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Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA 

We present a novel approach and a theoretical framework for generating high order exceptional points of 
degeneracy (EPD) in photonic structures based on periodic coupled resonators optical waveguides (CROWs). 
Such EPDs involve the coalescence of Floquet-Bloch eigenwaves in CROWs, without the presence of gain and 
loss, which is in contrast to the requirement of Parity-Time (PT) symmetry to develop exceptional points based 
on gain and loss balance. The EPDs arise here by introducing symmetry breaking in a conventional chain of 
coupled resonators through periodic coupling to an adjacent uniform optical waveguide, which leads to unique 
modal characteristics that cannot be realized in conventional CROWs. Such remarkable characteristics include 
high quality factors (Q-factor) and strong field enhancement, even without any mirrors at the two ends of a 
cavity. We show for the first time the capability of CROWs to exhibit EPDs of various order; including the 
degenerate band edge (DBE) and the stationary inflection point (SIP). The proposed CROW of finite length 
shows enhanced quality factor when operating near the DBE, and the Q-factor exhibits an unconventional 
scaling with the CROW’s length. We develop the theory of EPDs in such unconventional CROW using 
coupled-wave equations, and we derive an analytical expression for the dispersion relation. The proposed 
unconventional CROW concepts have various potential applications including Q-switching, nonlinear devices, 
lasers, and extremely sensitive sensors. 

I. INTRODUCTION 

Confinement of light in optical microresonators (or 
microcavities) is one of the fundamental processes for  
enhancing optical interactions for various applications  [1,2], 
including  filters [3], sensors [4], optical delay line devices [5], 
optical switching and modulators [6,7], optical buffers [8], 
lasers [9], energy harvesting applications, and in engineering of 
the wave-matter interaction in quantum systems  [10]. Photonic 
crystal cavities  [11], disk [9], toroid  [12], or ring [13] 
microcavities, among others, are typically employed in those 
aforementioned applications requiring high quality (Q)factor. On 
the other hand, cascading a chain of coupled micro resonators, as 
was  introduced in  [14], has stimulated a great interest in 
studying coupled resonator optical waveguides (CROWs) as 
efficient devices for light transport  [5,15,16]. 

Slow-light phenomenon, whereby the group velocity of light 
in optical structures is low (much lower than the velocity of light 
in free space c) [17,18] has spawned many intriguing new 
aspects of optical resonators in which nonlinearities (harmonic 
generation, wave mixing, etc.) [19], and gain/absorption [20] 
among other features can be significantly enhanced. A particular 
kind of slow wave resonance occurs in the vicinity of the 
transmission band edge of periodic structures. For this reason, a 
slow wave resonance is often referred to as a transmission band 
edge resonance [21–23]. At the band edge, degeneracy of 
Floquet-Bloch eigenwaves that coalesce (in both eigenvalues and 
eigenvectors) at a single frequency. Degenerate band edge 
(DBE)  [21,24,25] arises when four Floquet-Bloch eigenwaves 
coalesce in periodic structures supporting multiple polarization 
eigenwaves that are periodically mixed. The DBE condition, 
which is a fourth order eigenwave degeneracy, causes a quartic 
power dependence at the band edge of the dispersion diagram, 

4( ) ( )d dk kω ω ∝ −− where dω  is the DBE angular frequency, k 
is the Floquet-Bloch wavenumber, dk  is the band edge 
wavenumber. Hence the DBE condition is accompanied by a 
significant reduction in the group velocity of waves and 
improvement in the in the local density of states. DBE has 
stimulated research in many interesting applications such as 
small antennas  [26], low-threshold lasing and optical 
switching [25,27], and efficient high power microwave 
generation [28,29].  

Furthermore, another important point of degeneracy is the 
stationary inflection point (SIP), which is a third order 
degeneracy  [30] and in its proximity the dispersion relation 

follows s
3( ) ( )sk kω ω ∝ −−  where sω  is the SIP angular 

frequency, k is the Floquet-Bloch wavenumber, sk  is the SIP 
Floquet-Bloch wavenumber. Slow light associated with the SIP 
shows  promising  characteristics  [31] potentially useful for 
many applications. In general, degeneracy conditions are exact 
mathematical condition and are very sensitive to losses. Here we 
demonstrate an effective approach for observing high Q-factors 
even in the presence of losses. 

In view of this background, the pervasive concept of 
exceptional points (EPs) has emerged to describe points of state 
eigenvector coalescence in coupled circuits, resonators and 
waveguides with gain and loss. The notion of Parity-Time (PT)-
symmetry is widely used to conceive optical component and 
lasers [32,33] having spatially-symmetric distributions of gain 
and loss. These features occur in strictly non-Hermitian systems, 
which means that the local evolution of waves in the coupled 
system is described by a non-Hermitian matrix. Two kinds of 
systems have been investigated in the contest of PT-symmetry: 
(i) systems in which EPs are observed when describing 



eigenstates evolution in time (e.g., coupled resonators with loss 
and gain) [34–36], and (ii) systems in which EPs are observed 
when describing eigenwaves evolution in space, in other words, 
evolution of eigenwaves in a specific direction (e.g., multimode 
waveguides with loss and gain balance) [37–40]. In both kinds of 
systems, the EP is induced thanks to the presence of gain and/or 
loss. In this paper, instead, analogous characteristics of EPs are 
found in lossless periodic structures, such EPs include the RBE, 
the DBE, and the SIP. Nonetheless, the evolution equations of 
locally-coupled waves in lossless uniform waveguides constitute 
Hermitian (i.e. diagonalizable) matrices. The EPs induced in 
lossless/gainless periodic structures are due to periodicity thanks 
to waves that can be periodically mixed. Indeed, EPs induced in 
both PT-symmetry systems and systems without loss or gain, are 
similarly described with a system matrix similar to a Jordan 
block, that corresponds to the coalescence of multiple 
eigenvectors (besides the coalescence of eigenvalues), as it will 
be shown in Sec. IV. 

From here onward, we denote the EP that is associated to an 
eigenwave coalescence by the acronym EPD to avoid 
ambiguities since the term “exceptional” may have different 
meanings in different disciplines, and indeed here we investigate 
points of degeneracy. Therefore, the EPD is defined here as the 
point in the parameter space of the periodic CROW at which a 
degeneracy occurs, i.e., two or more physical wave eigenvectors 
coalesce. 

In this paper, we reveal novel properties of a CROW that is 
engineered to exhibit EPDs of various orders. Our proposed 
theory of CROW with modal degeneracies leads to the 
observation of unconventional performance in terms of Q-factors 
which are suitable for many applications such as lasers, high 
sensitive sensors, Q-switching devices, to name few. A great 
advantage of such CROWs is that they can be easily fabricated 
using optical lithography and possess high Q-factors compared 
to prior implementations of optical waveguides with DBE as 
those in  [27,41,42]. Our paper shows for the first time the DBE 
condition in CROWs, as well as the SIP. We also demonstrate an 
unconventional scaling of Q-factor and we also investigate this 
scaling in the presence of losses.  

This paper is organized as follows. First, in Sec. II we 
describe the proposed CROW coupled to the straight waveguide 
shown in Fig. 1. Then we detail the transfer matrix formalism 
adopted for the CROW system in Sec. III. In Sec. IV, we analyze 
the Floquet-Bloch eigenwaves of the proposed CROW and 
present the mathematical description of all possible EPDS that 
may arise in such a guiding structure. Then in Sec. V we 
introduce an analytic expression of the dispersion relation of the 
proposed CROW unit cell shown in Fig. 2 and the necessary 
conditions for such unit cell to exhibit a DBE. In Sec. VI we 
show with examples the dispersion diagram of various EPDs that 
manifest in the proposed CROW. Finally, in Sec. VII we show 
the transfer function behavior of such CROW near various EPDs 
and we briefly describe the unusual properties of the loaded Q-

factor of CROW cavities with EPDs even in the presence of 
losses.  

II. GEOMETRY OF PROPOSED CROW 

In this paper, we investigate the emergence of high order 
EPDs in CROWs shown in Fig. 1(a) where the straight 
waveguide provides an additional coupling mechanism. It 
consists of a chain of coupled ring resonators, with outer radius 
R, side-coupled to a uniform optical waveguide. We define the 
field coupling coefficient (also referred to as cross-coupling 
coefficient, see Ch.2 [43]) between two contiguous rings or 
between the waveguide and a ring as κ which quantifies how 
efficiently the field leaks from one to the other (see definitions 
in [44]). The coupling is assumed to occur at discrete points of 
closest proximity (denoted hereafter as the coupling points), 
between adjacent rings and between each ring and the straight 
waveguide as in Fig. 1. For the sake of generality, the field 
coupling coefficients between the waveguide 

 and the rings may change from pair to pair of adjacent rings  as 
1κ  and 2κ  while the rings coupling coefficients are alternating 

between 1κ′ and 2κ′ , respectively (see Fig. 1). Having 1κ  ≠ 2κ   
and 1κ′  ≠ 2κ′  enables the occurrence of the third order degeneracy 
(the SIP). We also define a corresponding transmission 
coefficient at the coupling points denoted by τ. In our analysis 
we assume, for simplicity without loss of generality,  that both κ 
and τ are real positive values, see pages 120-122 in [45] or 
Ref. [46]. Also, we are assuming lossless coupling at all the 
coupled sections [15], i.e.  

 

FIG. 1. (a) The proposed CROW is consisting of a chain of coupled ring 
resonators optical waveguides of radius R side coupled to a rectangular straight 
waveguide. The field coupling coefficients between the straight waveguide and 
the rings are alternating between 1κ and 2κ , and the field coupling coefficients 
between the coupled ring resonators themselves are alternating between 1κ ′  and

2κ ′ . The CROW is periodic in the z-direction with a period 4d R= . (b) the unit 
cell of this CROW with the electric field wave amplitudes defined at the cell 
boundaries. z0 is the coupling point between the waveguide and the ring. 



 2 2 1κ τ+ =   (1) 

The waveguides and the rings support eigenwaves whose 
local phase propagation in the positive/negative z-direction is 
represented by  0ink ze±  and the time convention i te ω−  is 
implicitly assumed. Accordingly, phase propagation (or 
attenuation) in the waveguide as well as in the rings is modeled 
by their effective refractive index, namely n which is defined as 
the ratio between the propagation wavenumber k  of the 
propagating eigenwave normalized by the wavenumber in free 
space 0 /k cω= . Moreover, we assume that only a single 
transverse eigenwave can be excited inside the rings, in each 
direction, as well as in the waveguide, and we neglect higher 
order modes interactions. In addition, we assume that ring 
resonators do not couple waves of different polarizations  [43]. 
Also, we assume that the effective refractive indices n are 
frequency independent, justified by the narrowband frequency 
response investigated here. 

The unit cell of the considered periodic CROW is shown in 
Fig. 1(b) and the CROW’s period is 4d R= , where R is the 
outer radius of each ring resonator. We also consider the 
simplified version with period 2d R=  in Fig. 2 that is able to 
provide the fourth order degeneracy. Note that the coupling 
between adjacent rings is achieved with the small gaps shown in 
the figure, however when we evaluate the total length of the 
period, we neglect such gap lengths as was done in Ref. [15]. As 
an example, this CROW can be fabricated using silicon on 
insulator (SOI) technology [47,48]. All geometrical dimensions 
pertaining to the geometry in Fig. 1 are given in Appendix A; for 
the cases investigated in this paper.  

III. TRANSFER MATRIX FORMALISIM OF CROWS 
WITH EXCEPTIONAL POINTS OF DEGENERACY 

Analysis of a CROW can be carried out utilizing tight-
binding methods [49], transfer matrices [15], or temporal 
coupled-mode theory [50]; aside from full-wave simulations. In 
particular, the transfer matrix (T-matrix) method [15,51] is the 
most convenient and flexible as it naturally allows for the 
analysis of finite, lossy and dispersive CROWs with strong 
coupling coefficients that are not necessarily identical for all 
resonators. Indeed, the transfer matrix is often employed in 
analysis of layered media [23] as well as investigation of points 
of degeneracy [21,25]. We adopt the transfer matrix formulation 
for analyzing the modal behavior as well as the resonance 
properties of the proposed CROW.  

We consider that each waveguide is able to support a single 
traveling wave along the +z-direction and by reciprocity also an 
analogous travelling wave along the −z-direction. These 
waveguides have uniform cross section and therefore their 
supported eigenwaves have fixed field distributions. In the 
straight waveguide, the fields’ variation along the +z and −z-
directions is described by the electric field wave amplitudes 

0
1 ( ) win k zE z e++ ∝  and 01 ( ) win k zE z e−− ∝ , respectively, where wn  

is the effective refractive index of the straight waveguide. In the 

rings, there are four electric field wave amplitudes, 2 ( )E z+ , 

3 ( )E z+ , 2 ( )E z− , and 3 ( )E z−  as schematically shown in Figs. 1(b) 

and 2. 2 ( )E z±  are the wave amplitudes in the upper half ring 
representing waves propagating in opposite directions, and 
similarly 3 ( )E z±   are the electric field wave amplitudes 
propagating in the lower half ring (closer to the waveguide).  

We then define the electric field wave amplitudes as three-

dimensional vectors 1 2 3( ) ( ) ( ) ( )
T

z E z E z E z+ + ++ ⎡ ⎤= ⎣ ⎦E  and 

1 2 3( ) ( ) ( ) ( )
T

z E z E z E z− − −− ⎡ ⎤= ⎣ ⎦E  to represent waves 

propagating in the + and – z-directions, and the superscript T 
stands for transpose. It is further convenient to represent electric 
field wave amplitudes at any point z using the six-dimensional 
state vector 
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 which describes how  electric waves evolve along the z-
direction, similar to the formalism in  [21,25]. Accordingly, the 
wave evolution between any two points z1 and z2 (see for 
example Fig. 1(b)) is governed by the simple translation property  

 2 2 1 1( ) ,( ) ( )z z z z=Ψ ΨT   (3)  

where 2 1T( , )z z  is the 6×6 transfer (T)-matrix that translates the 
state vector from point z1 to z2. It is interesting to observe the 
analogy of this formalism with the coupled transmission line 
approach developed in  [52]. This is also a generalization of the 
coupled-mode formalism developed for conventional CROW 
 [14,15]. It is the subject of the subsequent analysis to obtain 

2 1( ),z zT for any z2 and z1. 

Note that the structure is reciprocal; therefore, the T-matrix in 
(3) for any z1 and z2 has a determinant that equals unity, i.e.,  

[ ]2 1,det ( ) 1z z =T . In other words the eigenvalues of 2 1( ),z zT  

 
FIG. 2. The CROW unit cell design that supports a DBE and an RBE. The 
structure is periodic in the z-direction with period 2d R= . The field coupling 
coefficient between the waveguide and the resonators chain is 1κ while the field 
coupling coefficient between the coupled ring resonators is 1κ′ . The figure is 
also showing the orientation of the electric field wave amplitudes at the cell 
boundaries defined by the dashed lines. 



must come in reciprocal pairs  [21]. Moreover in lossless 
structures, the T-matrix is J-unitary (as explained in   [21,30]), 
meaning that 1 † 1

2 1 2 1( , ) ( , )z z z z− −=T J T J  where the dagger 

symbol †  denotes the complex-conjugate transpose operation, 
and the J  matrix is given in Appendix B.  

Scattering matrix (S-matrix) method. An alternative yet very 
ubiquitous approach for analyzing CROWs is the use of the 
scattering matrix or the S-matrix [53]. It is defined by relating 
the outgoing (or scattered) fields at specific boundary planes 
defined at z1 and z2 to the incoming (or incident) fields on the 
same planes defined at z1 and z2 as in Fig. 1(b). The 6×6 S-matrix 
is expressed in terms of the electric field wave amplitudes as [53] 

 1 1
1 2

2 2
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( , )
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z z
z z
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+ −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

E E
S

E E
 (4)  

From reciprocity the S-matrix must be symmetric, and for 
lossless structures (i.e. without dissipative or scattering/radiation 
losses) the S-matrix must be unitary, i.e. † =SS 1  where 1  is 6×6 
identity matrix [54]. 

We also use the well-known generalized beam splitter 
relations  [55,56] to relate the fields at the coupling points. For 
example, let us consider the point 0z   between a ring and the 
waveguide as the point where coupling occurs, see Fig. 1(b). Let 
us define 0z−  and 0z+  to be the z-coordinates just before and just 
after a coupling point at 0z , respectively, between the 
waveguide and the ring resonator. Accordingly, we relate the 
state vector fields just before the coupling point 

0 01 3( ), ( )E z E z+ − + −  to those just after the coupling point 

1 0 3 0( ), ( )E z E z+ + + +  as 
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 (5)  

where 2τ and 2κ  are the transmission and coupling coefficients, 
respectively representing the coupling at point 0z .  

It is intuitive in the proposed CROW to write the wave 
amplitude evolution equations describing a unit cell using the S-
matrix. We proceed by relating the fields at the boundaries of the 
unit cell, namely at point z and z+d, (d=4R) as in Fig. 1(b). For 
simplicity, we divide the unit cell into two segments each of 
length 2R . The two segments are similar in construction; the 
first segment depends on 1κ  and 1κ′  whereas the second segment 
depends on 2κ and 2κ′  as seen in Fig. 1(b). Note that the wave 
amplitudes at the segment boundaries are defined on the left side 
of the coupling points; meaning that 0( 2 ) ( )z R z−+ =Ψ Ψ  as can 
be seen in Fig. 1(b). To determine the scattering matrix of a unit 
cell, we first calculate the scattering matrix of the individual 
segments 1 and 2 defined in Fig. 1(b), then we determine their T-
matrices and finally we combine them. Consequently, we write 

the 6×6 S-matrix 1S of the first segment of the unit cell in Fig. 
1(b) as 
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12 22
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where the superscript T denotes the transpose operation, and 
each of the submatrices has dimensions of 3×3. The submatrices 
in (6) are expressed as  
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where ri
r

k Re π=Ω is the phase propagation along half of the ring 

circumference, 2 wk
w

Rie=Ω  is the phase propagation inside the 
uniform straight waveguide for a distance 2R. Here, kr is the 
propagation wavenumber in the waveguide making the ring 
resonators and it is written as 0rrk n k=  where rn is the effective 
refractive index of that waveguide. Similarly, kw is the 
propagation wavenumber in the straight waveguide expressed as 

0w wk n k= . In the same manner one can derive the scattering 
matrix 2S  related to segment 2 in Fig. 1(b) by replacing 1κ with

2κ , 1κ′  with 2κ′ , 1τ with 2τ , and 1τ ′  with 2τ ′ . 

Using the relation between the S-matrix and the T-matrix 
(Eq. (B2) in Appendix B), we calculate 1 ( 2 , )z R z≡ +T T  and 

2 ( 4 , 2 )z R z R≡ + +T T  as the T-matrices of segments 1 and 2, 

respectively, from  1S  and 2S  (the sub matrices of 1T  are given 
in(B3), Appendix B). Finally, we calculate the unit cell T-
Matrix, denoted by UT ,  simply as 

 U 2 1=T T T   (10) 

The state vector evolves across a unit cell as 

 U( ) ( )z d z+ =Ψ T Ψ   (11) 

where d is the period of the CROW. To find periodic solutions of 
the state vector in the CROW that behave as ikde  where k is the 
complex Floquet-Bloch wavenumber, the state vector )(zΨ  must 
follow the evolution equation 

 ( ) ( ), ikdz d z eζ ζ+ = ≡Ψ Ψ    (12) 



 Hence, using (11) and (12) we write the eigensystem equation   

 U ( ) ( )z zζ= ΨT Ψ  (13) 

whose eigenvalues nik d
n eζ ζ= ≡ , with 1, 2,..., 6n =  are 

evaluated by solving the dispersion equation  

 U( , ) det[ ] 0D k ω ζ≡ − =1T   (14) 

for complex k  [21,52]. Solutions of (14) produce eigenvalues nζ  
associated with regular eigenvectors nΨ  that are linearly 
independent if UT  is diagonalizable. In the proposed CROW, 
there are six modal (Floquet-Bloch) wavenumbers of the 
periodic structure, and if 1 2 3, , andk k k  are solutions, reciprocity 
implies that also 1 2 3, , andk k k− − −  are solutions (i.e., if  ζ  is an 

eigenvalue of UT  then 1ζ −  is another eigenvalue). This 
property is useful to determine the number of possible 
degenerate solutions (that have equal wavenumbers). In this 
paper we find it is convenient to represent the wavenumbers in 
the fundamental Brillouin zone (BZ) that is defined here within 
the range from kd = 0 to 2π.  Accordingly, the center of the BZ is 
defined at k = π/d. Because of periodicity solutions associated to 
wavenumbers −k1, −k2 and −k3 have also Floquet harmonics 
−k1+2π ⁄d, −k1+2π ⁄d, and −k1+2π ⁄d in the fundamental BZ. 

We construct the diagonal 3 3×  matrix k  of the Floquet-
Bloch wavenumbers as  

 
1

2

3

0 0
0 0
0 0

k
k

k

⎛ ⎞
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⎜ ⎟
⎝ ⎠

k  (15)  

We also use Λ  as a 6 6×  diagonal matrix whose elements 

are the eigenvalues nik de  via 
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0
Λ
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where 0  and 1  are the 3 3×  zero and identity matrices 

respectively. Therefore, it follows that the transfer matrix UT , 
when diagonalizable, is written as 

 1
U

−=T V Λ V  (17) 

where V  is a 6 6×  matrix that represents a non-singular 
similarity transformation that diagonalizes UT , and is computed 
using the six regular normalized eigenvectors of UT  as 

1 2 3 4 5 6| | | | |= ⎡ ⎤⎣ ⎦V Ψ Ψ Ψ Ψ Ψ Ψ . This 
diagonalization and the existence of six independent 
eigenvectors is only possible if there exists a complete basis of 
regular eigenvectors of UT . This is not valid anymore at a 
degenerate condition as described in the following. 

IV. EXCEPTIONAL POINTS OF DEGENERACY IN 
CROW 

The aforementioned analysis is valid unless an EPD emerges. 
At an EPD, and only there, the unit cell T-matrix UT  is similar 
to a Jordan Block or a matrix containing Jordan Blocks, 
analogously to the cases of stratified media and photonic crystals  
in Refs. [21,57]. At the EPD, the algebraic multiplicity of an 
eigenvalue of (13) (i.e., the number of identical roots of (14)), is 
higher than its geometrical multiplicity (the number of 
independent eigenvectors associated to that eigenvalue). 

Note that the evolution equations of the wave amplitudes in 
the CROW constitutive waveguides can be described with first 
order differential coupled-wave equations that can be written in a 
Hermitian form (in the absence of gain and loss), as 
conventionally done in coupled-mode theory [44]. Therefore, 
this lossless system can be locally referred to as Hermitian (in 
the context of coupled-wave propagation [44,58]), even though 
the T-matrix (transfer matrix) is not Hermitian. Here we 
emphasize that the EPD induced through periodicity or through 
gain and loss balance, as in the PT-symmetry case, follow  the 
same mathematical fundamental theory of degenerate operators 
(see Ch. 2 in  [59]).  

 We study the evolution of guided eigenwaves in space (i.e., 
along the z-direction) at and near EPDs.  We propose a CROW 
with EPDs, in absence of losses and gain, and investigate their 
occurrence. The eigenvalue and the generalized 
eigenvectors [21,30] at the EPD are found by solving  

 ( )PU E D ( ) , 1, 2, , .q
q z q mζ− = =T 1 Ψ 0 K   (18) 

Here qΨ  is a generalized eigenvector and m is the order of 
degeneracy, i.e., the number of coalescing eigenvectors at the 
EPD, hence also corresponding to the multiplicity of the 
eigenvalues at the EPD EPDζ . Note that at least one regular 
eigenvector is always present in (18), the other m−1 ones are 
generalized eigenvectors. Solutions represented in terms of 
generalized eigenvectors algebraically diverge along the z-
direction as 1( ) (0)q ikz

qz z e−∝Ψ Ψ  with 1, 2,..., .q m=  (see Ch. 7 
in [60]). Note that m in our CROW can only take the values of 2, 
3, 4, and 6 due to symmetry of the Floquet-Bloch wavenumber 
solutions (reciprocity). Such points of degeneracy occur in the 
spectrum of UT  by varying system parameters, like frequency 
for example, or the coupling parameters. An important feature of 
an EPD, is that perturbation of such mathematical condition 
results in a fractional power series (or Puiseux series) of the 
resulting eigenvalues in the perturbation parameter  [61]. In other 
words, if we assume that  the transfer matrix UT , that is a 
similar to a matrix containing at least a Jordan block at an EPD, 
is perturbed as U U( ) (0)ε ε≅ + ΔT T , where ε  is a perturbation 
parameter and Δ  is a constant perturbation matrix, the resulting 



eigenvalues ζ  of UT  will obey the fractional power expansion 
in the perturbation parameter ε  as 

  1/ 2/
EPD 1 2

m ma aζ ζ ε ε= + + +L   (19) 

The same perturbation property is found also in the context of  
EPDs induced in systems with balanced gain and loss [36].  

Indeed, EPDs induced either by periodicity in 
lossless/gainless systems or by gain and loss balance are two 
realizations of the same fundamental concept related to 
eigenvector coalescence and  perturbation of a Jordan block in a 
system matrix, see Ch. 2 in  [59]. 

In the following subsections, we will show the mathematical 
construction of four different types of degeneracies that may 
emerge in the dispersion diagram of the proposed CROW.  

A. Second order degeneracy: m=2 

In the given CROW system three scenarios could occur to 
develop a second order EPD. At the second order EPD, the unit 
cell T-matrix UT  contains at least one degenerate eigenvalue 
and eigenvector (i.e. at least two of the six eigenvalue solutions 
are equal) while the remaining four eigenvalues are in general 
distinct (unless they also experience another degeneracy). As 
such, at a given frequency, a CROW can exhibit one, two or 
even three second order EPDS. The simplest case is when UT  is 
similar to a matrix that contains one Jordan block, hence it is 
casted as  

 1
U

1
,

0

g

g gg

β ζ

ζ
−

⎡ ⎤ ⎛ ⎞
⎢ ⎥= = ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

Λ 0
T V V Λ0 Λ  (20) 

where V , in this case, is a 6×6 matrix composed of five column 
regular eigenvectors in addition to a generalized eigenvector 
corresponding to degenerate eigenvalue solutions gζ  with a 

multiplicity of two. Furthermore, exp( )g gik dζ =  where kg is 
the Floquet-Bloch wavenumber of the second order degeneracy, 
and 

g
Λ  is a 2×2 Jordan block shown in (20). βΛ  is diagonal

4 4×  matrix with the four remaining eigenvalues. If 
g

Λ  is the 

only Jordan block in UT  then 1gζ = ±  meaning that the 
degeneracy occurs either at the edge ( 0gk = ) or at the center (

/gk dπ= ) of the BZ.  

On the other hand, another scenario could manifest when UT  
is similar, at a given frequency, to a matrix having two Jordan 
blocks. This means that there exists two second order EPDs at 
that frequency, then UT  is casted as  

 ,1
U ,

,

1
,

0

b c
b b c

b c

c

γ
ζ

ζ
−

⎡ ⎤
⎢ ⎥ ⎛ ⎞⎢ ⎥ ⎜ ⎟= =⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎝ ⎠
⎢ ⎥⎣ ⎦

Λ 0 0

T V 0 Λ 0 V Λ

0 0 Λ

  (21) 

where
b

Λ  and 
c

Λ  are two Jordan blocks corresponding to two 

pairs of degenerate eigenvalues bζ  and cζ  respectively, each 
pair is associated a two second order EPD, one at bk  and the 

other one at ck . The remaining 2×2 block 
γ

Λ in (21) is a 

diagonal matrix that has two eigenvalues that are not related to 
the degeneracies. Note that if the two 2nd order EPDs occur at the 
band edge or center, then bζ  and cζ  must take values of either 
1 or −1. Otherwise, the two 2nd order EPDs occur inside the BZ, 
then 1 / 1cbζ ζ ≠ ±=  (this case will be shown later on in Sec. V, 
and in Fig. 3). 

Furthermore, the last possible scenario is when three second-
order degeneracies occur in  UT  , all at a given frequency. Then 

γ
Λ  in (21) is also a 2×2 Jordan block and that could only 

happen if the eigenvalues 
γ

Λ  are such that  1γζ = ±  i.e., they 

are either at the BZ edge or center.  

B. Third order degeneracy: m=3 

When a third order EPD occurs, UT  contains two sets of 
degenerate eigenvalues of algebraic multiplicity 3 and 
geometrical multiplicity 1, denoted by sζ  and 1

sζ − . The T-
matrix UT  is represented as  
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1 1
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(22) 

where V  is composed of two regular eigenvectors and four 

generalized eigenvectors. The matrices 
s
+Λ  and 

s
−Λ  are 3×3 

Jordan blocks and each degenerate eigenvalue solution, sζ  or 
1

sζ − , has algebraic multiplicity of 3 and geometrical multiplicity 
1. Therefore, there are a regular eigenvector and two generalized 
eigenvectors associated to each eigenvalue. Here exp( )s sik dζ =

and ( )1 exps sik dζ − = − . Indeed, because of reciprocity that 
implies symmetries in the dispersion diagram, if sk is a third-
order EPD, then also sk−  must be. In this paper, we show them 
at sk  and 2 /sk dπ− + . The third order degeneracy is often 
called SIP resulting in an inflection point in the dispersion curve. 



As we discuss in the next sections and in Appendix C, we 
anticipate that the SIP can be obtained with the unit cell in Fig. 
1(b). However, it cannot be obtained using a CROW with a 
simpler unit cell shown in Fig. 2. 

C. Fourth order degeneracy: m=4 

When a fourth order EPD occurs, UT  contains four 
degenerate eigenvalues (i.e. four of the six eigenvalue solutions 
are equal) while the remaining two eigenvalues can be distinct or 
degenerate. In this case UT  is represented as  

1
U

1 0 0
0 0 1 0

,
0 0 10
0 0 0

d

d
d d

d
d

β

ζ
ζ

ζ
ζ

−

⎛ ⎞
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Λ
T V V Λ
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where V  is composed of three eigenvectors and three 
generalized eigenvectors if there exists only a 4th order EPD.  
The eigenvalue exp( )dd ik dζ =  has algebraic multiplicity of 4 
and geometrical multiplicity of 1. Therefore, there are one 
regular eigenvector and three generalized eigenvectors associated 
to dζ . In (23), the matrix 

d
Λ  is a 4×4 Jordan block that 

contains the four degenerate eigenvalues. Furthermore, 
β

Λ  is a 

2 2×  diagonal matrix with the two remaining eigenvalues, that 
are not affected by the fourth order degeneracy, associated to two 
other eigenvectors. In terms of wavenumbers, and because of 
reciprocity the fourth order degeneracy has to occur at both dk  
and dk− , and in this paper we show what happens at dk−  by 
looking at the higher Floquet harmonic at 2 /dk dπ− + . Now, 
the only way to have both wavenumbers dk  and dk−  of 
multiplicity four (we recall that the total dimensionality of the 
system is 6), is that dk  must be either 0dk =  or  /dk dπ= , 
i.e., either at the edge or center of the BZ, respectively, so that 

exp( ) exp( )d dd ik d ik dζ = = − . In other words, this fourth order 
degeneracy cannot occur at other points of the BZ in a reciprocal 
system.  It is also possible that the block 

β
Λ experiences another 

degeneracy of order 2 at the same frequency. 

As we show in the next section, we anticipate that the DBE can 
be obtained with the simpler unit cell in Fig. 2. 

D. Sixth order degeneracy: m=6 

When a sixth order EPD occurs, UT  contains six degenerate 
eigenvalues, i.e. all the six eigenvalues of (13) are equal, i.e., the 
algebraic multiplicity is 6 but the geometrical multiplicity is 1. 
Therefore, the T-matrix UT  is represented as  
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

,
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

e

e
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⎝ ⎠

T V Λ V Λ (24) 

where V  is now composed of a single regular eigenvector and 
five generalized eigenvectors corresponding to degenerate 
eigenvalue solutions exp( )e eik dζ =  where ke is the wavenumber 
at 6th order EPD and 

e
Λ  is 6×6 Jordan block. The sixth order 

degeneracy has never been investigated in an optical platform 
and it is the highest order of degeneracy that can be achieved in 
the configuration shown in Fig. 1, i.e., associated to a system 
vector with dimension 6. In terms of wavenumbers and because 
of reciprocity, the system has to experience an EPD of order six 
also at ek−  (hence 2 /ek dπ− + ). It follows that ek  must be 
either 0ek =  or  /ek dπ= , i.e., either at the edge or center of 
the BZ, respectively. In other words, this sixth order EPD cannot 
occur at other points of the BZ in this reciprocal system. 

V. ANALYTIC DIPSERSION RELATION FOR CROWS 
WITH DBE  

In this section, we show that the proposed CROW is able to 
support EPDs of various orders through proper tuning of the unit 
cell parameters. Importantly, we derive analytical formulas for 
the dispersion relation of the CROW as well as the necessary 
conditions on the CROW parameters to exhibit a DBE (fourth 
order EPD). First, let us consider a CROW design where the 
period comprises a single ring, i.e., the coupling coefficients 
from ring to ring are all identical (i.e., 1 2κ κ′ ′= ) as well as the 
coupling coefficients between rings and the straight waveguide 
(i.e., 1 2κ κ= ) as shown in the unit cell depicted in Fig. 2. In this 
case the corresponding CROW period is d=2R. This simplified 
geometry is also able to support the DBE. 

The general k ω−  dispersion equation is obtained from (14), 
for the simplified unit cell in Fig. 2. After some manipulation 
(14) is casted in the analytic form  

( , ) ( , ) ( , ( , ) 0)D kk F k S kω ω ω ωΓ− ==  (25) 

where k is the Floquet-Bloch wavenumber and ω is the angular 
frequency. The three functions in (25) are:  
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Recall that for a lossless coupling one has 2 2 1τ κ+ = , with τ
and κ  being real positive numbers, though (25)-(27) are valid 
also for the more general case where τ and κ are complex. For 
the trivial case when the coupling coefficient 1 0κ =  and 1 1τ = , 
then 0Γ =  in (24,26); and for this trivial case the dispersion 
equation (25) is casted simply as 

1 0( , ) ( , ) ( , ) 0D k F k S kκω ω ω= = = , which is the dispersion 

relation of  the two decoupled systems: the conventional 
CROW [15] made of a chain of coupled rings (and not coupled 
to the straight waveguide) and the isolated straight waveguide. 
Indeed, the function ( , )F k ω  represents the dispersion relation of 
the straight waveguide alone, i.e., ( , ) 0F k ω = , that would 
generate the waveguide wavenumbers w wk n ck ω± ≡ ±= ; 
hence wk  is  the wavenumber of the eigenwaves in the isolated 
straight waveguide and wn  is the associated effective refractive 
index. Furthermore, the dispersion relation of the conventional 
CROW [15] is ( , ) 0S k ω = . Such conventional CROW cannot 
develop degeneracies with order higher than two. This fact is 
evident from its dispersion relation as the function ( , ) 0S k ω =  
cannot have roots for the eigenvalue ζ  with multiplicity greater 
than 2, which is necessary to have a degeneracy higher than a 
second order.  

Hence, the only degeneracy condition in the conventional 
CROW [15] is associated to the eigenvalue equation at the 
second order EPD angular frequency, called gω , that is 

( )22 2( , ) 0g gS k ω ζ ζ= − = , in which 1gζ = ±  are the two 

eigenvalues with 2nd order degeneracy that must occur either at 
the BZ edge or center. The reason behind this limitation in a 
simple conventional CROW is that the chain of coupled 
resonators does not allow coupling between waves propagating 
in opposite directions inside each ring. In addition, there is a 
symmetry between waves propagating in the upper and lower 
halves of each ring. The occurrence of more general EPDs 
require coupling of waves traveling in opposite directions that is 
achieved by symmetry breaking of the conventional CROW. We 
define symmetry here with respect to a plane perpendicular to the 
plane that contains the rings, which cuts all the rings of the chain 
in half as shown with a horizontal dashed line in Fig. 1(a).  An 
effective symmetry breaking is achieved through side coupling 
to the additional straight waveguide that allows for non-trivial 
mixing of counter propagating eigenwaves in the CROW as 
shown next. 

Now let us introduce a non-vanishing coupling coefficient 1κ  
that represents the strength of coupling between the chain of 

resonators and the straight waveguide (Fig. 2). In this case 
( , ) 0k ωΓ ≠ , and rearranging (25) as ( , ) ( , ) ( , )F k S k k ωω ω = Γ , 

it is apparent that ( , )k ωΓ  represents the coupling between the 
individual dispersion relation of the conventional CROW 
without waveguide and the straight waveguide. This introduces a 
structural symmetry breaking and leads to coupling of 
eigenwaves of the CROW, thus higher order EPD can be 
attained.  As we show next, the dispersion equation ( , ) 0D k ω =  
in (25) can have solutions representing a fourth order EPD; as 
well as a second order EPD that is not necessarily at the edge or 
at the center of the Brillouin zone.  

Necessary conditions for DBE: The characteristic dispersion 
equation of the system at the fourth order EPD (i.e., the DBE) 
frequency can be casted in simple way because the CROW has 
four degenerate Floquet-Bloch eigenwaves with four coincident 
eigenvalues, i.e., the characteristic equation must have the 
following term 4( )dζ ζ−  where dζ  is the DBE eigenvalue 
occurring at the DBE angular frequency dω . Moreover, the 
CROW has also two other eigenwaves that are independent of 
the four degenerate eigenwaves at the DBE and we assume that 
their wavenumbers are kβ  and kβ− . Therefore, the 
characteristic dispersion equation must also have the term 

( )( )jk d jk de eβ βζ ζ−− −  which is simplified into 

2 2cos(( ) 1)dkβζ ζ− + . Finally, at the frequency at which the 
forth order EPD occurs, the characteristic dispersion equation 
that comprises all the eigenvalues of the system at and only at 
the DBE angular frequency dω  must take the form 

  ( )( )42 2cos(, 0( ) ) 1 ddD k dkβω ζ ζ ζ ζ−= − + =   (28) 

The formula (28) and the general dispersion equation (25) are 
polynomials of order 6 in the variableζ . By equating the 
coefficients of these two polynomials, we obtain three equations 
governing the various CROW parameters that must be satisfied 
(necessary but not sufficient) in order for a DBE to manifest: 
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where the ±  sign corresponds to the existence of the DBE either 
at the center of BZ (i.e. /dk dπ=  or 1dζ = − ) or at the edge of 
BZ (i.e. 0dk =  or 1dζ = ). Even though the values of the 
lossless CROW parameters (i.e., 1 1 2 2, , , , , andr wn n Rκ τ κ τ ) are 
real and some are bound within certain range, e.g., 

1 1 2 20 , , , 1κ τ κ τ< < , infinitely many points in the parameter 
space of the CROW whose unit cell is in Fig. 2 can be found 
where a DBE is manifested. However, the necessary and 



sufficient condition to develop a DBE is that four eigenvectors of 
(13) coalesce. 

On the contrary, as demonstrated in Appendix C there are no 
points in the parameter space of the lossless CROW unit cell in 

Fig. 2 that can lead to an SIP. Therefore, for an SIP to manifest, 
the more general unit cell of the CROW shown in Fig. 1(b) must 
be considered.  

VI. EXAMPLES OF DISPERSION RELATION NEAR 
EPDs IN CROW 

In this Section, we show how the proposed CROW side 
coupled to a straight waveguide can exhibit degeneracies of 
order 2, 4 and 3, called RBE, DBE and SIP, respectively. For the 
RBE and DBE cases we consider a geometry as in Fig. 2 with 
parameters given in Appendix A (the same for both cases). For 
the SIP we consider the geometry in Fig. 1(b) with parameters 
given in Appendix A. 

Regular Band Edges (RBE). The CROW constructed from the 
unit cell depicted in Fig. 2, with period d = 2R, develops a 
second order degeneracy, also called regular band edge (RBE), at 
the center of the BZ (i.e., 1gζ = − ) marked with a red circle in 
the CROW Floquet-Bloch wavenumber dispersion diagram 
depicted in Fig. 3. Note that this plot shows only the propagating 
eigenwaves of the dispersion diagram in a lossless CROW (i.e. 
eigenwaves with a purely real Floquet-Bloch wavenumber k as 
conventionally done in periodic structures [62]). This RBE 
emerges at frequency 194/ .(2 41 ) THzgω π ≅ , for the parameters 
in Appendix A, some are summarized in the caption of Fig. 3. 
The dispersion around the RBE frequency is approximated by 

2( ) ( )gg gh k kω ω ≅ −−  where the geometry-dependent fitting 

parameter is 20.05~ gg gh kω  for the parameters given in 
Appendix A. In fact, the dispersion of a conventional 
CROW [15] with only coupled rings exhibits an RBE. 
Furthermore, other 2nd order degeneracies (RBEs) not at the 
edge/center of the BZ are found. At these points the group 

velocity also vanishes; however, the eigenvalues at such 
degeneracies are 1gζ ≠ ±  as marked with blue circles in Fig. 3. 
These RBEs not located at the center or edge of a BZ are 
developed in the proposed CROW in Fig. 2; they 

cannot occur in a standard CROW (i.e., CROW not side coupled 
to a waveguide) for the reasons discussed in Secs. IV and V. 

Degenerate Band Edges (DBEs).  

The proposed CROW whose unit cell with period d = 2R is 
depicted in Fig. 2 exhibits also a fourth order EPD (i.e., the 
DBE) when coupling parameters are properly designed, as those 
in Appendix A. A necessary set of equations that govern the 
different parameters of the CROW unit cell in Fig. 2 are given in 
(29). The other necessary and sufficient condition to develop a 
DBE is that four eigenvectors coalesce, meaning that the transfer 
matrix contains a 4×4 Jordan block as explained in Sec. IV. Such 
condition is checked numerically once the set of equations (29) 
are satisfied. 

Here the DBE frequency is  / (2 ) 194.83 THzdω π ≅  as 
shown in Fig. 4 in which the dispersion relation is depicted, for 
CROW parameters provided in Appendix A, and some are 
summarized in the caption of Fig. 4. One should notice the 
flatness at the DBE point, indeed the dispersion around the DBE 
frequency is approximated by 4( ) ( )dd dh k kω ω ≅ −−  where the 

geometry-dependent fitting parameter is 4~ 0.95 / dd dh kω  for the 
given parameters in Appendix A. The CROW with this kind of 
unit cell can develop either an RBE or DBE at any desired 
frequency through proper tuning of the different unit cell 
parameters (mainly the coupling coefficients and the effective 
refractive indices). 

Stationary Inflection Points (SIPs).  

As mentioned before, the proposed CROW can develop 
different kinds of degeneracies. Here, we illustrate how the 
CROW develops also a third order degeneracy (i.e., an SIP) in its 
Floquet-Bloch wavenumber dispersion diagram. The unit cell 
shown in Fig. 2 has been capable to develop RBE and DBE but 
is not capable of developing an SIP in its dispersion diagram, 
due to insufficient mixing of waves propagating in the CROW 

 

FIG. 4. The Floquet-Bloch wavenumber dispersion diagram of a CROW with 
unit cell as in Fig.2. It shows a DBE at frequency 194.83 THzf ≅  and an RBE 
in the shown frequency range at 194.62 THzf ≅ . The different parameters of 
the unit cell are set as in Fig 3. 

 

FIG. 3. The Floquet-Bloch wavenumber dispersion diagram associated to a 
CROW with unit cell shown in Fig.2. It shows various RBEs, one, at the 
center of the BZ, is at frequency 194.41 THzf ≅ . The different parameters of 
the unit cell are set as radius, μm10R = , power cross coupling coefficients 

2
1 0.35κ = , 2

2 0.469κ = , and effective refractive indices 2.5wn = , and 

1 5



(see Appendix C for a mathematical proof). Therefore, to 
develop an SIP we use the unit cell with period d = 4R shown in 
Fig. 1(b) with alternating field coupling parameters among 
contiguous rings. The parameters of such unit cell are given at 
the end of Appendix A.  

Fig. 5(a) shows the dispersion diagram for this unit cell and 
two SIPs are obtained at frequency 197.04 THzf ≅ , 
symmetrically located with respect to the center of the BZ at 

/k dπ= . The dispersion around the SIP frequency is 
approximated by 3( ) ( )s ss h k kω ω ≅ −−  where sh   is a 
geometry-dependent fitting parameter. 

Note that Fig. 5(a) shows only branches with purely real 
wavenumber k. However, a more complete picture is provided by 
plotting the dispersion diagram allowing k to be complex. This is 
plotted in Fig. 5(b) showing both real and imaginary parts of the 
Floquet-Bloch wavenumber k, where the purely real branches 
which representing propagating eigenwaves (with zero 
imaginary parts) are denoted by red lines. From this complex 
dispersion diagram, one can observe that at each frequency there 
are six complex values, and how a number m of wavenumbers 
(m = 2,3,4, is the order of EPD) converge to a single one at each 
EPD. In reading this diagram one should keep in mind that both 
k  and k−  (hence /2k dπ− + ) are solutions, because of 
reciprocity. Furthermore, because of absence of losses, if k  is a 

solution, then  k∗  (the complex conjugate) is also a solution.  

Note that in this case all the aforementioned types of EPDs 
occur in a small frequency band. In other words, RBE, DBE, and 
SIP manifest at frequencies very close to each other in the same 
structure. The same closeness of EPDs is observed in Figs. 3 and 
4. This is due to the fact that each ring, because of its large size, 
support several resonances. Using large (i.e., with 
multiwavelength size) rings is not necessary to develop EPDs of 
various order, indeed a chain of coupled resonators with smaller 
dimension than those in this paper (each with a lower Q) would 
also exhibit EPDs. Another example of a simple optical structure 
supporting DBE and RBE is shown in [63], where two 
waveguides are periodically coupled.  

VII. GIANT RESONANCE IN CROW WITH 
EXCEPTIONAL POINTS OF DEGENERACY 

In this Section, we formulate and calculate the quantities 
relevant to resonators made of a CROW with a finite number of 
coupled rings, side-coupled to a uniform straight waveguide as in 
Fig. 6. We explore with examples the transmission coefficient 
(i.e., the transfer function) and the loaded Q-factor of the CROW 
near EPDs of various order as well as the field amplitude 
distribution inside the CROW at the resonance closest to the 
EPD frequency. This resonance is generally the sharpest one and 
for the DBE case we refer to it as the DBE resonance since it is 
very close to the DBE frequency. We will also investigate the 
effect of the waveguide and ring losses on the loaded Q-factor.  

To obtain a solution for the state vector )(zΨ  at any 
[0, ]z L∈ , where L is the length of the finite CROW, for a given 

excitation, we carry out the following steps. We define 
0 (0)≡Ψ Ψ  to be the boundary condition at a certain point z = 0. 

Hence the state vector ( )zΨ  at any other point z  can be found 
using 0( ,( ) 0)zz =Ψ T Ψ , 

 where ( ,0)zT  is the transfer matrix that translates the field from 
z = 0 to an arbitrary z. Let us assume that 0Ψ  defines the electric 
field wave amplitudes at the left boundary of the first unit cell as 
seen in Fig. 6. We consider a CROW made of cascaded identical 
unit cells, as in Fig. 2, with period d = 2R, each described by the 
transfer matrix  UT  that translates the state vector across each 
unit cell as discussed in Sec. III. Accordingly, we relate the state 
vector at the end of the CROW ( )LΨ , i.e., at the cell boundary 
of the last unit cell, to 0Ψ  by  

 
FIG. 5. (a) The Floquet-Bloch wavenumber dispersion diagram of the CROW 
unit cell shown in Fig.1(b) showing the three different kinds of EPDs on the 
same figure. They occur at different frequencies: an RBE at 197.1 THzf ≅ ; a 
DBE at 197.3 THzf ≅ ; and SIP at 197.04 THzf ≅ . The parameters of the 
unit cell are chosen as the radius is μm10R = , the power cross coupling 

coefficients are 2
1 0.5κ = , 2

1 0.2κ′ = , 2
2 0.3κ = , 2

2 0.4κ′ = , and the effective 

refractive indices are eff,w eff,r 1.5n n= = . (b) The complex dispersion diagram 
showing both real and imaginary parts of the Floquet-Bloch wavenumber k 
versus real frequency. Real branches in the complex dispersion (denoted by red 
lines) represent propagating eigenwaves, while complex branches (denoted by 
black lines) represent evanescent eigenwaves.  



 0U( ) NL =Ψ T Ψ   (30) 

 where N is the number of unit cells, and the matrix U
NT  is 

simply calculated as follows.  At any frequency except for those 
at which EPDs occur we bring UT  to a diagonal form as shown 
in (17).   

 Then matrix multiplication is simply carried out as 
1NN

U
−=T V Λ V . On the other hand, when UT  contains a 

Jordan Block, i.e., at any of the EPDs discussed in this paper,  

UT  is non-diagonalizable and based on (21),(22), (23) or (24) 

one has 1NN
U e

−=T V Λ V  where N
eΛ  is a matrix containing one 

or more Jordan Blocks. 

Boundary Conditions. The state vector at z = 0 is chosen to have 
a specific value 00( )z = =Ψ Ψ  dictated by the boundary 
conditions, i.e., by the load-waveguide attached to the finite 
CROW and by the left (right) loads attached to the first (last) 
half-rings as shown in Fig. 6.  The six-complex electric field 
wave amplitudes (0)±E  defined at the boundary of the first (z = 

0) unit cell and those six ( )L±E  at the boundary (z = L) of the 
last unit cell are constrained. We assume that the chain of ring 
resonators is terminated from both left and right sides with 
complete rings (recall that the unit cell boundaries choice is 
made here to start at the middle plane of each ring i.e., at the 
coupling point, as shown also in Fig. 6). The straight waveguide 
is extended for z < 0 and z > L serving as the feed and the real 
load of the CROW from which power can be extracted. 
Therefore, the number of cascaded rings equals the number N of 
unit cells (defined as in Fig. 2) plus one.  We assume that the 
straight waveguide in Fig. 6 is excited by an incoming wave 
amplitude inc1 (0)E E+ = , coming from the extended waveguide 
on the left side, i.e., from z < 0. Recalling (2), the boundary state 
vector components at z = 0 and z = L are derived as  

 2

2

inc1

32

23
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(0) (0)
(0) (0)
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ik

ik

E E
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Using the six equations in (31) and (32) along with the six 
equations of the T-matrix in (30), we solve for the state vector at 
the boundaries of the finite CROW namely 0  and ( )LΨ Ψ , and 
the transfer matrix defined next is also found. 

Transfer function. We define the transfer function 
F out 1T / (0)E E +=  of the proposed CROW as the output electric 

field wave amplitude outE  (see Fig. 6) divided by the CROW 
excitation inc1 (0)E E+ = :  

 out
F out 1 3

inc
11 ( ) ( )T ,   E E

E
Lt LE E iκ+ += = +  (33)  

In Fig. 7, we show the transfer function of CROW made of a 
chain of N unit cells for different values of N. The structure is 
designed with the unit cell in Fig. 2 and parameters in Appendix 
A to have a DBE, i.e., a fourth order EPD as seen in Fig. 4. We 
see that for larger number of rings, the transmission peak closest 
to the 4th order EPD gets narrower (i.e., higher Q) and its DBE 
resonance ( ,r dω ) gets closer to the DBE frequency dω  

following the equation 4
, )/(r d d dh Ndω ω π≈ −  [21] with dh  

being the dispersion fitting parameter and d is the period of the 
proposed CROW. Furthermore, for a given N, the peak closer to 

dω , denoted as resonance ,r dω , is the sharpest one. And this has 
been used to conceive the single mode of operation of the DBE 
laser in [63]. 

In Fig. 8 we show the transfer function of CROW made of a 
chain of N unit cells for different values of N. The structure is 
designed with the unit cell in Fig. 1(b) with the parameters at the 
end of Appendix A to have an SIP, i.e., a third order EPD, as 
seen in Fig. 5. Note that the period is 4d R= , therefore the 
length of the CROW is 4L Nd NR= = . We see that the 
resonance closest to the SIP frequency is getting narrower 
(higher Q) and it is approaching the SIP frequency when N 
increases. Note that the transmission peak closest to the SIP 
frequency have a magnitude that is less than unity and this may 
be attributed to the asymmetric topology of the unit cell, with the 
respect to the input signal (i.e., the unit cell in Fig. 1(b) is 
asymmetric about a plane defined at z0 in Fig. 1(b)).  

Quality factor. We point out that the straight waveguide part of 
the proposed CROW system is not terminated with partially 
reflecting mirrors at z = 0 and z = L, and indeed the straight 

 

FIG. 6. Finite CROW consisting of N unit cells. We consider the input at z = 0 
and the output at z = L, where L = 2NR and R is the radius of each ring. Note 
that the large Q-factor and the giant scaling with length occur without mirrors, 
i.e., despite the waveguide coupled to chain of rings is continued to a 
waveguide with the same dimensions. 



waveguide is just extended without modifications.  In other 
words, the straight waveguide segment part of the CROW is not 
mismatched when attached to the outside straight waveguide 
segments, i.e., the same straight waveguide coupled to the chain 
of rings is continued with the same kw and nw for z < 0 and z > L. 

 Nevertheless, the CROW-waveguide system experiences large 
mismatch to the outside loading straight waveguides because of 
the EPD. This is the reason of the high Q-factor transmission 
resonance near the points of degeneracy such as the DBE or SIP 
shown in Figs. 7 and 8, respectively.  

In general, Floquet-Bloch eigenwaves at frequencies near that 
of the DBE have characteristic impedance (called the Floquet-
Bloch impedance [52]) described by a 3 3×  matrix that makes 
the CROW-waveguide system  highly mismatched to the 
terminations impedances (loads) for almost any loading choice. 
This renders the DBE resonance strongly confined inside the 
resonator [25,28,64,63], for any load variation. Furthermore, 
operating near EPDs where the group velocity is vanishing leads 
to a giant scaling of Q-factor with the number of ring resonators 
in a CROW. The word “giant” has been used to describe this 
unconventional scaling law encountered also in other geometries 
supporting the DBE [21,25,28]. This can be inherently 
understood from the fact that the quality factor is inversely 
proportional to the group velocity of the Floquet-Bloch wave gv  
(i.e. constantgQv = ) as discussed in [62]. This statement 
implies that if the DBE resonance ,r dω  coincides with the DBE 
frequency dω  at which 0gv = , then Q-factor will be infinite 
(ideally, in a lossless waveguide). However, the Q-factor is finite 
because ,r d dω ω≠ , though they are very close following the 

equation 4
, )/(r d d dh Ndω ω π≈ − . In essence, 

( ),
4/1r dd Nω ω− ∝ , hence the Q-factor rapidly increases with 

the number of cells N, because this latter formula describes the 
rate at which the resonance angular frequency ,r dω  gets closer to 

dω  with growing N, which in turn leads to special scaling with 
N of the  increase of group delay and Q-factor [65]. 

The loaded Q-factor of the CROW, is estimated numerically 
using both the fractional bandwidth (FBW) as well as the group 
delay methods as discussed next. The FBW is defined as the 3dB 
bandwidth of the transfer function resonance normalized by the 
resonance frequency, and the Q-factor is then calculated as Q = 
1/FBW. On the other hand, the group delay is calculated as the 

 derivative of the phase of the transfer function, FT∠ , with 
respect to the angular frequency ω, i.e., FT /gτ ω= ∂∠ ∂  [25]. 
The Q-factor  is then calculated by , / 2r d gQ ω τ=  in which gτ  
is the group delay [66]. 

In Fig. 9, the Q-factor of a loaded CROW system, i.e., the 
CROW side coupled to the straight waveguide continued to the 
external straight waveguide, is calculated near the DBE 
frequency, namely at ,r dω ,  using both methods just discussed, 
for different number of rings.  

The loaded Q-factor is normalized to the Q-factor of a single 
ring resonator coupled to the waveguide ( 0Q ) calculated using 
the well-known equation ( )res ph0 / 2lnrQ Lω τατ≈ −  [67] 
where resω is the ring resonance angular frequency, 2rL Rπ=  is 
the circumference of ring resonator, phτ  is the phase delay given 
by ph /r rn L cτ = , and α is the power loss parameter per unit 
length, that includes radiation and material dissipation. In Fig. 9 
we assume that α = 0, i.e., rings are lossless. With the parameters 
in Appendix A, one has 0 ~ 900Q .  It is clear from Fig. 9 that the 
two methods used to calculate the loaded Q-factor are almost 
equivalent (for instance see Ref.  [66]). The values of normalized 
Q are then fitted to a curve whose equation is 5bN  for N > 9, 
resulting in  an error described by the parameter

squared ~ 0.995R − , where R-square is a statistical measure 
expressing how close the calculated Q values are to the fitting 
curve [68] and it takes values  between 0 (worst fitting) and 1 
(best fitting). Also in the same figure and using the same unit cell 

  

FIG. 8. Magnitude of the transfer function FT in dB near an SIP frequency plotted 
versus angular frequency normalized to the SIP angular frequency (

SIP 197.04 THzf ≅ ) for three different number of unit cells (N) in the CROW 
given as 14, 17 and 20. Note that the unit cell in this case has a period d=4R.  
Hence, the number of rings in this CROW equals 2N+1. 

 

FIG. 7. Magnitude of the transfer function FT  in dB close to a DBE frequency 
plotted versus angular frequency normalized to the DBE angular frequency (

DBE 194.83 THzf ≅ ) for three different number of unit cells (N = 8,12 and 16) 
in the CROW with period d = 2R. 



parameters, the normalized Q-factor of a loaded CROW working 
near an RBE frequency is shown and the values are fitted to an 
equation 3bN with squared~0.999R − . We stress that the Q-

factor near a DBE scales as 5N , which is an unconventional 
scaling law with size.  

 Note that the proposed CROW exhibit both RBEs and DBEs, 
and we consider the two denoted by the red circles in Fig. 3 and 
4. The RBE and DBE are at two distinct, but close, frequencies, 
194.22 THz and 194.83 THz respectively. The Q-factor 
evaluated in Fig. 9 is evaluated at the resonance of the finite-
length CROW closest to the respective EPD. Fig. 9 also show the 
scaling of the Q-factor associated to the RBE, calculated at its 
closest resonance, that scales as 3N . Both scaling factors, of the 
DBE and RBE cases, should be compared with the Q-factor for a 
single ring resonator that increases linearly with the length. 

 Losses in CROW. We investigate now the effect of losses on the 
CROW-waveguide system that includes radiation (due to 
bending) and dissipative losses. We assume that losses are 
represented by the attenuation constant of the waveguide and 
ring resonators. The values of the dissipative losses; as well as 
radiation losses due to bending, are taken from [69]. Therefore, 
propagation in the straight waveguide and ring waveguides is 
characterized by wavenumbers with  complex values 

, , ,Re[ ]r w r w r wk k iα= + , where 0.37 dB/mmwα =  is the wave 
attenuation constant for the straight waveguide whereas 

0.45 dB/mmrα = is the attenuation constant inside the rings and 
it includes dissipative losses 0.37 dB/mm and radiation losses 
(due to bending) that is assumed to be 0.08 dB/mm (i.e, 0.005 
dB/turn for a ring resonator with R=10μm) [69]. 

In Fig. 10 we show the effect of these internal losses on the 
scaling of Q-factor for both the RBE and the DBE cases. From 
Fig. 10 we see that the normalized Q is higher for the DBE case. 
We also observe that the Q-factor relative to the DBE case is 
affected by losses more than the Q-factor associated to the RBE 
case (the RBE and DBE designs are at two different, but close, 
frequencies, 

 

 
FIG. 10. Calculated loaded quality factor (Q) plotted versus number of rings for 
the lossless and lossy CROW. Each case is evaluated at the resonance 
frequency closest to the frequency at which the relative EPD occurs (i.e., at 

,r dω  for the DBE case). The lines denote the N5 and N3 trends for the lossless 
case as in Fig. 9; while symbols are the calculated Q-factor for lossy CROWs. 
The number of CROW rings = N + 1. 

 

FIG. 9. Loaded quality factor (Q) of CROW-waveguide system (without internal 
losses) normalized with respect to that of a single ring Q0, calculated varying the 
number of rings for both the RBE and the DBE cases. The values of Q, denoted 
by cross symbols are calculated using the group delay method for DBE and RBE, 
respectively. However, we also used the fractional bandwidth (FBW) method in 
the DBE case, represented by square symbols) for the sake of comparing both 

methods. Continuous lines represent fitting curves: 3N  for the RBE case and
5N for the DBE case, where N is the number of unit cells. Note that the number 

of CROW rings = N + 1. 



194.22 THz and 194.83 THz respectively). For CROW-
waveguide systems made of a small number of rings the lossless 
and lossy cases exhibit, more or less, the same Q-factor, for both 
the DBE and RBE cases. The Q-factor, in the lossy case, 
increases till it reaches a saturation value that is attained for the 
DBE case at a smaller number of rings than for the RBE case. 
Nevertheless, the Q-factor for the DBE case is always higher 
than that for the RBE case even when considering losses. The 
scaling of Q-factor still exists even in the presence of losses as 
shown from the microwave experiment [70]. 

Resonance with structured field. The distribution of the 

normalized electric field wave amplitudes 1( ) / (0)nE z E+  is 

shown in Fig. 11 for a CROW made of 16 rings, where 

( ) ( ) ( )n n nE z E z E z+ −= +  in each n=1,2,3 waveguide paths. The 

CROW is excited by an incoming guided wave from the left with 

magnitude 1 (0)E+ . The normalized electric field wave 

amplitudes are evaluated at discrete z-points, one per unit cell, 
specifically at the left boundary of each unit cell of the proposed 

CROW in Fig. 2, for both the lossless and lossy cases. For 
comparison, we show the fields at both the 2nd  and 4th order 
EPDs, i.e., at the RBE and at the DBE, respectively. It is 

important to note that in the DBE case, 1( ) / (0)nE z E+  are twice 

more than the RBE case, consistent with the higher Q-factor in 
Fig. 10. Indeed, based on Fig. 10 it is expected that the DBE case 
leads to even stronger field values than the RBE cases for larger 
number of rings. Finally, we note that the effect of losses in the 
RBE case is less than that in the DBE case and that is consistent 
with the aforementioned observations made on the Q-factor. 
Nevertheless, the electric field wave amplitudes are still much 
stronger in the DBE case even when losses are present. 

VIII. CONCLUSION 

We have presented the concept of a CROW made of a chain 
of coupled ring resonators, all coupled to an adjacent straight 
waveguide, that exhibits EPDs with various orders of 
degeneracy.  We have provided the theoretical formulation 
relying on the transfer matrix analysis that describes such EPDs 
of various orders. We have demonstrated that EPDs of various 
orders exist without the need for gain and/or loss. This is in 
contrast to what has been currently proposed in the context of 
PT-symmetric optics. We have also discussed the necessary 
conditions to realize a DBE in a CROW-waveguide system. We 
have derived an analytical expression for the CROW dispersion 
relation, based on the unit cell in Fig. 2, that provides physical 
insight into the DBE’s occurrence. Furthermore, we have shown 
that the simplest geometry in Fig. 2 is not able to generate SIP 
degeneracies, that have been obtained instead using the more 
general unit cell in Fig. 1(b). 

Moreover, we have shown that manipulation of various order 
of degeneracies in such a CROW system leads to unconventional 
enhancement in the Q-factor and its unconventional scaling law 
with the CROW length. Such unconventional and 
unconventional scaling law has been demonstrated even in the 
presence of loss. Importantly, when operating at the DBE 
resonance, the proposed CROW with losses has larger Q-factor 
than the ideal lossless RBE case.   

The concepts here discussed are general and the analysis can 
be applied to several other structures made of multiple coupled 
waveguides. The examples discussed in this paper involved a 
CROW that has shown several EPDs at frequencies close to each 
other because we have used large (in terms of wavelength) 
resonators that individually support various modes. Another 
example of coupled waveguides that support DBE and RBE is 
shown in [63]. Our proposed concept of degeneracies for a 
CROW coupled to a straight waveguide serves as a promising 
testbed for enhancing the Q of resonators, even without mirrors, 
and to have systems whose Q and transfer function changes 
abruptly by the slight variation of some system parameter, hence 
making them suitable for extremely sensitive sensors. EPDs like 
those discussed in this paper are potentially useful toward 
various applications including non-linear light manipulation and 
transport, lasers, switches, modulators, and extremely sensitive 
sensors. 

 
FIG. 11. (a) Absolute values of the total electric field wave amplitude 

( ) ( ) ( )n n nE z E z E z+ −= + , where n = 1,2,3, calculated at one point per unit cell 

(at the left boundary of each unit cell) in both lossless and lossy CROW-
waveguide systems made of 16 rings operating at the DBE resonance ,r dω .  (b) 
As in part (a) but at the RBE resonance. In both cases, solid lines represent field 

amplitudes in the straight waveguide 1 11( ) ( ) ( )E z E z E z+ −= + . Dashed and 

dotted lines represent the wave amplitudes inside the upper and lower branches 
of the ring resonators at the left boundary of each unit cell. DBE field values 
are always higher than RBE electric field wave amplitude values. Moreover, 
the DBE case with loss has higher field than the RBE case without losses. 
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APPENDIX A: PARAMETERS USED IN NUMERICAL 
SIMULATIONS 

The radius of all the ring resonators considered in this paper 
is μm10R = , similar to a design demonstrated in [71]. The 
various parameters of the unit cell shown in Fig. 2 that is able to 
develop  RBE and DBE are as follows: power cross coupling 
coefficients are 2

1 0.35κ = , and 2
1 0.469κ ′ = , while the effective 

refractive indices that describe propagation in the waveguide and 
in the rings are set as 2.5wn =  [72], and 1.5rn = . Note that the 
values of the coupling coefficient were chosen in the range 
presented in [73] and  these values are compatible with SOI 
fabrication as shown in [74]. For the SIP case, the parameters of 
the unit cell shown in Fig. 1(b) are as follows: power coupling 
coefficients are 2

1 0.5,κ = 2
1 0.2κ ′ = , 2

2 0.3κ = , and 2
2 0.4κ ′ = , 

while the effective refractive indices are set as 1.51wn = , and 
1.5rn = . 

APPENDIX B: TRANSFORMATION FROM S-MATRIX 
TO T-MATRIX 

We show here how to transform the scattering S-matrix into 
the transfer T-matrix. The advantage of using the T-matrix is that 
we can characterize our multiple unit cells structure by simply 
multiplying the T-matrices of the cascaded unit cells [75]. Recall 
that the transfer matrix relates the state vector at points z1 and z2 
as seen from (3). On the other hand, the S-matrix relates them 
using (4). The following transformation from an S-matrix to a T-
matrix is a general property that is applicable to any 
dimensionality of the system. However, we apply it for any T-
matrix or S-matrix relating electric field wave amplitudes at an 
arbitrary points z1 and z2 in the proposed CROW. Therefore, the 
T-matrix and S-matrix, for our proposed CROW, are 6×6 
matrices. We represent the 6 6×  S-matrix and T-matrix using 
four sub-block matrices, each of size 3 3× , as  

 11 12 11 12
2 1 2 1

21 2221 22

( , ) , ( , )z z z z
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

S S T T
S T

S S T T
 (B1) 

Now we transform the sub-blocks of the S-matrix into the T-
matrix sub-blocks through the following expressions [75] 

 

1
11 21 22 12 11

1 1
21 1212 11 22 12

1
22 12

,

−

− −

−

= −

= − =

=

T S S S S

T S S T S S

T S

  (B2) 

Accordingly, after proper substitutions of the S-matrix sub-
blocks given in (B1) into (B2), the transfer matrix of the first 
segment 1T  of the unit cell shown in Fig. 1(b) is given by its sub-
block matrices viz 
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where all these quantities were defined before in Sec. III. 
Analogous steps are used to derive the transfer matrix of the 
other segment, shown in Fig. 1(b), through replacing the 
coupling coefficients 1 1,κ κ′  with 2 2,κ κ′  and the transmission 
coefficients 1 1,τ τ ′ with 2 2,τ τ ′ . Recall that the lossless condition 

of the S-matrix is †
2 1 2 1( , ) ( , )z z z z =S S 1 , where the dagger †  

implies complex conjugation and transpose operation, meaning 
that it is unitary. In addition, the T-matrix of the lossless CROW 
obeys the fundamental J-unitary property (similar to general 
stratified media in [21]); which means that 

1 † 1
2 1 2 1( , ) ( , )z z z z− −=T J T J  with the matrix J here is given by 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
−⎜ ⎟

⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

J   (B4) 

APPENDIX C: ON THE NECESSARY CONDITIONS 
GOVERNING THE CROW PARAMETERS TO DEVELOP 

AN SIP 

The dispersion equation of the proposed CROW, made of 
periodic rings side coupled to the straight waveguide, whose unit 
cell is shown in Fig. 2 with period d = 2R, is obtained by solving 
the general expression (14); in which the unit cell transfer matrix 

UT  has sub-blocks defined in (B3) and it is casted analytically 
in (25). In the following we consider the lossless CROW 
parameters ( 1 1 2 2, , , , , , andw rn n Rκ τ κ τ ) that are real, positive 
and some have restrictions on their values i.e., 

1 1 2 20 , , , 1κ τ κ τ< < . 
The necessary conditions governing the various parameters of 

the lossless CROW unit cell shown in Fig. 2 in order to develop 



a DBE are given in (29). Contrarily, no points in the parameter 
space of the lossless CROW unit cell in Fig. 2 can be found such 
that SIP is observed, and the reason for this statement is laid out 
in the following. The necessary condition to achieve an SIP is 
that the characteristic equation of the CROW unit cell in Fig. 2 at 
an SIP angular frequency sω  must take the form 

 [ ]
3

3 01( , )s s
s

D k ω ζ ζ ζ
ζ

⎡ ⎤
⎢
⎣

−= − =⎥
⎦

 (C1)  

which means that there are two eigenvalues each with 
multiplicity of order three and they are a reciprocal pair, where 
the eigenvalue ss

ik deζ =  and d=2R. Similar to what we did for 
the DBE case, by equating the coefficients of this polynomial to 
those of (25), we get three equations governing the CROW 
parameters that are necessary to obtain the SIP for the geometry 
in Fig. 2 as 
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Omitting the details, the equalities in (C2) that represent the 
necessary conditions to achieve an SIP for the CROW unit cell in 
Fig. 2 cannot be simultaneously satisfied for any of the lossless 
CROW parameters except for the trivial case when 1 0κ = . 
Therefore, we find an SIP using a CROW with the more general 
unit cell with period d = 4R as in Fig. 1(b) that has more degrees 
of freedom than that shown in Fig. 2. The necessary condition 
for such unit cell to develop an SIP could also be derived 
analogously to what has been shown for the DBE. 
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