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Abstract

The dynamics of the phase transition in antiferroelectric PbZrO3 which is a subject of a decades

long debate, is examined using first-principles-based simulations. This is achieved through develop-

ment of a computational approach that allows calculations of generalized complex susceptibilities

at an arbitrary point of the Brillouin zone. Application of this approach to the case of PbZrO3

predicts the temperature evolution of many of its lattice modes, some of which remain elusive

or even “invisible” in experiments. The computational data suggest that two lattice modes are

primarily responsible for the antiferroelectric phase transition in this material: the one associated

with oxygen octahedra tilts dynamics and the other due to lead ions antipolar vibrations.

PACS numbers: 77.22.-d, 77.84.-s, 77.22.Ch, 78.30.-j, 77.80.-e, 77.80.B-
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I. INTRODUCTION

Antiferroelectric (AFE) PbZrO3 has recently become a subject for an intense reinvesti-

gation owing to its status of a prototypical antiferroelectric1–3. It undergoes a single phase

transition from paraelectric cubic to AFE Pbam phase around 505 K1. Such transition

is associated with a condensation of two order parameters described by the wave vectors

qΣ2
= 2π

a
(1/4, 1/4, 0) (antiparallel shifts of the lead ions) and qR+

4
= 2π

a
(1/2, 1/2, 1/2) (an-

tiphase tilts of oxygen octahedra)4, and the onset of spontaneous strain5. In addition, there

exists a large increase in static dielectric susceptibility on approaching the phase transition.

Interestingly, such a large increase is not necessary for antiferroelectricity, according to the

first model of antiferroelectrics6. At the same time, what is required for antiferroelectric-

ity is the existence of a ferroelectric (FE) phase that is energetically competitive with the

AFE one7. This feature allows to stabilize FE phase by an application of an electric field

and is responsible for a typical double loop structure of the electric hysteresis loops in an-

tiferroelectrics. The structural distortions associated with the phase transition in PbZrO3

include R+
4 , Σ2, S4, R

+
5 , X

−

3 , and M−

5 distortions listed in the order of their decreasing

contribution to the energy gain due to a transition8. To elucidate the fundamental origin

of a phase transition one usually turns to the soft mode theory of phase transitions, which

relates phase transition to the critical slowing down (softening) of one of the lattice modes7.

Within mean-field theory it can be shown that a critical slowing down of zone center trans-

verse optical mode gives rise to the large increase (or theoretically, divergence) of the static

dielectric susceptibility7. To establish the presence of soft mode(s) a detailed investiga-

tion of the temperature evolution of modes dynamics is necessary. The modes that exhibit

strongest temperature anomalies are assumed to be primarily responsible for the phase tran-

sition. While this approach works really well for the case of ferroelectrics, whose instability

is associated with softening of infrared (or in some cases Raman active) zone center modes,

antiferroelectrics, whose instability is associated with off-center mode(s), turn out to be far

more difficult to study. PbZrO3 is one of such examples. As a result the origin of the

phase transition in these materials has remained debatable for decades9–12. Originally it was

proposed that two modes (zone center and off-center ones) should exhibit softening9 which

was consistent with indirect experimental evidence10. Later however, a study on PbZrO3

ceramics11 revealed only slight softening of the zone-center modes and assigned strong di-
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electric anomaly at the Curie point to the central mode. Very recently, a combination of

experimental and theoretical tools led to the proposal of a new mechanism for the AFE

phase transition that includes softening of a single lattice mode (the ferroelectric soft mode

in perovskites) that gives rise to the AFE phase transition with the help of the flexoelectric

coupling2. To add to the controversy of the subject, another recent study used a combination

of experimental techniques to propose that PbZrO3 exhibits a flat soft polarization branch

which, however, does not have a local minimum near the AFE wave vector3. In this model,

the stabilization of the AFE phase requires coupling to oxygen octahedra tilt mode via a

trilinear term, which is consistent with the first-principles findings of Ref.13. While these

models clarify certain aspects of the phase transition in PbZrO3, they aim at explaining a

certain set of experimental data, which, despite the recent progress in measurements, still

remains limited, owing to the fundamental difficulties in tracing temperature evolution of

modes in this material. This raises one interesting question: can we use first-principles-based

simulations to overcome these fundamental difficulties and provide atomistic insight to the

nature of the AFE phase transition in PbZrO3?

The aims of this paper are: i) to propose a first-principles-based approach suitable to

study mode dynamics at an arbitrary point of the Brillouin zone and at finite temperatures;

ii) to predict temperature evolution of modes responsible for the AFE phase transition in

PbZrO3 in a wide temperature range; and iii) to provide first-principles-based insight into

the nature of the AFE phase transition in PbZrO3.

II. THE METHOD

To achieve our methodological goal we developed Molecular Dynamics (MD) for the ef-

fective Hamiltonian proposed in Ref.8. The degrees of freedom for the effective Hamiltonian

include polar local modes, ui, which are proportional to the local dipole moment in the unit

cell i and describe the AFE instability at Σ2 point of the Brillouin zone, antiferrodistortive

(AFD) local modes, wi, that describe oxygen octahedra tilts about Cartesian axes and are

responsible for the R4 point instability, and inhomogeneous and homogeneous strain vari-

ables, which describe elastic deformations of the unit cell and supercell, respectively. The

Hamiltonian includes energy associated with the antiferroelectric Σ2 mode and contains

contributions from the dipole-dipole interactions, short-range interaction, and on-site self-
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energy. It also includes energy due to the AFD mode that is similar to the previous one

but excludes the dipole-dipole interactions as AFD local modes are nonpolar. Finally, the

Hamiltonian includes the energy associated with elastic deformations. All degrees of freedom

are coupled with each other by the symmetry allowed interactions. All parameters of the

effective Hamiltonian are derived from the local-density-approximation-based density func-

tional theory calculations8. This Hamiltonian correctly reproduces the sequence of phase

transition in PbZrO3, its electrical properties and behavior under pressure8.

In MD the Hamiltonian is used to compute forces acting on all the degrees of freedom (9

per unit cell of the cubic perovskite structure plus six homogeneous strain variables for the

entire supercell). The Newton equations of motion are then set up and numerically integrated

for all degrees of freedom with the integration step of 1 fs. The following masses are used for

the polar local mode, AFD local mode, and inhomogeneous strain variables: 54.3, 16.0 and

346.4 au, respectively. For the homogeneous strain mass we used the value of 148,936 au.

Bulk PbZrO3 is simulated with the supercell of 16x16x16 unit cells of cubic perovskite with

periodic boundary conditions applied along all three Cartesian directions. First we obtain

equalibrated supercells in the temperature range of 0 to 2000 K by using the simulated

annealing approach. In such an approach the simulations begin at 2000 K and the supercell

is slowly annealed down to the temperature of 5 K in steps of 5 K. Smaller temperatures

steps of 1 K were used in the vicinity of the phase transition. For each temperature we

simulate 50,000 MD steps of NPT ensemble (constant number of particles, pressure, and

temperature). Pressure is set to zero, while the temperature control is achieved via the

Evans-Hoover thermostat14.

III. RESULTS AND DISCUSSION

Fig.1 shows the temperature evolution of the AFE and AFD order parameters as well as

1 − c/a ratio, where a and c are the two lattice constants of orthorhombic PbZrO3. The

phase transition occurs at 944 K (which overestimates the experimental value of 505 K) and

is associated with the simultaneous onset of AFE, AFD and strain order parameters. This

result is in agreement with the Monte Carlo simulations reported in Ref.8.

Next, we use the equilibrated supercells to investigate the dynamics of the modes that

originate from the dynamics of the local polar modes and AFD oxygen octahedra tilts.
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Technically, in these simulations the shape and volume of the supercell is fixed at their

equilibrium values to allow for accurate simulations of the modes dynamics. To access mode

dynamics at an arbitrary point of the Brillouin zone we use the concept of generalized

complex susceptibility, χ(q, ν), which describes the response of the system to a staggered

time dependent generalized field, X(q, t), with the wave vector q. The response of the system

is quantified by a generalized polarization, x(q, t)/V , where x(q, t) is the generalized total

dipole moment of the wave with the wave vector q and V is the supercell volume. For

example, the generalized polarization due to electric dipoles wave with qΣ2
gives the AFE

order parameter (or antipolar vector) in PbZrO3, while the generalized polarization due to

AFD oxygen octahedra tilts wave with qR+

4
gives the AFD order parameter. Generalized

polarization for qΣ2
also describe the response of the system to a staggered electric field,

while generalized polarization for qR+

4
describes the response of the system to a hypothetical

staggered field capable of exciting oxygen octahedra tilts mode. Of course, in the trivial

case of qΓ = (0, 0, 0) the generalized polarization reduces to the electric polarization, while

the generalized field becomes homogeneous electric field. The interaction of the system

with the generalized fields contributes −x(q, t) ·X(q, t) to the Hamiltonian. While not all

of generalized susceptibilities could be measured experimentally, they provide a valuable

insight into the mode dynamics available only from computations. The extension of the

linear response theory15,16 to this case yields the following expression for the generalized

susceptibility

χαβ(q, ν) =
1

ε0V kBT

{

〈xα(q)xβ(q)〉 − 〈xα(q)〉〈xβ(q)〉

+ i2πν

∫

∞

0

dtei2πνt〈(xα(q, t = 0)− x̄α(q, t = 0))(xβ(q, t)− x̄β(q, t))〉

}

.

(1)

Here xα(q) is the α Cartesian component of the total generalized dipole moment with the

wavevector q computed as x(q) = Z⋆
∑

i uiint(e
iq·r) for the modes originating from the

polar local modes, ui, (Z
⋆ is the Born effective charge), and as x(q) =

∑

i wiint(e
iq·r) for

the modes originating from the AFD tilts, wi. In Eq.(1) r gives the position of the unit cell

within the supercell and int indicates nearest integer value. Note, that ε0 in the denominator

is only required for the susceptibilities due to polar modes and can be omitted in all other

cases. The first two terms in Eq.(1) describe the response of the system to a static field.
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Both 〈...〉 and bars indicate the ensemble average.

In the present work we are interested in the dynamics of the modes that originate from

the Σ2 antipolar distortions and R+
4 AFD distortions. Therefore, we compute the generalized

susceptibilities due to the polar local mode at Σ2 point of the parent Brillouin zone (PBZ)

of the cubic structure and due to AFD local mode at R+
4 point of the PBZ. They are

denoted as χAFE and χAFD, respectively. In addition, we also compute the complex dielectric

susceptibility, χFE, which gives access to the zone center modes of the Pbam structure,

Technically, for a given temperature the dynamics of the supercell is followed during 3 ns to

collect 2500 autocorrelation functions, (xα(q, t = 0)− x̄α(q, t = 0))(xβ(q, t)− x̄β(q, t)), each

of 10 ps duration using the overlap technique14. These autocorrelation functions are first

averaged and then the result is Fourier transformed as indicated by Eq.(1). The real and

imaginary parts of the components of susceptibility tensors are fitted with a sum of damped

harmonic oscillator functions which contains up to 4 terms17. The fitting yields the intrinsic

frequencies of the modes as fitting parameters. The amplitudes, A, for different complex

generalized susceptibilities as obtained from the fit are given in Fig.2 for a representative

temperature above and below the Curie point. Fig.2(a) indicates that in the paraelectric

phase (1400 K) there exists a single mode that describes polar ionic vibrations, while in the

AFE phase (100 K) we find four modes. One of these mode (103 cm−1) is associated with

polar vibrations along the nonpolar direction of AFE PbZrO3, while the rest is associated

with the polar ionic vibrations along the antipolar direction of AFE PbZrO3. Fig.2(b) shows

that there exists a single mode associated with oxygen octahedra tilts dynamics above the

Curie point. Below the Curie point we find 6 modes that involve oxygen octahedra dynamics.

Two of them (82 and 152 cm−1) are associated with oxygen octaherda tilts about the

nonpolar axis of AFE PbZrO3, while the rest originates from the dynamics of the tilts about

the antipolar axis. Fig.2(c) reveals three modes at Σ2 point of the PBZ above the Curie

temperature. The highest frequency mode is associated with antipolar vibrations along

the direction of the wave vector, while the other two are associated with vibrations along

the two directions perpendicular to the direction of the wave vector. The lowest frequency

mode is the one to give origin to the AFE order parameter and especially important for

the phase transition. Below the Curie point we find six modes. Half of them are associated

with antipolar vibrations along the nonpolar direction of AFE PbZrO3, while the rest is

associated with the vibrations along the antipolar axis of the structure.
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To elucidate the origin of the phase transition in PbZrO3 we trace the temperature

evolution of the intrinsic frequencies associated with all these modes. Fig.3 gives our com-

putational results along with experimental data from Ref.3. Note, that in order to facilitate

comparison between computational and experimental data computational temperatures are

rescaled to reproduce experimental Curie point. We begin with the zone-center modes given

in Fig.3(a). In the paraelectric phase the sole polar mode shows some softening on ap-

proaching the phase transition. In the AFE phase two of the modes (the one shown by

red diamonds and one of the black circles) show moderate softening, while others respond

very little to the temperature. As a result we expect rather moderate increase in the static

dielectric constant at the Curie point7. Indeed, our computational data given in the inset

to Fig.3 show an increase in the static dielectric constant but no divergence. This finding

confirms that the divergence of the dielectric constant is not required for the AFE phase

transition6. The temperature evolution of the modes that involve oxygen octahedra tilts

are given in Fig.3(b). In the paraelectric phase the single mode experiences dramatic soft-

ening upon approaching the Curie point suggesting that this mode plays a critical role in

the phase transition in agreement with the experimental findings of Ref.3. Below the Curie

point the modes that are associated with the oxygen octahedra tilts about the antipolar

axis of the AFE PbZrO3 show softening, while the other modes appear to be rather insen-

sitive to the temperature. Note, that softening of the modes associated with AFD motion

were also observed experimentally3. Now let’s turn to the temperature evolution of the Σ2

modes above the Curie point given in Fig.3(c). The lowest frequency mode softens nearly

to zero on approaching the phase transition, while other modes do not respond to the tem-

perature. This demonstrates that the AFE mode associated with the vibrations of the lead

ions also plays a critical role in the phase transition, nearly comparable to the role of the

AFD mode. Note that these two modes do not share frequencies in the entire temperature

range suggesting that they contribute to the phase transition rather independently. Thus,

our computational findings provide the first evidence for the elusive AFE mode softening

predicted by G.A. Samara in 197010. Below the Curie point it appears that the highest

frequency mode is the continuation of the highest frequency mode of the paraelectric phase.

The lowest frequency mode is associated with the vibrations along the antipolar axis of AFE

PbZrO3 and shows considerable softening. Interestingly, the two lowest frequency modes at

Σ2 point share temperature evolution with the two lowest frequency AFD modes which sug-
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gests that these modes are coupled. Similarly, the black and red branches in 150-180 cm−1

range share temperature evolution, once again indicating coupled motion. Finally, the last

branch shared between AFE and AFD appear around 250 cm−1. Note, that mode softening

found in computations agree well with experimental data (see Fig.3(a)-(b)).

Our computational data suggest that, in agreement with experimental findings3, the

phase transition in PbZrO3 is associated with softening of at least two lattice modes: one

originating from the oxygen octahedra tilts and the other one associated with the lead ion

vibrations. Moreover, the lead ion vibrations mode exhibits softening at both Γ and Σ2 points

of the PBZ consistent with the recent proposal that in PbZrO3 the whole polarization branch

is soft3. At the same time, we find that the softening of the polarization mode at the Γ point

is somewhat moderate in comparison with other points investigated and in computations

leads to only moderate increase in the static dielectric constant at the phase transition. The

latter finding is, however, inconsistent with experimental findings which indicate a dielectric

anomaly7. One possible explanation for the discrepancy could be that the zone center mode

has mixed phonon and relaxational character. Our simulations capture phonon contribution

but are likely to miss the relaxational one owing to the short simulation time and finite

supercell size. Indeed, the experimental study on PbZrO3 ceramics11 reported only a slight

softening of the polar mode with the associated contribution to the static dielectric constant

of about 300 which are consistent with our findings (see Fig.3(a) and its inset). In that study

the strong dielectric anomaly at the Curie point was attributed to the central mode rather

than a soft displacive mode. Similarly, in the recent experimental study2 the presence

of the central peak was connected to the relaxational mode that shows critical softening

at Γ point. Another possible reason for the discrepancy in the static dielectic constant

between computations and experiments could be the overestimation of the energy difference

between the FE and AFE phases of PbZrO3 in computations. This, in turn, could be due

to the defect free nature of the simulated sample. In real samples defects and impurities

are unavoidable and some of them are known to stabilize the FE phase18. Another reason

could be of methodological nature since we omit some of the degrees of freedom and retain

only the most important interactions. Finally, we recall the earlier controversy regarding

the structure of PbZrO3. While first principles simulations (including the ones used for the

parametrization of our effective Hamiltonian8) suggest nonpolar Pbam structure some of the

earlier experimental data were consistent with the polar Pba2 structure that admits a zone
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center polar mode7. In such samples we expect the FE phase to be even closer in energy to

the AFE one.

IV. CONCLUSIONS

In summary, we have developed a computational approach that allows to compute mode

dynamics at an arbitrary point of the Brillouin zone at finite temperatures. The power

of such an approach is that it allows one to “see” the modes that are nearly invisible in

experiments and, therefore, provide an in-depth insight into the dynamics of materials,

including their phase transition. Application of this methodology to the prototypical AFE

PbZrO3 reveals the existence of multiple soft modes in this material both below and above

the Curie point. Two modes are primarily responsible for the phase transition in PbZrO3:

one associated with the oxygen octahedra dynamics, while the other is due to lead ions

dynamics. Within our model the entire branch of the lead ion modes appears to be soft

with the minimum at the Σ2 point of the PBZ. Our work provides the first computational

insight into the dynamics of the phase transition in PbZrO3 which complements the recent

experimental efforts2,3, and proposes a computational tool to study such dynamics in a class

of similar materials for which experimental investigations are challenging.
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FIG. 1. (color online) Temperature evolution of the AFE (a) and AFD (b) order parameters (in

units of the cubic lattice constant of PbZrO3) and 1− c/a ratio (c) from MD computations.
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FIG. 2. (color online) Amplitudes for the components of the complex susceptibility tensors χFE

(a), χAFD (b) and χAFE (c) for representative temperatures above (1400 K) and below (100 K)

the Curie point. In the AFE phase the xx and yy components of the tensor are associated with

the oscillations of the local modes along the antipolar direction, while yy component of the tensor

originates from the oscillations along the nonpolar direction.
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FIG. 3. (color online) Temperature evolution of the intrinsic modes frequencies as obtained from

the fitting of generalized complex susceptibilities χFE (a), χAFD (b) and χAFE (c) [solid symbols].

Open symbols give experimental data from Ref.3. To facilitate comparison between computations

and experiment computational temperatures were rescaled to reproduce experimental Curie point.

In the AFE phase the xx and yy components of the tensor are associated with the oscillations of the

local modes along the antipolar direction, while the yy component of the tensor originates from the

oscillations along the nonpolar direction. In the paraelectric phase qΣ2
= 2π

a
(1/4, 0,−1/4). The

inset to Fig.3(a) gives the components of static susceptibility tensor obtained in computations. TC

indicates the Curie temperature.
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