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A detailed analytical and numerical study of the spin wave modes of the free layer of a nano-pillar spin torque
nano-oscillator (STNO) has been performed as a function of the magnetostatic interaction between the free
and the fixed magnetic layers. Results for higher frequency normal modes show that the magnetostatic
interaction does not appreciably affect the spin wave frequencies and the critical current densities, due to
more relevance of the exchange interaction in these modes. For lower frequency normal modes we observe
a decrease in frequency and in the critical current density for auto-oscillations when the strength of the
magnetostatic interaction between the layers increases, an effect that may be appreciable.

I. INTRODUCTION

During the last decade there has been strong inter-
est in the control of the magnetic behaviour of nano-
structures. One of the ways to control the magnetization
of a nanomagnet is through the transfer of angular mo-
mentum from a spin polarised current by the spin trans-
fer torque (STT) effect1,2. Several experiments and the-
oretical and numerical studies3–5 have been performed
since the experimental confirmation of such effect6. The
attention has been placed on the potential applications
in magnetic data storage technology and spintronics de-
vices where, by using a spin polarised current, it is
possible to write information by switching the magne-
tization in a STT device7. Therefore in the last years
STT RAM has emerged as an efficient memory technol-
ogy with a non-volatile character and a reduced power
consumption8. Nowadays an interesting application of
STT devices, i.e. spin torque nano-oscillators (STNO’s),
occurs in the area of neuro-morphic computing. The
STNO’s may emulate neuron and synapse networks be-
haviour through their characteristic nonlinear oscillator
dynamics and their coupling9,10.

Some STT devices such as nano-pillars with metal-
lic spacers, point contacts or magnetic tunnel junctions
are composed of two ferromagnetic layers separated by
a non-magnetic spacer. The first ferromagnetic layer is
magnetically fixed while the magnetization of the sec-
ond ferromagnetic layer is free to move in response to
an external stimulus. When a current is injected into
the system, electrons pass through the fixed layer and
become spin-polarised. Then this spin polarised current
reaches the second ferromagnetic layer whose dynamic
magnetization in general is not collinear with the first,
and thus some current angular momentum is transferred
to the free layer. If the current density is large enough,
a stable precession of the magnetization of the free layer
may be reached in the microwave range11. In most works
the non-magnetic spacer is considered sufficiently wide
to neglect both the magnetostatic and the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions between the

two ferromagnetic layers. Besides, only few papers ad-
dress the influence of the fixed layer thickness. For ex-
ample, S. Urazhdin et al.12 made experimental measure-
ments of the dynamics induced by a polarised current
across a thin spin valve device. They considered that
the dimensions of the free layer are fixed and the thick-
ness of the reference layer is comparable or smaller than
the free layer thickness. For the fixed layer thickness the
authors considered 2, 5, and 8 nm. The coupling be-
tween both ferromagnetic layers results in a reduction
of the precession onset current. Also Z. Hou et al.13

studied the stability of the reference layer given by a
mutual STT effect considering the macro-spin approxi-
mation for both ferromagnetic layers. They concluded
that the consideration of that effect is important to un-
derstand the spin-torque switching. We also mention a
recent experimental-theoretical study14 on the influence
of inter-layer coupling on the spin torque driven excita-
tions of a spin torque oscillator.
As already mentioned, nano-pillars have a non-

magnetic spacer between the ferromagnetic layers. The
thickness of this spacer is generally from 1 nm to 100
nm15–24. The spacer thickness must be smaller than the
spin diffusion length, usually a hundred of nanometers,
to keep the spin polarization of the current25. However,
from another side, the spacer should be thick enough
to avoid RKKY interaction between the ferromagnetic
layers of the nano-pillar. In this case, magnetostatic in-
teraction between the free and the fixed layers can play
an appreciable role. There are several experimental sys-
tems in which both conditions are satisfied18–24. There-
fore, in this work we focused on the effect of the mag-
netostatic interaction between the ferromagnetic layers
of a nano-pillar with a circular cross section using a
standard Hamiltonian formalism. We studied the nor-
mal modes of the free layer as a function of the fixed
layer thickness neglecting the RKKY interaction. Specif-
ically, we have studied the normal modes, its frequency
dependence, shape and critical current to induce stable
or auto-oscillations. We also studied the normal modes
dependency on non-magnetic spacer thickness and mag-
netic material of the fixed layer. We found that for lower
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frequency normal modes, the frequency and critical cur-
rent density decrease when the fixed layer thickness in-
creases or the non-magnetic spacer thickness decreases.
In this scenario, the shape of the lower normal modes
is not affected by the magnetostatic interaction between
the layers. On the other hand for higher normal modes,
the frequency and the critical current density are not af-
fected by the magnetostatic interaction between the lay-
ers. Thus STT nano-pillar oscillators can be controlled in
terms of frequency range or current density by material
engineering, and geometry design.

This paper is organized as follows: in Section II we
describe the model and formalism used to determine the
equilibrium magnetization, the spin wave modes and the
critical current densities, in Section III we present and
discuss our results, and finally in Section IV conclusions
are presented.

II. MODEL

We consider a nano-pillar device composed of two fer-
romagnetic layers separated by a non-magnetic metallic
spacer with a circular cross section of radius R, as shown
in Fig. 1. The bottom layer has its magnetization fixed
while the magnetization of the top layer is free. The free
(fixed) layer has a thickness L (Γ) and a saturation mag-
netization Ms (Mfix). The non-magnetic metallic spacer
has a thickness D, smaller than the spin diffusion length
(lsf ), and large enough to neglect the RKKY interaction
between the two ferromagnetic layers. For example, if
the spacer is copper, the spin diffusion length is lsf =350
nm at T = 293 K25. When we study the effect of D
on the normal modes of the free layer, we choose the
minimum D equal to 2 or 3 nm depending on the mate-
rial magnetization of the fixed layer. On the other hand,
when we study the normal modes with constant spacer
thickness, we consider D = 5 nm. The latter value was
chosen to be sure that RKKY interaction does not affect
our calculations26.

To find the normal modes of the free layer as a func-
tion of the magnetostatic interaction between the fer-
romagnetic layers, we analyse the magnetization dy-
namics through the Landau-Lifshitz-Slonczewski equa-
tion (LLS)27 and the Hamiltonian formalism28 to solve
it. This section is organised into three subsections: a
brief explanation of the LLS equation, the Hamiltonian
formalism, and a final subsection that describes how the
equilibrium magnetization, spin wave normal modes and
critical current densities are obtained.

A. Magnetization dynamics of the free layer

The magnetization dynamics of the free layer induced
by a spin polarised current is described by the Landau-

}
}

}
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FIG. 1. Geometry and parameters of the cylindrical nano-
oscillator considered. A current is injected into the structure,
its spin direction is polarised as it passes through the fixed
layer.

Lifshitz-Slonczewski equation

d~m

dτ
= −~m× ~heff − α~m× (~m× ~heff) + βJ ~m× (~m× p̂) ,

(1)

where ~m = ~M/Ms is the normalised magnetization vec-
tor of the free layer. α is the damping parameter, and
the time is normalized by τ = |γ|4πMst, with |γ| =
1.76 · 107Oe−1 · s−1 being the gyromagnetic ratio29. J
is the applied current density and p̂ is the spin polariza-
tion direction. The coefficient β is defined as follows1:

β =
h

(4πMs)2eL

[

−4 + (3 + cos θ)
(1 + P )3

4P 3/2

]−1

, (2)

where h is the Planck constant, e the electron charge,
P the polarization and θ the angle between the mag-

netization and the spin polarization direction. ~heff is

the normalized effective field, where it is equal to ~heff =
~Heff/4πMs = −δUeff/δ ~m, where Ueff = UZ+UD+UE+UI

is the normalized free layer magnetic energy. In the Ueff

expression, UZ is the energy associated with the exter-
nal applied field; UD the demagnetizing free layer energy
averaged over the layer thickness ; UE the exchange inter-
action energy; and UI the energy related to the magneto-
static interaction between the two ferromagnetic layers.
The magnetic anisotropy energy for the free layer was
neglected because we consider a soft magnetic material,
Permalloy. The last term in Eq. (1) is the normalised
spin transfer torque term. We neglected the out plane
spin transfer torque due to the non-magnetic spacer is a
metal30.

B. Hamiltonian formalism

The LLS equation conserves the magnitude of the mag-
netization (|~m2| = 1). Then, the three components of
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the magnetization are not independent of each other, and
only two of them to are necessary to describe the dynam-
ics. For this reason and because the normalised equilib-
rium magnetization is almost saturated ~meq ≈ mxx̂, it
is convenient to introduce the complex variable a(~ρ, τ)
through the classical Holstein-Primakoff transformation,
as used by Mancilla-Almonacid and Arias in Ref. 31.
That is,

mx = 1− aa∗

my = ((a− a∗)/2i)
√
2− aa∗

mz = ((a+ a∗)/2)
√
2− aa∗







⇔ a =
imy +mz√
1 +mx

,

(3)

where a and a∗ are small perturbations of the equilib-
rium saturated state. They correspond to the classical
analogue of the magnon creation and annihilation oper-
ators. Using this transformation, Eq. (1) is transformed
into the following equation for a:

i
da

dτ
≈(1− iα)

δUeff

δa∗
+ iβJa , (4)

where the non-linear terms of the dissipation and spin
transfer torque have been neglected, as we are inter-
ested in the linear dynamics. The expressions for the
energies as a function of a and a∗ are found in Ap-
pendix A (see equation A3 for UZ(a, a

∗), equation A5
for UE(a, a

∗), equation A11 for UD(a, a∗) and equation
A16 for UI(a, a

∗)). To describe the free layer dynamics
by appropriate variables, we introduce a change of vari-
ables from a(~ρ, τ) to amj(τ), which are the coefficients of
an expansion in Bessel functions as follows

a(~ρ, τ) =N00a00(τ) +
∞
∑

m=−∞
j=1

Nmjamj(τ)Jm

(χmjρ

R

)

eimφ ,

(5)

where ρ and φ are the radial and polar coordinates, and
Jm are the Bessel functions of the first kind of order m.
Since we consider free boundary conditions at the edges
of the free layer, that is ∂ ~m/∂ρ|ρ=R = 0, thus the con-

stants χmj must satisfy J ′
m(χmj) = 0, i.e. they are the

zeroes of J ′
m. In writing Eq. (5) we have considered that

the free layer is very thin, that is L ∼ lE, where lE is
the exchange length of the free layer material. Then, its
magnetization does not depend on z and thus we can av-
erage the fields and energies over this variable. Finally,
the magnetization dynamics in the variables {amj, a

∗
mj}

reads (the transformation {a, a∗} → {amj, a
∗
mj} is canon-

ical for the conservative equations, i.e. it maintains the
Hamiltonian form of those equations):

i
damj

dτ
≈ (1− iα)

1

V

∂Ueff

∂a∗mj

+ iβJamj , (6)

with V = πR2L the free layer volume. The coefficients
N00 = 1 and Nmj = 1/

√

−Jm(χmj)J ′′
m(χmj) are normal-

ization constants with ∂a/∂amj = V δa∗mj/δa
∗. Expres-

sions for the energies as a function of the variables amj

and a∗mj are found in Appendix B.

C. Equilibrium magnetization, spin waves and critical

current density

Before studying the dynamics of the system, we ob-
tained the equilibrium magnetization state for the free
layer. Therefore, we solved

∂Ueff

∂a∗mj

∣

∣

∣

∣

∣

eq

= 0 . (7)

This equation represents a system of non-linear equations
that can be solved numerically by using an extension of
the Newton-Raphson method32. The solutions of these
equations are the values of aeqmj , that represent the equi-
librium configuration of the free layer magnetization.
To study the magnetization dynamics we write amj =

aeqmj + ãmj, where ãmj represent small perturbations

around the equilibrium values aeqmj. Then, at linear order

Eq. (6) can be approximated by using an expansion in
Taylor series around the equilibrium state, i.e.

i
d

dτ

(

ãmj

ã∗mj

)

=

(

Am′j′

mj Bm′j′

mj

−Bm′j′

mj

∗
−Am′j′

mj

∗

)

(

ãm′j′

ã∗m′j′

)

= M

(

ãm′j′

ã∗m′j′

)

, (8)

where Am′j′

mj and Bm′j′

mj are

Am′j′

mj = (1 − iα)
∂2Ueff

∂a∗mj∂am′j′

∣

∣

∣

∣

∣

eq

+ iβJδmm′δ
j
j′ , (9a)

Bm′j′

mj = (1 − iα)
∂2Ueff

∂a∗mj∂a
∗
m′j′

∣

∣

∣

∣

∣

eq

. (9b)

In the previous equations, M is a diagonalizable matrix
that can be decomposed as M = PDP

−1, where D is
a diagonal matrix constructed from the corresponding
eigenvalues ofM, andP is an invertible matrix composed
of the eigenvectors of M. Since the variables ãmj do not
represent the normal modes of oscillation, we performed a
Bogoliubov transformation to obtain the normal modes:
(

ãmj

ã∗mj

)

=

(

λn
mj −µn

mj

−µn
mj

∗ λn
mj

∗

)(

bn
b∗n

)

= P

(

bn
b∗n

)

.

(10)

Replacing this transformation in Eq. (8), one obtains the
following linear diagonal equations for the dynamics of
the amplitudes bn and b∗n of mode n, given by

i
d

dτ

(

bn
b∗n

)

=

(

ωn + iγn 0
0 −ωn + iγn

)(

bn
b∗n

)

= D

(

bn
b∗n

)

, (11)

where ωn and γn are real variables. The solutions of
Eq. (11) are bn(τ) = b0ne

(−iωn+γn)τ , with the dimension-
less quantity ωn the angular frequency of oscillation of
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mode n. Then, the oscillation frequency of this mode
is fN

n = 2Ms|γ|ωn, where the super-index N represents
that the frequencies are obtained by numerical calcula-
tions. The linear decay coefficient of mode n is γn, and
it depends on the applied current density, γn(J). The
critical current density, i.e. the minimum current den-
sity to induce self oscillations on the free layer magne-
tization for a normal mode, can be obtained by equat-
ing γn(J

N
c,n) = 0, where the super-index N represents

that the critical current is obtained by numerical cal-
culations. Then, if γn(J) > 0 it is possible to excite self
oscillations of the normal modes, while if γn(J) < 0 these
are not induced. It is important to mention that for for
γn(J) > 0, there is not necessarily only one mode that is
auto-oscillating, that is, several normal modes can coex-
ist. Moreover, this condition can generate an incoherent
dynamic or even the magnetization can be reversed de-
pending on the current magnitude. In our case, we will
study only the current that satisfies γn(J) = 0 for a cer-
tain n mode, that is, the critical current JN

c,n obtained
gives us the current where the n mode begins to auto-
oscillate.

III. RESULTS AND DISCUSSIONS

The system we have considered consists of a free layer
of permalloy, a copper spacer and a fixed layer of permal-
loy or cobalt. For our calculations we considered as fixed
the geometrical parameters R = 50 nm and L = 5 nm.
For permalloy we have used: Ms = 800 emu/cm3, ex-
change stiffness constant A = 1.3 · 10−6 erg/cm, and
an exchange length lE = 5.7 nm. With respect to the
calculation of the magnetostatic interaction between the
magnetic layers, we have used two materials for the fixed
layer: cobalt with Mfix = 1400 emu/cm3 and permalloy
with Mfix = 800 emu/cm3, see Refs. 19–24, 33, and 34.
The thickness of the fixed layer was variated from 0 to 10
nm for cobalt and from 0 to 20 nm for permalloy. For val-
ues bigger than Γ = 10 nm for cobalt and Γ = 20 nm for
permalloy, the magnetostatic interaction field becomes
greater than the external applied field. Both fields are
opposed to each other, so the parallel state is no longer
stable and the free layer could revert its magnetization
generating an anti-parallel state. In the same way, the
change of variable mx = 1 − aa∗ is not valid anymore.
In order to saturate the magnetization of the fixed layer
with a large thickness, an external field can be applied
or also this layer can be placed in contact with an anti-
ferromagnetic layer. To solve the LLS equation and to
describe the magnetization dynamics of the free layer, we
have used the following parameters: α = 0.01, the spin
polarization of permalloy P = 0.3 (see Ref. 35), θ = 0,
and the spin polarization direction is chosen as p̂ = x̂.
In all the cases we used an applied external field Hx = 1
kOe. The limits of the summation in Eq. (5) are given
from m = −4 to m = 4 and from j = 1 to j = 4.
In the following three subsections contain our results

and discussions. In the first subsection we focus on the
equilibrium magnetization configuration of the free layer
as a function of the fixed magnetic layer. In the second
part, we discuss how the shape and frequency of the nor-
mal modes change when we consider a fixed magnetic
layer with different parameters. Finally, we study the
variation of the critical current density when taking into
account changes of the fixed magnetic layer.

A. Equilibrium magnetization

In this subsection we will show how the equilibrium
magnetization of the free layer is modified when the mag-
netostatic interaction with the fixed layer is taken into ac-
count. This equilibrium magnetization is obtained from
Eq. (3) as a function of the complex variable a(~ρ, τ) de-
fined in Eq. (5). The variable a(~ρ, τ) , in the equilibrium
configuration, is obtained by solving Eq. (7). Our re-
sults for the equilibrium magnetization of the free layer
in the absence of an applied current are illustrated in
Fig. 2. The vectors represent the in-plane magnetiza-
tion, i.e., the normalized magnetization components mx

and my, while the out-plane normalized magnetization,
mz, is represented by a color scale. Fig. 2(a) illustrates
the case where the system does not interact with a fixed
layer, thus the equilibrium magnetization in the free layer
is completely in-plane with mz = 0. Fig. 2(b) illus-
trates results for an interacting system defined by a fixed
permalloy layer with Γ = 20 nm and a spacer of D = 5
nm. The interaction field in the free layer is in opposite
direction to the external applied field. To consider the
change of variables of Eq. (3) properly, the absolute in-
teraction field must be smaller than the absolute applied
field. In figure 2(b), the absolute normalized average in-
teraction field corresponds approximately to 0.08, which
is less than the absolute normalized applied field (0.1).
From this figure, we observe that there are regions where
the value of the mz is different to zero, then the equilib-
rium state of the magnetization is different from the case
without the fixed layer.

B. Frequencies and shapes of the normal modes

In this section we discuss how the frequencies of the
normal modes are modified by the magnetostatic interac-
tion between the layers. These frequencies, fN

n , are calcu-
lated following the procedure explained before Eq. (10),
i.e. it involves the diagonalization of matrix M of Eq. (8)
for the dynamic perturbations around the equilibrium
configuration. The Fig. 3 illustrates the first three fre-
quencies of the normal modes as a function of the fixed
layer thickness. In this figure we observe that the fre-
quency of each mode decreases when the fixed layer thick-
ness increases.
We also studied the dependency of the frequency of

each mode on the non-magnetic spacer thickness. From
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(a) (b)

FIG. 2. Equilibrium magnetization of the free layer. (a) The
magnetostatic interaction between the free and the fixed lay-
ers is neglected. (b) The magnetostatic interaction between
the free and the fixed layers is considered. The vectors are as-
sociated with the in-plane components of the magnetization,
mx and my, and the color is associated with the out-plane
component of the magnetization, mz.
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FIG. 3. Frequencies of the first three modes as a function of
the fixed layer thickness. (a) The free and fixed layers are
made of permalloy. (b) The free layer is made of permalloy
and the fixed layer is made of cobalt. The thickness of the
metallic spacer is D = 5 nm.

Fig. 4, we observe that the frequency decreases when the
spacer thickness diminishes, due to the concomitant in-
crease of the magnetostatic interaction between the lay-
ers. Additionally, it is possible to see that the nature of
the magnetic material also affects the frequency changes
of the normal modes. This effect is evidenced in Figs.
3 and 4 where, for the harder magnetic material, the
change in frequencies is more significant. In Fig. 4, the
smaller thickness for the non-magnetic spacer is 2 nm
for permalloy and 3 nm for cobalt. This, since the dif-
ferent saturation magnetizations of cobalt and permal-
loy require different thicknesses of the spacers to prevent
that the demagnetizing field generated by the fixed lay-
ers could reverse the magnetization in the free layer. We
could access to smaller thicknesses if we increase the ex-
ternal field, as explained in Appendix C.

In order to better understand these results, we did
a theoretical analysis considering two approximations.
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FIG. 4. Frequencies of the first three modes as a function
of the non-magnetic spacer thickness. (a) The free and fixed
layers are made of permalloy and the thickness of the fixed
layer is Γ = 20 nm. (b) The free layer is made of permalloy
and the fixed layer is made of cobalt with a thickness equal
to Γ = 10 nm. The horizontal dashed lines represent the
frequencies of the normal modes without the effect of the fixed
layer.

The first one assumes that the demagnetizing field of

the free layer can be approximated by ~HD = −4πMzẑ,
an approach frequently known as the thin film limit
(L ≪ R)36. In the absence of magnetostatic interac-
tion between the free and the fixed layers, the free layer
eigenfrequencies are

fA
mj(Γ = 0) = 2Ms|γ|

√

(hx + hmj
E )(hx + hmj

E + 1) ,

(12)

see Ref. 31. In this equation, the super-index A rep-
resents that the frequencies are obtained by analytical
calculations, hx = Hx/(4πMs) is the normalised exter-

nal applied field, hmj
E = (χmj lE/R)2 is the normalised

exchange field, and lE is the exchange length (see A 2).
The second approach averages the normalised magneto-
static field induced by the fixed layer over the free layer
volume. In this case only the x component of this nor-
malised average field is different to zero, 〈hx

I 〉V , and it is
given by

〈hx
I 〉V = −Mfix

Ms

∫ ∞

0

J2
1 (q)(1 − e−

qΓ

R )(1− e−
qL

R )e−
qD

R

2q2 L
R

dq ,

(13)

where the sub-index indicates the average over the vol-
ume of the free layer. Our analytical model includes these
two approximations, and therefore the frequencies of the
normal modes in the analytical model can be rewritten
as follows:

fA
mj = 2Ms|γ|

√

(hx + hmj
E + 〈hx

I 〉V )(1 + hx + hmj
E + 〈hx

I 〉V )

= fA
mj(Γ = 0)

√

√

√

√

(

1 +
〈hx

I 〉V
hx + hmj

E

)(

1 +
〈hx

I 〉V
1 + hx + hmj

E

)

.

(14)
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FIG. 5. Normalised average magnetostatic field as a function
of the fixed layer thickness for D = 5 nm, 10 nm and 20 nm.
(a) The free and fixed layers are made of permalloy. (b) The
free layer is made of permalloy and the fixed layer is made of
cobalt.

Fig. 5 illustrates the normalised average magnetostatic
field 〈hx

I 〉V as a function of the fixed layer thickness.
We considered in the calculation different values for the
spacer thickness and magnetic materials, as shown in
Figs. 5(a) for permalloy and 5(b) for cobalt. First, we
observe that the strength of 〈hx

I 〉V depends on the mag-
netic material of the fixed layer and the spacer thickness.
With the same geometrical parameters the fixed layer of
cobalt produces a stronger field than permalloy. This is
the reason why we only plot up to Γ = 10 nm as displayed
in figure 3(b), since for values greater than Γ = 10 nm,
the normalised average magnetostatic field can be greater
than the normalised external applied field, and Eq. (3)
will not be valid. In addition, we observe that the nor-
malised average magnetostatic field is negative and goes
to zero when the fixed layer thickness decreases. In this
way one may understand why the frequencies obtained
in Fig. 3 decrease when the thickness of the fixed layer
increases or the non-magnetic spacer thickness decreases.
These results are confirmed in Fig. 6 where the oscilla-
tion frequency of the uniform mode or macro-spin mode
in the analytical model, fA

00, and the frequency mode
previously obtained numerically for the mode n = 1 also
called quasi-uniform, fN

1 are depicted (see Fig. 3(a) for
permalloy and Fig. 3(b) for cobalt). Although differences
in oscillation frequencies are observed, the decay is sim-
ilar. The analytical model exhibits the same behaviour
than our numerical results, and a better agreement for
large values of Γ. The frequency differences between the
analytical and numerical models are due to the thin film
limit approximation of the demagnetizing field that we
use in our analytical model. A better agreement be-
tween theory and numerical analysis is obtained when Γ
increases, because the magnetostatic interaction field in-
creases correspondingly, making, in the comparison, the
demagnetizing field less relevant.

From Eq. (14), we observe that the effect of the fixed
layer on the free layer is limited for higher normal modes.
If |〈hx

I 〉V | ≪ |hx + hmj
E |, then fA

mj ≈ fA
mj(Γ = 0). There-
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FIG. 6. Frequency of the uniform mode as a function of the
fixed layer thickness D = 5 nm. (a) The free and fixed lay-
ers are made of permalloy. (b) The free layer is made of
permalloy and the fixed layer is made of cobalt. The blue line
corresponds to the analytic formula obtained by the analyt-
ical model, see Eq. (14). The black dots correspond to the
numerical solution previously found from Eq. (11) for n = 1
(see figure 3(a) for permalloy and figure 3(b) for cobalt).

fore, the fixed layer does not affect the higher normal
mode frequencies. In the analytical model we calcu-
lated the condition for wich the frequencies are not af-
fected by any fixed layer thickness and any non-magnetic
spacer thickness when |hx| > |〈hx

I 〉V |. Then, we have

fA
mj ≈ fA

mj(Γ = 0) if

χmj ≫
R

lE

√

Hx

4πMs
. (15)

Replacing the parameters used in our calculations in Eq.
(15), we have the next condition χmj ≫ 2.77. To under-
stand Eq. (15), we need to observe Fig. 7. This figure
illustrates the numerical and analytical frequency varia-
tions as a function of the normal modes, where the nu-
merical frequency variation is defined by

∆fN
n (Γ, D) = 100× (fN

n (Γ = 0)− fN
n )/fN

n (Γ = 0) ,
(16)

with fN
n (Γ = 0) as the frequency mode calculated numer-

ically with a non-fixed layer, and the analytical frequency
variation is defined by using the analytical model, i.e.,

∆fA
mj(Γ, D) = 100× (fA

mj(Γ = 0)− fA
mj)/f

A
mj(Γ = 0) .

(17)

For ∆fN
n (Γ, D) and ∆fA

mj(Γ, D), we have chosen Γ = 20
nm and D = 5 nm for permalloy and Γ = 10 nm and
D = 5 nm for cobalt. These geometrical parameters give
the biggest drop in frequency in our calculations. In the
analytical model, each χmj represents two normal modes
if m 6= 0 (there is degeneracy), and one normal mode if
m = 0. The lower values of χmj correspond to the lower
normal modes. In our case, we count the first ten normal
modes denoted in Table I.
From Fig. 7, we observe that the frequency variation

starts approximately in 60% for the first mode and de-
creases when we increase the normal mode number n.
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n m j χmj

1 0 0 0

2, 3 1 1 1.84

4, 5 2 1 3.05

6 0 1 3.83

7, 8 3 1 4.20

9, 10 4 1 5.31

TABLE I. The table shows the values of χmj necessary to cal-
culate ∆fA

mj(Γ, D) for the lower normal modes. n corresponds
the normal mode.

The increment of the normal mode number, in the ana-
lytical model, means an increment of the value of χmj .
Therefore, if we take an n that has a χmj ≫ 2.77, then
the frequency variation goes to zero, i.e. the higher nor-
mal modes are not affected by the magnetostatic inter-
action between the layers.
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FIG. 7. Frequency variation from Eqns. (16) and (17) as a
function of the normal modes. (a) The free and fixed layers
are made of permalloy with Γ = 20 nm and D = 5 nm. (b)
The free layer is made of permalloy and the fixed layer is made
of cobalt with Γ = 10 nm and D = 5 nm. The dot black line
corresponds to ∆fN

n (Γ, D). The dashed blue line corresponds
to ∆fA

mj(Γ, D).

In the second part of this subsection, we discuss the
magnetostatic interaction effect on the shape of the nor-
mal modes. In absence of dissipation and spin transfer
torque effect, the magnetization dynamics of the compo-
nent mz is plotted in Fig. 8, which at linear order is

mz =
ã+ ã∗√

2
=

1√
2

∑

n

∑

mj

b0nNmjJm(χmjρ/R)

× [(λn
mje

−iωnτ − µn
mje

iωnτ )eimφ + c.c] . (18)

In this figure, the fixed layer is made of permalloy and
has a thickness of Γ = 20 nm and a non-magnetic spacer
thickness equal to D = 5 nm. With these geometri-
cal parameters, the magnetostatic interaction between
the permalloy layers is the strongest in our calculations,
see Fig. 5. The shape of the first three normal modes
are compared in the absence (Fig. 8(a), Fig. 8(c) and
Fig. 8(e)) and in presence (Fig. 8(b), Fig. 8(d) and
Fig. 8(f)) of the magnetostatic interaction between the

free and the fixed layers. We observe that they are es-
sentially very similar. Therefore, it is possible to change
the oscillation frequencies as a function of the fixed
layer thickness without changing the shape of the nor-
mal modes.

(a) (b)

(c) (d)

(e) (f )

FIG. 8. Shape of the normal modes associated with the mag-
netization dynamics of the component mz for the first normal
mode (first row), the second normal mode (second row), and
the third normal mode (third row). This figure shows dif-
ferent systems at τ = 0. The left column does not consider
the magnetostatic interaction between the free and the fixed
layers in the calculations. The right column considers the
magnetostatic interaction between the ferromagnetic layers.
The frequencies were set to show that there is a frequency
change, but no modification in the shape of the normal modes
were observed In this case, both magnetic layers are made
of permalloy. We assumed that mz is in the range between
[−1, 1] (this is arbitrary since these are linear modes).

C. Critical current density

When a current runs through the nano-pillar, it is pos-
sible to induce oscillations on the free layer magnetiza-
tion if the current exceeds a certain threshold, called the
critical current density JN

C,n. Fig. 9 illustrates the low-

est critical current density for n = 1, JN
C,1, as a function

of the fixed layer thickness for D = 5 nm and D = 20
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nm. In the same way as the oscillation frequencies are
modified, the critical current density is modified if the
magnetostatic interaction is considered, i.e., the critical
current density decreases if the fixed layer thickness in-
creases or the non-magnetic spacer decreases. In addi-
tion, while the harder it is the fixed layer material, the
greater it is the critical current density variation. To

0 5 10 15 20

4.4

4.6

4.8

5.0

5.2

5.4

D=5 nm

D=20 nm

Γ (nm)

J
N C
,1

(1
07

A
/c

m
2
)

0 5 10 15 20

4.4

4.6

4.8

5.0

5.2

5.4

D=5 nm

D=20 nm

Γ (nm)

J
N C
,1

(1
07

A
/c

m
2
)
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FIG. 9. Critical current density necessary to induce self-
oscillations in the lowest normal mode as a function of the
fixed layer thickness, at D = 5 nm (dots) and D = 20 nm
(squares). (a) The free and fixed layers are made of permal-
loy. (b) The free layer is made of permalloy and the fixed
layer is made of cobalt.

understand the results plotted in Fig. 9 and obtain an
analytical expression, we have used the analytical model.
The critical current density without the magnetostatic
interaction between the layers, in the analytical model is

JA
C,mj(Γ = 0) = α(hx + hmj

E + 1/2)/β , (19)

where the super-index A represents that the critical cur-
rent is obtained by analytical calculations. If we consider
the magnetostatic interaction, where the normalized av-
erage magnetostatic field from the fixed layer is 〈hx

I 〉V
(see Eq. (13)), the critical current density in the analyt-
ical model can be rewritten as:

JA
C,mj =

α

β
(
1

2
+ hx + hmj

E + 〈hx
I 〉V )

= JA
C,mj(Γ = 0)

(

1 +
〈hx

I 〉V
1
2 + hx + hmj

E

)

, (20)

where hx = Hx/(4πMs) and hmj
E = (χmj lE/R)2.

Eq. (20) explains the decrease observed in Fig. 9. It
is because 〈hx

I 〉V is negative. This could be experimen-
tally useful due to the possibility to decrease the critical
current density about 20% in both materials (permal-

loy and cobalt). If |〈hx
I 〉V | ≪ |1/2 + hx + hmj

E |, then

JA
C,mj ≈ JA

C,mj(Γ = 0), therefore the fixed layer does
not affect the critical current densities at higher normal
modes. In the analytical model, we can calculate the
condition where the critical current densities are not af-
fected by any fixed layer thickness and any non-magnetic
spacer thickness when |hx| > |〈hx

I 〉V |. Then, we have

JA
C,mj ≈ JA

C,mj(Γ = 0) if 1/2 + hmj
E ≫ |hx| or:

R2

2l2E
+ χ2

mj ≫
|Hx|R2

4πMsl2E
. (21)

In our calculation we get from Eq. (21) the next condi-
tion 38.47 + χ2

mj ≫ 7.69. If we compare the expressions
for the conditions of Eqns. (15) and (21), we observe
that the critical current density has less variation than
the frequency for the same normal mode, and the current
density variation decreases faster than the frequency vari-
ation. Fig. 10 confirms the predictions of the conditions
of Eqns. (15) and (21). This figure shows the numeri-
cal and analytical critical current density variation as a
function of the normal modes, where the numerical crit-
ical current density variation (percentage) is defined by

∆JN
C,n(Γ, D) = 100× (JN

C,n(Γ = 0)− JN
C,n)/J

N
C,n(Γ = 0) ,

(22)

with JN
C,n(Γ = 0) as the critical current density calculated

numerically with a non-fixed layer, and the analytical
critical current density variation (percentage) is defined
by using the analytical model, i.e.,

∆JA
C,mj(Γ, D)

= 100× (JA
C,mj(Γ = 0)− JA

C,mj)/J
A
C,mj(Γ = 0) .

(23)

For ∆JN
C,n(Γ, D) and ∆JA

C,mj(Γ, D), we have chosen Γ =
20 nm and D = 5 nm for permalloy, and Γ = 10 nm and
D = 5 nm for cobalt. These geometrical parameters give
the biggest drop in the critical current density in our
calculations. From this figure, we observe that for the
first normal mode the current density changes by 14%,
and this variation decreases when we increase the normal
mode number.
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FIG. 10. Critical current density variation (percentage) from
Eqns. (22) and (23) as a function of the normal modes. (a)
The free and fixed layers are made of permalloy with Γ = 20
nm and D = 5 nm. (b) The free layer is made of permalloy
and the fixed layer is made of cobalt with Γ = 10 nm and
D = 5 nm. The dot black line corresponds to ∆JN

C,n(Γ, D).

The dashed red line corresponds to ∆JA
C,mj(Γ, D).

The steps evidenced in Figs. 7 and 10, related to the
analytical results, occur because there is a degeneracy
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of the normal modes in this approximation. The non-
monotonic behavior of Fig. 10, comes mainly from the
fact that the magnetostatic interaction field does not cou-
ple equivalently with each normal mode. In this way, this
field significantly affects certain normal modes.
In this work we have analysed the “parallel-state”,

where the magnetization of both the free and the fixed
layer are pointing in the same direction and sense. In
this configuration, the magnetostatic interaction field be-
tween the ferromagnetic layers is pointing opposite to the
applied field, for this reason both the frequencies and the
critical current decrease when the interaction field in-
creases. On the other hand, if the system is in the “anti-
parallel state”, i.e, the magnetization of the free and the
fixed layer are pointing in the same direction and dif-
ferent sense, the magnetostatic interaction field is point-
ing in the same sense that the applied field. Therefore,
Eq. (13) changes its sign from minus to plus, and then
the frequencies and the critical current increase when the
magnetostatic interaction field increases. The above can
be understood directly from Eqns. (14) and (20).

IV. CONCLUSIONS

As a summary, by means of numerical calculations and
an analytical model, we have studied the modification of
the free layer spin wave modes of a nano-pillar oscillator
due to the magnetostatic interaction between the free and
the fixed layer. For these modes we have studied both
their frequencies and shapes as a function of the fixed
layer thickness, non-magnetic spacer thickness and the
magnetic material of the fixed layer. It has been found
that the frequencies as well as the critical current density
of the lower modes decreases when the fixed layer be-
comes thicker or the non-magnetic spacer becomes thin-
ner, effects that may be significant. We also observe that
the shape of the lower normal modes do not change in
spite of the fixed layer thickness changes. At higher nor-
mal modes, the fixed layer does not affect the frequencies
and the critical current densities since in this case the
exchange interaction is more relevant than the magneto-
static interaction between the layers. These results can
be used to modify the natural frequencies of oscillation
or the critical current densities necessary to induce the
magnetization self-oscillations without altering the shape
of the lower modes for the free layer, which from an ex-
perimental or practical point of view may be useful for
the study of the excitation of the spin waves and also for
the design of systems with lower power consumption.
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Appendix A: Expressions for the free energy as a function

of a and a∗

The normalized free energy is given by

U =
1

4πM2
s

∫

(WZ +WE +WD +WI)dV , (A1)

where WZ , WE , WD and WI represent the Zeeman, ex-
change, self-magnetostatic and the inter layers magne-
tostatic interaction energy densities, respectively. The
integration is over the free layer volume.

1. External field energy

A constant field is applied in the x direction, then the
associated Zeeman energy density is given by

WZ = − ~H · ~M = −HxMx = −HxMs(1− aa∗) . (A2)

The constant term does not affect the dynamics, so the
Zeeman energy associated with the applied magnetic field
is an expression of second order:

UZ = hx

∫

aa∗dV , (A3)

with hx = Hx/(4πMs) the normalised applied field.

2. Exchange energy

The exchange energy density in cartesian coordinates
is given by

WE = A
[

(~∇mx)
2 + (~∇my)

2 + (~∇mz)
2
]

, (A4)

where A is the exchange constant. Thus, the energy ex-
panded until fourth order is

UE ≈ hE

∫
[

~∇a · ~∇a∗ +
1

4
a2(~∇a∗)2 +

1

4
a∗2(~∇a)2

]

R2dV ,

(A5)

with hE = A/(2πM2
sR

2) = (lE/R)2, with lE the ex-
change length.

3. Demagnetizing free layer energy

The self-magnetostatic energy density is given by

WD = −1

2
~HD · ~M . (A6)
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For the purpose of determining the demagnetizing field
of the thin disk, the free layer magnetization is assumed
uniform in its thickness and then does not depend on
the z coordinate. First, we calculate the magnetostatic
potential Φ and then the demagnetizing field through

the relation ~HD = −~∇Φ. The magnetostatic potential is
given by

Φ(~x) =

∫

σM

|~x− ~x′|dS
′ +

∫

ρM
|~x− ~x′|dV

′ , (A7)

where σM = n̂ · ~M(~x′) is the effective surface magnetic
charge density on the surface of the disk (top, bottom and

side), and ρM = −~∇ · ~M(~x′) is the effective volumetric
magnetic charge density. The Green’s function can be
written in cylindrical coordinates as:

1

|~x− ~x′| =
∞
∑

m=−∞

eim(φ−φ′)

∫ ∞

0

Jm(kρ)Jm(kρ′)e−k|z−z′|dk .

(A8)

In order to calculate the demagnetizing field averaged

over the thickness of the disk (〈 ~HD〉z = 1
L

∫ L

0
~HDdz), we

separate the calculation in two parts.

a. Surface magnetic charges at the top and bottom

The surface magnetic charges at the top and bottom
of the free layer disk give rise to a magnetic field along
the z direction, which normalised is given by

〈hz
D〉

z
=−mz +

2

4πL

∞
∑

m=−∞

∫ ∞

0

f(kL)Jm(kρ)eimφ

×
[
∫

dS′Jm(kρ′)mz(ρ
′, φ′)e−imφ′

]

dk , (A9)

with f(u) ≡ exp(−u)−1+u, and the sub-index indicates
average over z.

b. Volumetric and surface magnetic charges at the edge

The surface magnetic charges at the edge of the free
layer disk plus the volumetric magnetic charges give rise
to a magnetic field in the plane of the free layer, which
normalised is given by

〈~h||
D〉

z
= − 1

2πL

∞
∑

m=−∞

∫ ∞

0

f(kL)

k2
~∇(Jm(kρ)eimφ)

×
[
∫

dS′~∇(Jm(kρ′)e−imφ′

) · ~m||(ρ
′, φ′)

]

dk ,

(A10)

where ~m|| = mxx̂ + my ŷ, and the sub-index indicates
average over z.
Thus, the demagnetizing energy is given by

UD = −1

2

∫

(

〈hz
D〉

z
+ 〈~h||

D〉
z

)

· ~mdV . (A11)

4. Magnetostatic interaction energy between the layers

The energy density associated with the interaction of
the free layer with the fixed layer magnetostatic field is
given by

WI = − ~HI · ~M . (A12)

In order to calculate the magnetostatic field, the same
procedure as in section A3 is used, that is, we first deter-
mine the magnetostatic potential produced by the fixed
layer considering that it is uniformly magnetized, with
~Mfix = Mfixx̂. Therefore this magnetostatic potential is
given by

Φ(~x) =

∫

n̂ · ~Mfix(~x
′)

|~x− ~x′| dS′ , (A13)

with n̂ · ~Mfix = Mfix cosφ
′ we obtain

Φ(~x) = 2πMfixR cos(φ)

∫ ∞

0

J1(q)J1
(

qρ
R

)

(e
qΓ

R − 1)e−
qz

R

q
dq .

(A14)

If we define the following dimensionless quantities l =
L/R, h = Γ/R, d = D/R, and then averaging the nor-
malized magnetostatic field over the free layer thickness,

i.e. 〈~h〉
z
= − 1

4πMsL

∫ Γ+D+L

Γ+D
~∇Φ dz, we get

〈hx
I 〉z =− R

4L

Mfix

Ms

∫ ∞

0

f(h, l, d, q)J1(q)

×
[

J0

(qρ

R

)

− J2

(qρ

R

)

cos (2φ)
]

dq , (A15a)

〈hy
I 〉z =

R

4L

Mfix

Ms

∫ ∞

0

f(h, l, d, q)J1(q)J2

(qρ

R

)

sin (2φ) dq ,

(A15b)

〈hz
I〉z =

R

2L

Mfix

Ms

∫ ∞

0

f(h, l, d, q)J1(q)J1

(qρ

R

)

cos (φ) dq,

(A15c)

with f(h, l, d, q) = (1 − e−qh)(1 − e−ql)e−qd/q. Finally
the energy associated with the interaction between the
ferromagnetic layers is given by

UI = −
∫

〈~hI〉
z
· ~mdV . (A16)

Appendix B: Expressions for the free energy as a function

of the amj and a∗

mj

In this section we show the dependence of the energies
as a function of the amj and a∗mj variables.

1. External field energy

The external field energy is simply:

UZ = hx

∑

mj

amja
∗
mj . (B1)
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2. Exchange energy

The exchange energy is composed of two terms, one of

second and the other of fourth order, i.e. UE = U (2)
E +

U (4)
E :

U (2)
E = hE

∑

mj

χ2
mjamja

∗
mj , (B2a)

U (4)
E = −hE

2

∑

m1j1
m2j2

∑

m3j3
m4j4

(am1j1am2j2a
∗
m3j3a

∗
m4j4 + c.c)

× δm1+m2

m3+m4
iEm1j1m2j2m3j3m4j4 , (B2b)

where

iEm1j1m2j2m3j3m4j4 ≡ χm1j1χm2j2Nm1j1Nm2j2Nm3j3Nm4j4

×
∫ 1

0

Jm1+1(χm1j1x)Jm2−1(χm2j2x)

× Jm3
(χm3j3x)Jm4

(χm4j4x)xdx . (B3)

3. Free layer demagnetizing energy

The free layer demagnetizing energy associated with
magnetization on the x-axis and y-axis will be composed
of four terms of orders one, two, three and four respec-

tively, i.e. Uxy
D = Uxy

D
(1)

+Uxy
D

(2)
+Uxy

D
(3)

+Uxy
D

(4)
, whose

expressions are:

Uxy
D

(1)
=

1

2
√
2

∑

j

[(a−2j − a∗2j) + c.c]I2(l)(0,0,j) ,

(B4a)

Uxy
D

(2)
=
∑

m1j1
m2j2

{am1j1a
∗
m2j2

∑

j

×[(δm1−m2

−2 + δm1−m2

2 )i32jm1j1m2j2I
2(l)(0,0,j)

−2δm1−m2

0 i30jm1j1m2j2I
1(l)(0,0,j)]

−1

8
(−1)m1(am1j1 − (−1)m1a∗−m1j1)

×(am2j2 − (−1)m2a∗−m2j2)(δ
m1+m2

−2 I2(l)(m1,j1,j2)

+ δm1+m2

2 I3(l)(m1,j1,j2) + 2δm1+m2

0 I1(l)(m1,j1,j2))} ,

(B4b)

Uxy
D

(3)
= − 1

4
√
2

∑

m1j1
m2j2
m3j3

{(am1j1 − (−1)m1a∗−m1j1)

×am2j2a
∗
m3j3(δ

m1+m2−m3

−2 − δm1+m2−m3

2 )
∑

j

[i42jm1j1m2j2m3j3I
2(l)(0,0,j)]

− 1√
2
(−1)m3(am3j3 − (−1)m3a∗−m3j3)am1j1a

∗
m2j2

×(δm1−m2+m3

−2

∑

j

[i3−m3−2jm1j1m2j2I
2(l)(m3,j3,j)]

−δm1−m2+m3

2

∑

j

[i3−m3+2jm1j1m2j2I
3(l)(m3,j3,j)])} ,

(B4c)

Uxy
D

(4)
=

1

8

∑

m1j1
m2j2

∑

m3j3
m4j4

{(am4j4 − (−1)m4a∗−m4j4)

×(am1j1 − (−1)m1a∗−m1j1)am2j2a
∗
m3j3

(δm1+m2−m3+m4

−2

∑

j

[i4m4+2jm1j1m2j2m3j3I
2(l)(m4,j4,j)]

+δm1+m2−m3+m4

2

∑

j

[i4m4−2jm1j1m2j2m3j3I
3(l)(m4,j4,j)]

+2δm1+m2−m3+m4

0

∑

j

[i4m4jm1j1m2j2m3j3I
1(l)(m4,j4,j)])

−am1j1a
∗
m2j2am3j3a

∗
m4j4

∑

j′j′′

[i3m1−m2j′m1j1m2j2

×(δm1−m2+m3

m4−2 i3m1−m2+2j′′m3j3m4j4I
2(l)(m1−m2,j′,j′′)

+δm1−m2+m3

m4+2 i3m1−m2−2j′′m3j3m4j4I
3(l)(m1−m2,j′,j′′)

−2δm1−m2+m3

m4
i3m1−m2j′′m3j3m4j4I

1(l)(m1−m2,j′,j′′))]} .

(B4d)

The energy associated with the z component of the
magnetization is composed of a term of order two and

another of order four, i.e. Uz
D = Uz

D
(2) + Uz

D
(4):

Uz
D

(2) =
1

4

∑

m1j1j2

(δj1j2 − 2I1(l)(m1,j1,j2))

× (am1j1 + (−1)m1a∗−m1j1)((−1)m1a−m1j2 + a∗m1j2) ,

(B5a)

Uz
D

(4) = −1

4

∑

m1j1
m2j2

∑

m3j3
m4j4

δm1+m2−m3

−m4
am2j2a

∗
m3j3

× (am4j4 + (−1)m4a∗−m4j4)(am1j1 + (−1)m1a∗−m1j1)

× (i4m4j4m1j1m2j2m3j3 −
∑

j5

2i4m4j5m1j1m2j2m3j3I
1(l)(m4,j4,j5)) .

(B5b)

with

I1(l)(l1,j1,j2) =Nl1j1Nl1j2Jl1(χl1j1)Jl1(χl1j2)

×
∫ ∞

0

dq
f(ql)q2J ′

l1
(q)2

l(q2 − (χl1j1)
2)(q2 − (χl1j2)

2)
, (B6a)

I2(l)(l1,j1,j2) =Nl1j1Nl1+2j2Jl1(χl1j1)Jl1+2(χl1+2j2)

×
∫ ∞

0

dq
f(ql)q2J ′

l1
(q)J ′

l1+2(q)

l(q2 − (χl1j1)
2)(q2 − (χl1+2j2)

2)
, (B6b)

I3(l)(l1,j1,j2) =Nl1j1N(l1−2)j2Jl1(χl1j1)Jl1−2(χl1−2j2)
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×
∫ ∞

0

dq
f(ql)q2J ′

l1
(q)J ′

l1−2(q)

l(q2 − (χl1j1)
2)(q2 − (χl1−2j2)

2)
. (B6c)

with f(ql) ≡ e−ql + ql − 1 and

i3ljm1j1m2j2 = NljNm1j1Nm2j2

×
∫ 1

0

Jl(χljx)Jm1
(χm1j1x)Jm2

(χm2j2x)xdx , (B7)

i4ljm1j1m2j2m3j3 = NljNm1j1Nm2j2Nm3j3

×
∫ 1

0

Jl(χljx)Jm1
(χm1j1x)Jm2

(χm2j2x)Jm3
(χm3j3x)xdx .

(B8)

4. Magnetostatic interaction energy between the layers

The magnetostatic interaction energy between the lay-
ers associated with the x component of the free layer
magnetization is composed of a term of order two:

Ux
I
(2) =

1

2l

∑

m1j1
m2j2

[2am1j1a
∗
m2j2 i

3
0jm1j1m2j2δ

m1

m2
I0j(h, l, d)

− (am1j1a
∗
m2j2 + c.c)i32jm1j1m2j2δ

2
m1−m2

I2j(h, l, d)] .

(B9)

The analogous interaction energy associated with the
y component of the free layer magnetizaton is composed
of a term of order one and another of order three, i.e.

Uy
I = Uy

I
(1)

+ Uy
I
(3)

:

Uy
I
(1)

=
1

4
√
2l

∑

j

(a∗2j − a−2j + a2j − a∗−2j)I2j(h, l, d) ,

(B10a)

Uy
I
(3)

= − 1

8
√
2l

∑

m1j1
m2j2
m3j3

δ2m1+m2−m3
i42jm1j1m2j2m3j3

× [(a∗m1j1 − (−1)m1a−m1j1)a
∗
m2j2am3j3 + c.c]I2j(h, l, d) .

(B10b)

The interaction energy associated with z component
magnetization is composed of a term of order one and

another of order three, i.e. Uz
I = Uz

I
(1) + Uz

I
(3):

Uz
I
(1) =

1

2
√
2l

∑

j

(a1j − a∗−1j + a∗1j − a−1j)I1j(h, l, d) ,

(B11a)

Uz
I
(3) = − 1

4
√
2l

∑

m1j1
m2j2
m3j3

δ1m1+m2−m3
i41jm1j1m2j2m3j3

× [(am1j1 + (−1)m1a∗−m1j1)am2j2a
∗
m3j3 + c.c]I1j(h, l, d) ,

(B11b)

with

Inj(h, l, d) = NnjJn(χnj)

∫ ∞

0

dqJ1(q)J
′
n(q)

g(q, h, l, d)

(q2 − χ2
nj)

,

(B12a)

g(q, h, l, d) = (1− e−qh)(1− e−ql)e−qd . (B12b)

Appendix C: Effect of the external field

In addition to results showed in the main text, in this
section we address the effect of the external field on the
normal modes and the critical current. For these calcula-
tions we use a fixed layer of CoFe, which has a saturated
magnetization of Mfix = 1800 emu/cm3 (see Ref. 37).
Fig. 11 illustrates the first three frequencies of the nor-
mal modes as a function of the fixed layer thickness for
different normalized external applied fields. From the
figure we observe that the frequencies increase when we
increase the normalized external field. In Fig. 11(a), the
normalized applied field is hx = 0.1 while in Fig. 11(b)
the normalized applied field is hx = 0.25. In the first case,
we cannot consider a fixed layer thickness bigger than 8
nm, since the magnetostatic field of the fixed layer, that
is opposite to the external applied field, could revert the
magnetization of the free layer. If we increase the normal-
ized applied field to hx = 0.25, the magnetization of the
free layer is more stable than the previous case. There-
fore, it is possible to increase the magnetostatic field due
to the fixed layer by increasing the thickness of the fixed
layer.

0 5 10 15 20
0
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10

15

Γ (nm)

CoFe

hx = 0.1

0 5 10 15 20
0

5

10

15

20

Γ (nm)

CoFe

hx = 0.25

(a) (b)

FIG. 11. Frequencies of the first three normal modes as a
function of the fixed layer thickness. The free layer is made of
permalloy and the fixed layer is made of CoFe. The thickness
of the Cu spacer is D = 5 nm. (a) The applied field is hx =
0.1. (b) The applied field is hx = 0.25.

We also study the dependency of the frequencies of
the first three normal modes on the non-magnetic spacer
thickness. In Fig. 12 we observe that the frequencies
decrease when the non-magnetic spacer thickness di-
minishes. In Fig. 12(a) the normalized applied field is
hx = 0.1 and the the thickness of the fixed layer is Γ = 8
nm. In this case, the minimum value of D is 4 nm. In
Fig. 12(b) the normalized applied field is hx = 0.25 and
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the thickness of the fixed layer is Γ = 20 nm. In this case
the minimum value of D is 2 nm. Therefore, the magne-
tization of the free layer is more stable for hx = 0.25 than
for hx = 0.1, even if we increase the fixed layer thickness
from 8 nm to 20 nm.

0 20 40 60 80 100
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14

D (nm)
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hx = 0.1
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12

14

16

18

20

D (nm)

CoFe

hx = 0.25

(a) (b)

FIG. 12. Frequencies of the first three normal modes as a
function of the non-magnetic spacer thickness. The free layer
is made of permalloy and the fixed layer is made of CoFe.
(a) The thickness of the fixed layer is Γ = 8 nm. (b) The
thickness of the fixed layer is Γ = 20 nm. The horizontal
dashed lines represent the frequencies of the normal modes
without the effect of the fixed layer.

Finally, Fig. 13 illustrates the lowest critical current
density for the first normal mode. We observe that the
critical current increases when the normalized external
applied field increases.

0 5 10 15 20

4.4

4.6

4.8

5.0

5.2

5.4

D=5 nm

D=20 nm

Γ (nm)

CoFe

hx = 0.1

0 5 10 15 20

4.4

4.8

5.2

5.6

6.0

6.4

6.8

D=5 nm

D=20 nm

Γ (nm)

hx = 0.25

CoFe
(a) (b)

FIG. 13. Critical current density necessary to induce self-
oscillations in the lowest normal mode as a function of the
fixed layer thickness, at D = 5 nm (dots) and D = 20 nm
(squares).
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