
wave symmetry, and k′ = k− q. We work under the de-
sired ansatz that the superconducting state has purely d -
wave symmetry at all times and do not consider the pos-
sibility of changes to the symmetry of the order param-
eter upon pumping. We verify that the electron-boson
interaction strength remains constant at all times (as-
suming the boson is unrenormalized and behaves as an
infinite heat bath) by checking that the zeroth-moment
of the retarded self-energy given by ΣR(t, t) (which is
proportional to the square of the coupling strength) is
constant31. Therefore changes in the trARPES spectrum
are not a result of changing the electron-boson coupling
as in a quantum quench, but instead a consequence of
redistribution of spectral weight by the pump and tran-
sient effective electron-boson interactions which are de-
termined self-consistently.

The equations of motion are solved by performing a
massively parallel computation following the methods in
Ref.32. For ease of simulation, we take a tight-binding
model on a square lattice at half-filling with a nearest-
neighbor hopping of Vnn = 0.25 eV. We take a mode
energy of Ω = 0.2 eV, a temperature of T ' 80K, and a
coupling strength of gs = gd =

√
0.12 eV which results in

a dimensionless coupling of λs ≡ −∂ReΣR(ω)/∂ω|ω→0 =
0.67. The temperature is well below the transition tem-
perature of Tc ' 240 K. These parameters are not meant
to represent a material with a realistic set of parame-
ters, but our results are nevertheless illustrative of pump-
probe ARPES spectroscopy on a material with a d -
wave superconducting order parameter. The large su-
perconducting gap size resulting from these parameters
increases the Higgs frequency which reduces the required
time to simulate a Keldysh contour long enough to clearly
identify the Higgs mode.

In Fig. 1(a), we show the ARPES spectrum in equilib-
rium near the Fermi level along a nodal cut (diagonal cut)
which shows no gap at the Fermi level, as expected, and
a kink in the bandstructure at the bosonic mode energy
(200 meV) gap shifted by the maximum of the super-
conducting gap size (51 meV)33,34. The superconducting
gap size can be obtained from equilibrium self-energies,
shown in the Supplemental Material30, or directly from
the peak position of an antinodal energy-density curve
(EDC) at kF . For an off-nodal cut we take a cut paral-
lel to the zone diagonal and halfway between the node
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FIG. 1: trARPES spectra. In all panels, the orange marker
indicates the peak position of the EDC at kF which corre-
sponds to the superconducting gap size, and the red dotted
line indicates the energy of the bosonic mode plus the antin-
odal gap size which corresponds to the gap-shifted position of
the kink in the bandstructure. a) Nodal ARPES spectrum in
equilibrium with superconductivity. b) Nodal spectrum 25 fs
after pump arrives. c) Off-nodal ARPES spectrum in equilib-
rium with superconductivity. d) Pumped off-nodal spectrum
shows shift in the kink and a partial melting of the supercon-
ducting gap.

and antinode as marked by the dotted red line in the in-
sets of Fig. 1(c,d). The spectrum for the off-nodal cut is
shown in Fig. 1(c) and shows a gap at the Fermi level and
a clear bend-back of the band due to particle-hole mix-
ing. To determine the superconducting gap size, we find
the peak position of the energy density curves (EDCs) at
k = kF by fitting to a Voigt profile. To determine the
kink position, we use the energy of the inflection point in
the Engelsberg-Schrieffer peak-dip-hump structure of the
EDCs at k = kF

33. The gap position and kink positions
are indicated with the colored markers and dotted lines
in Fig. 1. We track these features as a function of time
in the trARPES spectra. Figure 1(b,d) show the spectra
25 fs after the center of the pump pulse arrives. Spectral
weight is redistributed above the Fermi level and the su-
perconducting gap partially melts, also shifting the kink
position to a higher binding energy.

After the pump pulse, clear oscillations occur in both
in the photoemission spectrum in the range of energies
between the gap edge and the kink position for various
momenta along the Fermi surface as shown in Fig. 2.
These oscillations are the signatures of the amplitude
(or Higgs) mode and result from the oscillation of the

FIG. 2: Gap and kink dynamics. a) Tracking the peak
position of the EDC at kF given by the orange marker in Fig.
1 (i.e. superconducting gap size) for an off-nodal cut which is
halfway between the node and antinode as indicated by the
dotted red line in the inset of Fig 1(c,d). b) Tracking the
EDC peak position for multiple cuts along the Fermi surface.
c) Tracking kink position given by the horizontal red dotted
line in Fig. 1 based on the inflection point in the peak-dip-
hump structure of EDCs at kF for multiple cuts. Curves for
the kink position are offset for clarity. The pump field is
Emax = 1.2 V/a0 for all plots. The time is measured relative
to the center of the pump pulse (which reaches the sample at
time t = 0 fs). d) The frequency of the oscillations (of the
gaps and the kinks) occurs at a single frequency given by the
average value of 47 meV, shown as the dotted black line.

magnitude of the superconducting order parameter. As
shown in the Supplemental Material30, oscillations with
the same frequency also occur in the anomalous density
and the electronic self-energies. Previous work has con-
sidered how the Higgs mode is affected by the continuum
of single-particle excitations which exhibit a square-root
singularity at 2∆35. We note that the presence of oscil-
lations at the kink position (roughly 4∆ away from the
gap-edge) implies that it is not possible to attribute these
oscillations to 2∆ quasiparticle excitations. Oscillations
of the kink position are expected because the kink posi-
tion is set by the size of the superconducting gap plus the
antinodal gap size. Furthermore, the normal state spec-



4

tra after pumping return monotonically to equilibrium,
indicating that the superconducting order is responsible
for the oscillations8. The oscillations of the gap become
weaker and disappear towards the nodal point since the
gap size shrinks to zero at the node. However, the value
of the EDC maximum in Fig. 2(b) is not identically zero
at the node because of broadening of the single-particle
spectrum due to finite energy resolution.

The frequencies of the gap and kink oscillations are
extracted by fitting to a decaying exponential plus a
damped oscillation of the form:

Ae−t/τ +B sin(ωt+ φ)/tp +D. (4)

When used to fit the gap position, the parameter D gives
∆∞, the quasi-steady-state value of the superconducting
gap after the pump pulse (such that the Higgs frequency
satisfies ω = 2∆∞). When used to fit the kink position,
the parameter D is given by Ω + ∆∞. Our fits of the gap
position do not extend all the way to the nodal point be-
cause as the gap value becomes smaller the oscillations
decrease in amplitude and become more difficult to fit.
However, the kink oscillations can still be fit at the node.
From the combined analysis of both gap and kink posi-
tion, we find that the Higgs oscillations occur at a sin-
gle frequency and in phase across all momentum points
within our frequency and energy resolution, as shown in
Fig. 2d.

In Fig. 3, we again use the functional form in Eq. (4)
to fit the EDC peak position at the antinode for differ-
ent pump fluences. We note that our simulation requires
relatively high field strengths to reach the same regimes
that would be reached experimentally in real systems be-
cause our model does not consider quantum fluctuations
and we choose parameters which result in robust super-
conducting order with a high Tc. We observe that the
Higgs oscillation frequency decreases with increasing flu-
ence because the superconducting gap size is suppressed
more for stronger pumping8. The frequency of the Higgs
oscillation follows twice the quasi-steady state value of
the antinodal (maximum) gap size after pumping (∆∞),
and the Higgs frequency extrapolates to twice the value
of the antinodal superconducting gap size in equilibrium
as shown in the inset in Fig. 3. In other words, for a
d -wave superconductor, the Higgs mode is a 2∆∞ os-
cillation with ∆∞ given by the maximum gap size after
pumping.

The Higgs mode has yet to be detected in trARPES
experiments which have up to this point mainly focused
on relaxation dynamics of quasiparticles and other collec-
tive modes6,9–17,36,37. In order to satisfy the experimen-
tal conditions necessary for observing the Higgs mode,
the fluence of the pump pulse must be tuned and both
the pump and the probe pulse must be sufficiently fast.
Naturally, if the pump is too weak, the amplitude of the
Higgs mode will be small. If the pump is too strong, the
condensate is fully depleted and Cooper pairs are not
available to participate in the collective mode. From our

FIG. 3: Gap dynamics vs. fluence. The superconduct-
ing gap size (determined by the magnitude of the antinodal
EDC peak position) as a function of time for different pump
fluences (maximum electric field in V/a0). Solid lines show
the fits. Inset: in the zero fluence limit, the Higgs frequency
extrapolates to twice the maximum gap size in equilibrium.
The solid line is a quadratic polynomial fit.

simulations, approximately depleting half of the conden-
sate results in the strongest Higgs oscillations. Recent ex-
periments on Bi2Sr2CaCu2O8+δ (Bi2212) with Tc = 91 K
indicate that a pump fluence of approximately 8 µJ/cm2

suppresses the superconducting gap to half of its equi-
librium value37. To determine the required width of the
pump and probe pulses, we must consider the timescale
of the Higgs mode which is set by τ = h/2∆. For the
pump pulse to nonadiabatically excite the condensate,
the width of the pump pulse must be less than τ . In ad-
dition, for the probe pulse to resolve the oscillations, the
width of the probe pulse must also be less than τ . For
a typical cuprate superconductor such as Bi2212 around
optimal doping, the equilibrium superconducting gap size
is of the order of 40 meV38. If the gap is suppressed by 50
percent after pumping, the timescale of the Higgs mode
will be on the order of τ = 200 fs. It is promising that
several experimental groups have achieved sub-100fs time
resolution9,39,40. A separate factor which could poten-
tially prevent the detection of the Higgs mode in some
systems is the presence of inter-band transitions which
could destroy the coherent nature of the collective mode.
How the Higgs mode appears in multi-band systems with
dipole transitions should be clarified in the future.

The stage is set to take advantage of pump-probe
techniques such as trARPES not only to detect the
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Higgs mode, but also to study the rich assortment
of collective modes which have been predicted in the
unconventional superconductors. Examples include
the Bardasis-Schrieffer modes in systems with compe-
tition for superconducting ground states with differ-
ent pairing symmetries41, Leggett modes in multi-band
superconductors42,43, multiple Higgs modes in channels
corresponding to different irreducible representations of
the lattice26, and the various collective modes arising in
gauge theories44. Our work serves as a starting point for
studying these modes within a framework that includes
inelastic scattering and retarded interactions, ingredients
which are needed to accurately simulate the amplitude
mode in a superconductor out of equilibrium during a
pump-probe experiment. For a d -wave superconductor
we find a Higgs mode at a single frequency equal to
twice the maximum renormalized gap size, which is an
important result for pump-probe experiments performed
to study the Higgs mode in d -wave superconductors. The
parameters chosen in the simulation for the pump and
probe pulses are already feasible in current trARPES se-
tups. Under these conditions, we predict that the Higgs

mode can be detected in trARPES experiments as oscil-
lations in the spectral intensity between the energy scales
set by the gap edge and the energy of the pair boson.
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