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Motivated by recent experiments, we investigate Josephson scanning tunneling spectroscopy in
an s-wave superconductor. We demonstrate that the spatial oscillations in the superconducting
order parameter induced by defects can be spatially imaged through local measurements of the
critical Josephson current, providing unprecedented insight into the nature of superconductivity.
The spatial form of the Josephson current reflects the nature of the defects, and can be used to
probe defect-induced phase transitions from an S = 0 to an S = 1/2 ground state.

Imaging the spatial variations of superconducting or-
der parameters has been a long-sought goal, as it could
provide direct insight into the nature of exotic super-
conducting phases ranging from the Fulde-Ferrell-Larkin-
Ovchinnikov state1–4 in the presence of magnetic fields,
and intrinsically disordered superconductors5 to the pair-
density wave state predicted to exist in the cuprate
superconductors6–10. As the oscillations of the super-
conducting order parameter are expected to occur on
the length scale of a few lattice constants, and can-
not be imaged using conventional scanning tunneling
spectroscopy11–14, recent experimental efforts have fo-
cused on the development of Josephson scanning tunnel-
ing spectroscopy (JSTS)12–18. The idea underlying JSTS
is that the Josephson current, IJ ,19 flowing between a
superconducting JSTS tip and a superconductor probes
the order parameter of the latter20. Using that the crit-
ical Josephson current, Ic, can be determined from the
JSTS I-V curves15 , Hamidian et al.13 have argued that
the spatial oscillations in Ic induced by defects in the
cuprate superconductor Bi2Sr2CaCu2O8+x provide evi-
dence for the existence of a pair-density wave. Com-
plementary to this study, Randeria et al.14 showed that
pair-breaking magnetic Fe atoms located on the surface
of the s-wave superconductor Pb lead to a suppression
of the local Josephson current. So far, however, there
has been no proof for the assumption that the exper-
imentally measured spatial variations of the Josephson
current indeed reflect those of the superconducting order
parameter.

In this article, we provide this missing proof by theoret-
ically demonstrating that even short length scale fluctua-
tions of the superconducting order parameter can be spa-
tially imaged through local measurements of the Joseph-
son current, thus opening unprecedented possibilities for
gaining insight into the nature of superconductivity. Us-
ing a Keldysh non-equilibrium Green’s function formal-
ism, we investigate the local Josephson current between
a superconducting JSTS tip with s-wave symmetry, and
an s-wave superconductor [as schematically shown in
Fig. 1(a)], and its relation to the local superconducting
order parameter. We demonstrate that spatial oscilla-
tions in the superconducting order parameter, ∆(r), in-
duced by both magnetic and non-magnetic defects can be

FIG. 1. Schematic representation of Cooper pair Josephson
tunneling from a superconducting JSTS tip into an s-wave su-
perconductor. (b) Fermi surfaces for three different electronic
structures of the s-wave superconductor.

imaged at the atomic length scale by measuring the spa-
tial form of the critical Josephson current, Ic(r). More-
over, for magnetic defects, the existence of defect-induced
Shiba states21–27 inside the superconducting gap can lead
to an enhanced Josephson current in the vicinity of the
defect, an effect which is absent for non-magnetic de-
fects. Furthermore, we demonstrate that JSTS can be
employed to detect phase transitions between different
spin ground states of the superconductor, as occur in the
presence of magnetic defects23–27. Finally, we show that
JSTS can even image virtual defects which are created
using quantum interference effects. These results demon-
strate that JSTS provides unprecedented possibilities to
gain insight into the spatial nature of superconducting
order parameters.

Starting point for investigating the relation between
the spatial form of the critical Josephson current and the
superconducting order parameter around defects in an s-
wave superconductor is the Hamiltonian H = Hs+Htip+
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Htun where

Hs = −t
∑
〈r,r′〉,σ

c†rσcr′σ − µ
∑
r,σ

c†rσcrσ

−
∑
r

[
∆(r)c†r↑c

†
r↓ +H.c.

]
+
∑

R,α,β

(U01̂αβ + J0σ
z
αβ)c†R,αcR,β (1)

Here, −t is the electronic hopping between nearest-
neighbor sites r and r′, µ is the chemical potential, and
c†rσ (crσ) creates (annihilates) an electron with spin σ
at site r. ∆(r) is the superconducting order parameter
with s-wave symmetry at site r in the superconductor
and U0 and J0 are the non-magnetic and magnetic scat-
tering strengths of a defect located at site R, with the
last sum running over all defect sites. Unless otherwise
noted, we set µ = −3.618t, yielding the circular Fermi
surface shown in Fig. 1(b). In the presence of defects,
we self-consistently compute the local superconducting
order parameter in the superconductor using

∆(r) = −V0

π

∫ ∞
−∞

dωnF (ω)Im[Fs(r, r, ω)] (2)

where V0 is the superconducting pairing potential, nF (ω)
is the Fermi distribution function, and Fs(r, r, ω) is the
local, retarded anomalous Green’s function of the s-wave
superconductor (see Appendix A). We model the JSTS
tip as an atomically sharp site, described by the Hamil-
tonian Htip = Hn

tip + Hsc
tip, where Hn

tip represents the
normal state electronic structure of the tip, and

Hsc
tip = −∆tipd

†
↑d
†
↓ −∆tipd↓d↑ (3)

its superconducting correlations. Here, ∆tip is the su-
perconducting s-wave gap in the tip, and d†σ (dσ) creates
(annihilates) an electron with spin σ in the tip. Finally,
the tunneling of electrons between the tip and a site r in
the s-wave superconductor is described by

Htun = −t0
∑
σ

(c†r,σdσ + d†σcr,σ) (4)

A DC Josephson current19 arises from a phase differ-
ence between the superconducting order parameters of
the tip and the s-wave superconductor, described by

∆(r) = |∆(r)|eiΦs ∆tip = |∆tip|eiΦt (5)

This phase difference can be gauged away28, yielding a
tunneling parameter that depends on the phase difference

t0 → t0e
i(Φs−Φt)/2 = t0e

i∆Φ/2 . (6)

allowing us to take ∆(r) and ∆t as real parameters be-
low. In the self-consistent solution of Eq.(2), we therefore
assume that the phase of ∆(r) does not vary, and con-

FIG. 2. (a) LDOS at r = (1, 0) for a magnetic defect with
J0 = 2t located at R = (0, 0), and for a clean s-wave super-
conductor with ∆0 = 0.05t and V0 = −2.45t, computed for
a 401 × 401 system size. Spatial dependence of the normal-
ized ∆(r) and Ic(r) along ry = 0 for (b) ∆tip = 4∆0 and (c)
∆tip = 0.5∆0. Contour plot of the normalized (d) ∆(r) and
(e) Ic(r) for ∆tip = 4∆0.

sider only spatial variations in its magnitude. Using the
Keldysh Green’s function formalism29,30, we then obtain
that the DC-Josephson current between the tip and a
site r in the s-wave superconductor to lowest order in
the hopping t0 (i.e., in the weak-tunneling limit) is given
by28

IJ(r) = 8
e

~
t20 sin (∆Φ)

∫
dω

2π
nF (ω)Im[Fs(r, r, ω)Ft(ω)]

≡ Ic(r) sin (∆Φ) (7)

where Ft is the retarded anomalous Green’s function of
the tip (see Appendix A), Ic is the critical Josephson
current, and we set T = 0 below. In the weak-tunneling
limit, possible effects of the JSTS tip on ∆(r) can be ne-
glected. While current JSTS experiments can only mea-
sure the magnitude of Ic(r), future advances could open
the possibility to measure IJ(r) as well, providing insight
into spatial variations of ∆Φ as well.

Magnetic and non-magnetic defects exert qualitatively
different effects on an s-wave superconductor: the former
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induce impurity bound states inside the superconducting
gap – Shiba states21,22,27 - while the latter do not. Never-
theless, the spatial oscillations in the superconducting or-
der parameter, ∆(r), induced by either type of defect, can
be imaged through the critical Josephson current Ic(r),
as shown below. Moreover, the presence of Shiba states
results in a characteristic signature in Ic(r) that allows
one to distinguish between these two types of defects.
To demonstrate this, we begin by considering the spatial
form of ∆(r) and of Ic(r) around a magnetic defect (see
Appendix A). In Fig. 2(a), we present the local density of
states (LDOS) in the vicinity of the defect together with
that in a clean system. The magnetic defect induces,
as expected an impurity (Shiba) state inside the super-
conducting gap, whose particle- and hole-like branches
possess well-defined, but opposite spin-polarizations. In
Fig. 2(b), we present the normalized superconducting
order parameter, ∆(r)/∆0, and the Josephson current,
Ic(r)/I0

c along ry = 0 for ∆tip = 4∆0. Here, ∆0 and I0
c

are the superconducting order parameter and the crit-
ical Josephson current in a clean system. The defect-
induced oscillations of ∆(r) are very well spatially im-
aged by the Josephson current, despite the very rapid
oscillations of the former around the defect. This re-
sult theoretically confirms the assumption underlying the
JSTS experiments by Hamidian et al.,13 and Randeria et
al.14. To gain analytic insight into the spatial relation
between ∆(r) and Ic(r), we consider the limit of large
tip gap ∆tip > ωD where ωD is the Debye energy of the
s-wave superconductor. In this case, we have for the in-
tegrand in Eq.(7), Im[Fs Ft] = ReFtImFs, and ReFt(ω)
can be approximated by a constant ReF̄t over the energy
range where ImFs possesses the largest spectral weight
(see Appendix B). Using Eq.(2) we then obtain from
Eq.(7)

Ic(r) ∼ ReF̄t

∫
dω

2π
nF (ω)Im[Fs(r, r, ω)] ∼ ∆(r) . (8)

Thus, Ic(r)/I0
c = ∆(r)/∆0, and Ic(r) possesses in gen-

eral the same spatial dependence as ∆(r). There exists,
however, an interesting exception to this result at the site
of the magnetic defect, where Ic(r) exhibits a weak peak
while ∆(r) does not [see Fig. 2(b)]. This peak arises
from an enhanced tunneling of Cooper pairs from the
tip into the Shiba state, whose largest spectral weight
resides at the site of the defect (see Appendix B), and
thus counteracts the general suppression of ∆(r) in the
vicinity of the defect. As the main contribution to this
peak arises from ReFtImFs in the integral of Eq.(7) (see
Appendix B), we expect that the peak height further
increases as ∆tip (and hence the enhancement of ReFt
near ∆tip, see Appendix B) approaches the energy of the
Shiba state. This expectation is borne out by our re-
sults for a smaller tip gap ∆tip = 0.5∆0 [see Fig.2(c)],
which shows an even stronger enhancement of the peak
in Ic near the defect. This peak in Ic is therefore a direct
signature of the impurity induced Shiba state and thus

FIG. 3. (a) LDOS at r = (1, 0) for a magnetic defect with
J0 = 2.5t > Jc located at R = (0, 0), and for a clean s-wave
superconductor. (b) Spatial dependence of the normalized
∆(r) and Ic(r) along ry = 0 for ∆tip = 4∆0

absent for non-magnetic defects (see below). The peak’s
height is not only affected by the value of ∆tip, but also
the strength of the magnetic scattering as well as the elec-
tronic structure of the superconductor (see Appendix C).
However, even in presence of a strong peak in Ic at the
defect site, the spatial dependence of Ic in all other re-
gions still reflects that of ∆(r). This is also confirmed by
the spatial plots of the normalized ∆(r) and Ic(r), shown
in Figs. 2(d) and (e), respectively. Here, the spatially cir-
cular oscillations in ∆(r) and of Ic(r) reflect the form of
the underlying circular Fermi surface [see Fig. 1(b)], with
their wavelength of λF /2 arising from 2kF scattering.

As the magnetic scattering strength, J0, is increased
and exceeds a critical value, Jc, the superconductor un-
dergoes a phase transition in which its ground state
changes from a singlet S = 0 state to a doublet S = 1/2
state23–26. Simultaneous with this phase transition, the
particle- and hole-like branches of the Shiba state cross at
zero energy27, and the superconducting order parameter
changes sign at the site of the defect24–26. A comparison
of the LDOS near a magnetic defect with J0 = 2.5t > Jc
in Fig. 3(a) with the LDOS for J0 = 2.0t < Jc in
Fig. 2(a) shows that the two branches of the Shiba state
have crossed zero energy, as the particle-like (hole-like)
branches for J0 < Jc and J0 > Jc possess different spin
character. Moreover, the sign of the superconducting
order parameter changes at the site of the defect [see
Fig. 3(b)], which is mirrored by a sign change in the
Josephson current. This sign change in Ic as a function
of distance from the defect is a direct signature of the
S = 1/2 ground state of the superconductor. While cur-
rent JSTM experiments can only measure the magnitude
of Ic, they can still detect the S = 1/2 ground state, as
|Ic| would exhibit a line of zeros around the defect, which
is qualitatively different from the from of Ic shown in
Figs. 2(b) and (c). Thus, the spatial form of the Joseph-
son current not only reflects that of ∆(r), but it is also a
probe for the spin ground states of the superconductor,
and hence can be employed to detect a quantum phase
transition of the system. This opens up the possibility to
investigate more complex ground states with even larger
spin polarizations, as arise, for example, from quantum
interference effects in multi-defect systems25.
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FIG. 4. (a) LDOS at r = (1, 0) in an s-wave superconduc-
tors with a non-magnetic defect located at R = (0, 0) with
repulsive scattering potential U0 = 2t. Contour plot of the
normalized (b) charge density ne(r), (d) ∆(r), and (f) Ic(r).
Spatial cut along ry = 0 of the normalized ∆(r) and Ic(r) for
(c) U0 = 2t, and (e) U0 = −0.5t, and ∆tip = 4∆0.

In contrast to magnetic defects, non-magnetic (poten-
tial) defects do not induce impurity states inside the su-
perconducting gap31, as follows from a plot of the LDOS
near the site of a repulsive potential defect with U0 = 2t
in Fig. 4(a). However, the scattering off non-magnetic de-
fects induces oscillations in the electron charge density,
ne, [Fig. 4(b)] which in turn give rise to spatial varia-
tions of the superconducting order parameter [Figs. 4(c)
and (d)]. While magnetic defects lead to an overall sup-
pression of the superconducting order parameter, non-
magnetic defects, through oscillations in ne(r), give rise
to spatial regions in which ∆(r) is enhanced or sup-
pressed. These spatial oscillations can again be imaged
by the Josephson current, as demonstrated by the spa-
tial contour plots of ∆(r) and Ic(r) in Fig. 4(d) and (f),
respectively, and the line cut in Fig. 4(c). Due to the
absence of a Shiba state, the tunneling of Cooper pairs
from the tip into the superconductor is not enhanced at
the site of the defect, and no peak in Ic is therefore found.
Moreover, a non-magnetic defect with an attractive scat-
tering potential, U0 = −0.5t, leads to an enhancement
of the charge density and hence the superconducting or-
der parameter near the defect that is also reflected in the
spatial form of Ic(r) [see Fig. 4(e)]. Thus, the enhance-

FIG. 5. (a) ∆(r)/∆0 and (b) Ic(r)/I0c for a concentration of
1% randomly distributed non-magnetic defects with U0 = 2t.
(c) ∆(r)/∆0 and (d) Ic(r)/I0c in the presence of four magnetic
defects (whose locations are indicated by open white circles)
with J0 = t, ∆tip = 4∆0 and the dashed blue Fermi surface
in Fig. 1(b) obtained with µ = 0.

ment or decrease of the critical current in the vicinity of
a non-magnetic defect can distinguish between its attrac-
tive and repulsive scattering potential.

The ability to image spatial oscillations of the super-
conducting order parameter via Ic are independent of
the particular form of the material’s Fermi surface or the
strength of the scattering potential (see Appendix C).
Moreover, ∆(r) can not only be mapped around isolated
defects, as discussed above, but also in disordered su-
perconductors with a random distribution of defects5, as
shown in Figs. 5(a) and (b). Here, we present ∆(r)/∆0

and of Ic(r)/I0
c , respectively, for a concentration of 1%

randomly distributed non-magnetic defects with U0 = 2t.
While the interference of electrons scattered by multiple
defects can lead to spatial regions in which the super-
conducting order parameter is significantly enhanced or
suppressed, the spatial form of Ic(r) again very well im-
ages that of ∆(r). The critical Josephson current can
even be employed to image ”virtual defects”, i.e., regions
in which the superconducting order parameter is strongly
suppressed without the existence of defects. Such virtual
defects can be created using quantum interference effects,
as shown in Fig. 5(c), where we present the supercon-
ducting order parameter in the presence of four defects
located at sites denoted by white open circles and µ = 0,
yielding the dashed blue Fermi surface in Fig. 1(b). In-
terference effects give rise to an additional strong sup-
pression of ∆(r) in the center of the superconductor –
the virtual defect – which is again captured by Ic(r), as
shown in Fig. 5(d).

The results discussed above demonstrate that the spa-
tial dependence of the critical Josephson current images
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that of the superconducting order parameter. This pro-
vides the missing crucial link for interpreting the JSTS
experiments by Hamidian et al.13 and Randeria et al.14.
The ability to image ∆(r) in an s-wave superconductor
raises the question of whether JSTS can also be used
to investigate the order parameter of unconventional su-
perconductors, such as the cuprate, iron-based or heavy
fermion superconductors. While the non-local spatial na-
ture of unconventional superconducting order parameter
will require the use of a spatially extended JSTS tip, the
tip’s size needs to be smaller than the length scale over
which ∆ varies. Work is currently under way to investi-
gate this interesting question.
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Appendix A: Theoretical Methods

1. Definition of Green’s functions in real space

To compute the spatial dependence of the local s-wave
order parameter, ∆(r), as well as the critical Josephson
current, Ic(r), in the presence of defects, we rewrite the
Hamiltonian in Eq.(1) in matrix form introducing the
spinor

Ψ† =
(
c†1,↑, c1,↓, . . . , c

†
i,↑, ci,↓, . . . , c

†
N,↑, cN,↓

)
(A1)

where N is the number of sites in the s-wave supercon-
ductor, and i = 1, ..., N is the index for a site r in the
system. The Hamiltonian in Eq.(1) can then be written
as

Hs = Ψ†ĤsΨ . (A2)

We next define a retarded Green’s function matrix of the
system via

Ĝs(ω + iδ) =
[
(ω + iδ)1̂− Ĥs

]−1

(A3)

where 1̂ is the (N ×N) identity matrix and δ = 0+. The
local anomalous Green’s function at site r (with index i),
Fs(r, r, ω), is then the given by the (2i−1, 2i) element of

Ĝs. Moreover, we take the anomalous Green’s function
of the tip to be that of a bulk system given by

Ft(ω) = −N0∆tip
πi√

(ω + iδ)2 −∆2
tip

sgn(ω) (A4)

where N0 is the density of states in the tip. This form
implies that Ft possess a non-zero real part only for |ω| <
∆tip, and a non-zero imaginary part only for |ω| > ∆tip.

2. Ic for a magnetic defect

A magnetic defect breaks the time-reversal symmetry
of the system, implying that the spin-↑ and spin-↓ con-
tributions to the Josephson current are different. Given
the definition of the spinor in Eq.(A1), the expression
for the critical Josephson current in Eq. (7) is that of the
spin-↑ contribution, i.e., Ic,↑(J), where J is the scattering
strength of the magnetic defect. Note that J → −J im-
plies that the direction of the defects’ magnetic moment
is flipped with respect to the spin quantization axis of the
s-wave superconductor and the tip. To obtain the total
Josephson current in the presence of a magnetic defect,
Ic(J) = Ic,↑(J) + Ic,↓(J), we use the identity

Ic,↑(J) = Ic,↓(−J)

Ic,↓(J) = Ic,↑(−J) (A5)

As a result,

Ic(J) = Ic,↑(J) + Ic,↓(J) = Ic,↑(J) + Ic,↑(−J) (A6)

Appendix B: Enhanced Josephson current due to
tunneling into Shiba states

In Fig. 2(b) and 2(c), we showed that the critical
Josephson current, Ic(r), can exhibit a peak at the site
of a magnetic defect due to enhanced Josephson tunnel-
ing of Cooper pairs into the defect-induced Shiba state.
To demonstrate the origin of this enhancement in more
detail, we plot in Fig. 6 the anomalous Green’s function
of the tip, Ft [Figs. 6(a) and (b)], and of the s-wave su-
perconductor, Fs [Figs. 6(c) and (d)]. The Shiba state
possesses a hole- and particle-like branch at ±ωb. The
critical Josephson current [see Eq.(7)] is given by the fre-
quency integral over Im[FtFs] = ReFtImFs + ImFtReFs
in the range (at zero temperature) ∞ < ω < 0. The
factors of the first term, ReFt and ImFs, are shown in
Figs. 6(a) and (c), while the factors of the second term,
ImFt and ReFs, are shown in Figs. 6(b) and (d). As
ImFt = 0 for |ω| < ∆tip, it is clear from these plots that
for ∆tip > ωb, the main contribution to Ic arises from
ReFtImFs. Moreover, as ∆tip > ∆0 is reduced and ap-
proaches the energy of the Shiba state ωb, the overlap
between the peak in ImFs representing the Shiba state,
and the enhanced value of ReFt near ∆tip is increased,
leading to a larger peak in Ic at the defect site. This
result is generic and independent of the particular form
of Ft, as the superconducting gap in the tip leads to
an onset of non-zero ImFt at |ω| = ∆tip thus requiring
(by Kramers-Kronig transformation) ReFt to increase in
magnitude near ∆tip. As the spectral weight of the Shiba
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FIG. 6. Energy dependence of the anomalous Green’s function, Ft, of the tip [see Eq.(A4)]: (a) −ReFt, and (b) ImFt. Energy
dependence of the anomalous Green’s function, Fs, of the s-wave superconductor at the site of a magnetic defect R = (0, 0)
with J = 2t and µ = −3.618t, and its nearest neighbor site r = (1, 0) (corresponding to the case shown in Fig. 2): (c) ImFs,
and (d) ReFs.

state away from the defect site [see r = (1, 0) in Fig. 6(c)]
is smaller than that at the defect site, the enhancement
in Ic due to Cooper pair tunneling into the Shiba state
is more pronounced at the defect site. This explains the
spatial form of Ic(r) and its evolution with ∆tip shown
in Fig. 2 and Fig. 7.

Appendix C: Superconducting Order Parameter and
critical Josephson current

In this section, we provide further examples that
demonstrate the ability to image the spatial form of ∆(r)
through local measurements of Ic(r) in the vicinity of
defects in an s-wave superconductor. In Figs. 7 (a) and
(b) we present a line cut of the normalized ∆(r)/∆0,
and Ic(r)/I0

c for an s-wave superconductor with µ = t
(yielding the red Fermi surface shown in Fig. 1(b)) and
a magnetic defect with J0 = 2t, using the same ratios of
∆tip/∆0 as in Figs. 2(b) and (c). We again find that the
spatial form of the superconducting order parameter is

well reproduced by that of Ic(r), as also follows from a
contour plot of ∆(r) and Ic(r) (for ∆tip = 4∆0) shown
in Figs. 7 (d) and (e). However, in contrast to the re-
sults shown in Figs. 2(b) and (c), Ic(r) does not exhibit
a peak at the defect site. This ”missing” peak is a direct
consequence of the rapid suppression of the supercon-
ducting order parameter in the immediate vicinity of the
defect (this rapid suppression differs from that shown in
Fig. 2(b), and is a result of the different electronic struc-
tures, resulting from changes in the chemical potential).
For the values of ∆tip used in Figs. 7 (a) and (b), the en-
hanced tunneling into the Shiba state cannot overcome
the rapid suppression of ∆(r) [and hence Fs(r, r, ω)] in
the vicinity of the defect [though the relative strength
of Ic(r) at the defect site is increased when ∆tip is re-
duced from 4∆0 in Fig. 7(a) to 0.5∆0 in Fig. 7(b)]. Only
when ∆tip is further reduced to ∆tip = 0.04∆0 and thus
brought closer to the bound state energy of the Shiba
state, ωb = 0.0015t = 0.03∆0, is the enhanced tunnel-
ing sufficiently strong to result in a peak in Ic(r) at the
defect site [see Fig. 7(c)].
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FIG. 7. Spatial dependence of the normalized ∆(r) and Ic(r) along ry = 0 for a magnetic defect with J = 2.0t and µ = t
(yielding the red Fermi surface shown in Fig. 1(b)) for (a) ∆tip = 4∆0, (b) ∆tip = 0.5∆0, and (c) ∆tip = 0.04∆0. Contour plot
of the normalized (d) ∆(r) and (e) Ic(r) for ∆tip = 4∆0.

FIG. 8. Spatial dependence of the normalized ∆(r) and Ic(r) along ry = 0 for a weakly scattering non-magnetic defect with
U0 = 0.2t and µ = −3.618t and (a) ∆tip = 4∆0, (b) ∆tip = 0.5∆0, and (c) ∆tip = 0.04∆0.

The ability to spatially image the superconducting or-
der parameter is independent of the scattering strength
of the defect. To demonstrate this, we consider a weakly
scattering non-magnetic defect with U0 = 0.2t in a super-
conductor with µ = −3.618 [yielding the black Fermi sur-
face shown in Fig. 1(b)]. The line cuts of the normalized
∆(r)/∆0, and Ic(r)/I0

c presented in Fig. 8 show again a

very similar spatial dependence. Note that in contrast
to the above case of a magnetic defect, the normalized
Josephson current Ic(r)/I0

c at the site of the defect re-
mains approximately constant with decreasing ∆tip, due
to the absence of a Shiba state [here, the same ratios of
∆tip/∆0 as in Figs. 7(a)-(c) were used].
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