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The mechanical force from light — radiation pressure — provides an intrinsically nonlinear interac-
tion. Consequently, optomechanical systems near their steady state, such as the canonical optical
spring, can display non-analytic behavior as a function of external parameters. This non-analyticity,
a key feature of thermodynamic phase transitions, suggests that there could be an effective thermo-
dynamic description of optomechanical systems. Here we explicitly define the thermodynamic limit
for optomechanical systems and derive a set of sufficient constraints on the system parameters as the
mechanical system grows large. As an example, we show how these constraints can be satisfied in a
system with Zs symmetry and derive a free energy, allowing us to characterize this as an equilibrium

phase transition.

I. INTRODUCTION

Phase transitions provide a remarkably pow-
erful framework to study phenomena in many
different regimes. While traditionally phase
transitions have been studied in classical, equi-
librium systems, the most fundamental aspect
is the non-analytic behavior of an observable at
large system sizes. Looking more generally to
non-analytic behavior, others have considered
situations that do not meet the strict require-
ments of thermodynamic equilibrium. In par-
ticular, phase transitions have been proposed or
observed in systems that are non-equilibrium?,
dissipative?, dynamical®*, and even quantum
mechanical®®. In non-equilibrium systems, nu-
merous analogies with traditional equilibrium
phase transitions have been explored, e.g., in
lasers'®!! the Gunn effect!?, and in tunnel
diodes'14. These analogies are fairly broad
in consideration, and are readily generalized to
other non-equilibrium, non-linear systems, such
as those studied in optomechanics.

In recent years, scientific advances have en-
abled the creation of numerous optomechanical

systems over a range of scales (see Ref.'® for a
review). These systems combine the engineer-
ability and control of optical systems with the
simplicity of a mechanical harmonic oscillator.
Impressive results, including a self-structuring
of atoms®™® and a buckling of an optomechan-
ical membrane'® suggest that stable structural
rearrangements of the mechanical modes can be
described by an order parameter.

Here we show that the dynamics of the slow
modes (the mechanics) can be described by
an effective thermodynamic theory despite be-
ing an open, non-equilibrium system. Our ap-
proach works provided that the fast modes (the
optics) obey certain properties, analogous to
approaching an optical steady state, defining
our thermodynamic limit. This is conceptu-
ally similar to integrating out high-frequency or
short-wavelength behavior, but here the process
takes a non-equilibrium problem to an equilib-
rium one, in contrast to the usual formulation
of phase transitions. Specifically, we construct a
sufficient set of constraints that allow the defini-
tion of a thermodynamic limit, and phase tran-
sitions, in optomechanical systems. While the



limit we define is possible in some cases, we also
show a generic optomechanical system may not
have such a limit or even be described by a ther-
modynamic potential. We illustrate our general
approach with an example, a phase transition
following'®, showing along the way that these
constraints are satisfied. While our approach
takes into account quantum fluctuations, we do
not consider quantum phase transitions in this
work.

I1II. IDENTIFICATION OF
THERMODYNAMIC LIMIT

We will consider a driven, dissipative sys-
tem comprising many optical modes coupled to
many mechanical modes. Such optomechanical
systems have been realized over a wide range
of scales, from LIGO to nanoscale resonators
or cold atoms'®. Example non-analytic behav-
ior in these systems is depicted in Figure 1.
These systems are, however, far from equilib-
rium. In the limit that the optics respond in-
stantaneously with respect to the mechanical
modes, (i.e., the dynamics for each optical mode
are much faster than any of the mechanical fre-
quencies), we may consider the behavior of the
optical steady state. Typically, this is accom-
plished by adiabatically eliminating the optical
modes and replacing them with steady state val-
ues that depend parametrically on the mechan-
ical modes'”. Here we show that we can con-
struct a limit in which the mechanical steady
state values are effectively thermodynamic, and
identify order parameters in systems with phase
transitions.

To ensure that a thermodynamic description
holds, we need the system to have conservative
dynamics, be stable, have optical forces that are
at least as large as mechanical forces and to only
couple to bath(s) at a single temperature in the
large size limit. Theses constraints (C1-C6) are
enumerated in Table I.

We adopt a Hamiltonian formulation for the
system, then follow the usual conventions to de-
rive Heisenberg-Langevin equations of motion.
As such, we will not specify many of the details
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FIG. 1. Examples of non-analytic behavior in the
steady state mechanics of optomechanical systems.
A. Competition between mechanical and optical
springs creates bistability as a function of laser
power. The stable (unstable) solution is shown as a
solid (dashed) line. B. A membrane-in-the-middle
system shows a Zg phase transition which has either
a first- (with unstable solutions as dashed lines) or
second-order characteristics. C. A cartoon of the
generic system with many mechanical (z,, on the
left) and optical modes (a;, on the right) coupled
optomechanically and with laser drive (£2;) on the
optics.

TABLE I. The constraints for realizing a thermo-
dynamic limit of an optomechanical system.

C1|The optical force must have a vanishing curl.

C2|The total cavity detuning must remain nega-
tive (red-detuned).

C3|The optical force must be comparable to the
mechanical restoring force.

C4|The linearized optical restoring force must re-
main comparable to the mechanical restoring
force.

C5|The optically induced damping in the lin-
earized equations must vanish.

C6|The optically induced noise in the linearized
equations must vanish.




of the Hamiltonian, instead focusing on the re-
sulting equations of motion. Still, in principle
our system plus bath is described by

H = Hopt +Hmirror+Hmech+Hoptbath+Hmechbat(h)7
1
where all terms with optical mode operators are
assumed to be bilinear or linear in such opera-
tors, but may also depend upon the mechanical
degrees of freedom. This means that we can
write down equations of motion for the optical
modes that have no troubles with commutator
order, but the addition of optical loss through
the mirror into the optical bath will lead to
an effective, non-Hermitian picture in the equa-
tions of motion approach.
The system obeys the following equations
(in the frame rotating with the laser drive fre-
quency for each mode):

di = iAij({wp})aj — ZQl + %ffaﬁ-”

(2)
(3)
Py =Kz, —Tup, + ajauAij({xp})aj

+VTwpy (4)

where we use Einstein summation notation,
with optical modes, a;, indexed by roman in-
dices, coupled to the set of mechanical modes,
represented by z,, p,, indexed by greek in-
dices. Ajj({z,}) = Ay({zp}) + 5ki5({p})
is the non-hermitian matrix, due to Hgpy +
Hivror + Hoptbath, which describes the dynam-
ics of the optical modes in addition to all of
the couplings to the mechanical modes. We
note that this generic coupling includes stan-
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Ty = M v Pv

EpyuayFﬂ = _Epu,u, (aVAIl({XP})

where we have used the fact that partial deriva-

1
AlL (X))

+ aMAil({Xp})m

dard dispersive couplings (i = j), beam-splitter-
like terms (i # j), and dissipative couplings.
M,,, K,,, and I'y,, are the matrices, due to
Hioeh + Hinechbath, giving the effective masses,
couplings, and decay rates for the mechani-
cal modes. €); is the laser drive, »{¥ is the
decay rate matrix for the optical baths, and
aé", p are the fluctuations of corresponding
optical and mechanical bath fluctuations, re-
spectively. We note that the derivatives of A;;
with respect to mechanical coordinates corre-
spond to the vacuum radiation pressure force.
Thus, when the optical modes have finite occu-
pation, we will have a finite force.

To separate the steady state effects from the
fluctuations, we make the following expansion:

a; = A; + 0a; (5)
Ty = Xy + 0z (6)
pu =Py +opu . (7)

where the capital letters (A;, X,,, P,) represent
the noiseless, classical variables and the § vari-
ables are proportional to the fluctuations. We
can consider the noiseless variables in the opti-
cal steady state (4; = 0) and study the induced
force on the mechanical modes.

FPt = AT{X, D0, A5({X D A;({X0)) - (8)

Our first requirement (C1) is that the curl
of this force vanishes, €,,,0,F, = 0. If this
requirement holds, then the mechanics can be
described by a conservative potential. This curl
has the form:

0uBmi ({X,})

ey 2B () )14,

(

tives commute. There are many possible in-



stances where the curl vanishes. Some example
cases are: if there is only a single mechanical
mode; a single optical mode; or if A;;({z,})
is hermitian - though the lack of damping in
the optical modes may violate our adiabatic as-
sumption. We will show a simple case where a
non-hermitian A;;({z,}) possesses a potential
and describes a system with a phase transition.
Intriguingly, cases with two or more damped
optical modes and multiple mechanical modes
generically have a curl, owing to the matrix na-
ture of A;;({z,}) and the inclusion of optical
loss. Though these cases may have interest-
ing dynamics, including potentially topological
properties and limit cycle behaviors, we will not
focus on them here.

In the case where the curl vanishes, we need
to ensure additional constraints hold to use
equilibrium statistical mechanics to describe
our system. We need the optical modes to re-
main red-detuned overall (C2) otherwise insta-
bility (via gain) will result. We also require that
the optically induced forces remains comparable
to the mechanical restoring force in {X,} (C3)
and in {6z,} (C4) otherwise the system simply
becomes mechanical. While C3-C4 are identical
in linear systems, they are distinct in more com-
plicated systems. In stable, open systems con-
sidered here, there are (at least) two baths, one
optical and one mechanical. For a well-defined
(single-temperature) thermodynamic limit, we
need the mechanical system to experience a sin-
gle temperature bath. These restrictions (C5-
C6), linked by the fluctuation-dissipation the-
orem, mean that both the optically-induced
mechanical damping and optically-induced me-
chanical noise must vanish in our limit.

To find the optically-induced forces and the
corresponding damping and noise, we study
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the linearized dynamics of the fluctuations
(0a;, 0z, dp,) which contain the influence from
optical and mechanical noise. To first order, the
linearized variables have the following equations
of motion:

0a; = iAij({Xp})Mj +i0, 85 ({ X, }) 8,4

+ al” (10)
di, = MM_V (5p,, (11)
Spp = — K 0m, + AT0, A ({X,})da;

+6al0, Ay ({X,1)A

+ A18,0,A:({X,})0z, A,

—Tywpy +/Topl (12)

where a'", p“ are the bath-induced fluctua-
tions in the optical and mechanical modes re-
spectively.

This is a set of linear equations and can be
solved. The solution determines the local stabil-
ity of the system, and can include both damp-
ing and gain, depending upon the sign of the
real part of eigenvalues of A;;({X,}). We note
that this linearized theory is entirely compati-
ble with the full quantum system, but may not
capture the full phase diagram of the system
outside of our area of focus — particularly in the
regime of limit cycle or oscillator behavior.

We now examine the linear regime in de-
tail. In both the noiseless and linearized equa-
tions, we need the optical forces to be compa-
rable to the mechanical forces (C3-C4). Follow-
ing our steady state assumption for the optical
modes, 4; = A;;({X,})"'Q;, we can Fourier
transforrn the equations for the fluctuations,
da;(t) = [ dwa;(w)e™™*, expanding in w:

—i\ [ (13)

. 1 ~ 5
- Z\/;ak ) +W {Xp}) X A ({Xp T AL,

(14)



where we assume the noise fluctuations are
small compared to the optomechanical term

(Ivza] < 14k B { X, )il ).

Now, inputing the expanded ‘steady state’
optical modes into the Fourier transform of
equation 12, we see a coupling to the optical
bath which could disrupt the emergence of a
thermodynamic limit. These damping and noise
effects from a; must vanish for the mechanics to
have a single bath (C5-C6). These six require-
ments, listed in Table I, form a set of condi-
tions which must be satisfied as the mechanical
modes go to their thermodynamic limit (we en-
vision X,, o« V¥, o > 0, where V' is the volume
of the mechanical resonator and V' — o0). In
Figure 2, we show a simplified view of our ap-
proximation and thermodynamic limit process.

If all of these conditions (C1-C6) are met,
then the mechanical modes will experience a po-
tential modified by the optics but will not have
any additional damping or noise contributions.
In this case, the modes will thermalize only to
the mechanical reservoir, with no contribution
from the optical reservoir. In such a situation,
we can compute the partition function and upon
integration of the mechanical modes, determine
a free energy for an order parameter if one exists
in the system.

There are interesting systems which do not
meet these conditions, however, we restrict our-
selves to the case where our effective thermody-
namic theory applies. In particular, we demon-
strate the existence of a Zs phase transition in
the defined thermodynamic limit of an optome-
chanical membrane-in-the-middle system.

III. THE THERMODYNAMIC LIMIT
FOR THE Z, SYSTEM

We consider an optomechanical system with
two optical modes, a2, coupled oppositely to
a single mechanical mode, z, with resonant fre-
quency £2,,, where each optical mode has equal
drive and decay, (12 = Q, K12 = K),. Ex-
plicitly, we define Ay; = Ay 4+ gx and Agyy =
Ay — gz, where Ay = Ay = A is the detun-
ing of the modes when x = 0. As an exam-
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FIG. 2. A schematic view of the thermodynamic
limit we construct. A. The original system is a
generic, driven optomechanical system with an arbi-
trary number of optical and mechanical modes. B.
Using our adiabatic assumption, we use the steady
state values for the optical modes, which results in
an effective force on the mechanics, including a ther-
mal component from the optical bath. C. Following
the constraints, we ensure that the force in B is con-
servative (C1), stable (C2), comparable to the me-
chanical force (C3-C4), and that the optical bath
fluctuations are negligible (C5-C6), resulting in a
mechanical system with a modified potential.

ple, one can consider a cavity with a dielectric
membrane-in-the-middle!%1829 where we drive
two modes with opposite responses to the mem-
brane motion, depicted in Fig. 1B. This system
has been realized experimentally and shows the
characteristics of a phase transition'%, which we
expand upon.

To demonstrate that such a system has a
thermodynamic limit, we need to determine
how the above constraints (C1-C6) are held. We
choose the ‘bad cavity limit,” k; > €,,,y, such



FIG. 3. Two possible realization of the thermo-
dynamic limit for the membrane-in-the-middle sys-
tem. In the upper figure, we imagine the cavity
growing with the membrane, while the finesse de-
creases to ensure k stays large. In the lower figure,
we consider shrinking the cavity, which meets our
constraints so long as the finesse does not increase
more quickly than the cavity shrinks. In each case,
the power required to satisfy the other constraints
grows.

that the optical decay is much faster than any
|

mechanical frequency. Cl1 is satisfied immedi-
ately because the curl of a one-dimensional force
vanishes identically. We expand the variables
(a1,a2,z,p) and imagine that X « V¢ — oo, as
above. We also consider the scaling of the mem-
brane mass, m = pV, the coupling, g = w.d ™!,
and the cavity decay, kK = cd 'F~! where p
is the mass density and w,,d, F are the cavity
frequency, length, and finesse, respectively. We
can consider a variety of options for the cavity
length, d, and adjust the other parameters, such
as finesse and cavity frequency, to ensure the fol-
lowing scaling arguments hold. Two options for
the cavity scaling are depicted in Figure 3. With
C1 automatically satisfied, the rest of the con-
straints become a set of scaling relations that
determine a region of parameter space in which
the defined thermodynamic limit exists.

To ensure the cavity stays red-detuned (C2)
we must impose that A « —|gX|. Taking the
steady state solutions for A;, a; as described
above, we can derive the optically induced force,
damping, and noise in order to quantify the re-
maining constraints. The optical and linearized
optical forces (C3-C4) are:

Fort — — dhg A (15)
(A2 + %2)2 +2g2X2(%2 — A2) 4+ g4 X4
o ARgPAQP (A% 4 )% + 20 X3(A% 4 ) - 3g4X7)
fOP —_ — 6m ) (16)

The optical force must be comparable to
m$2 X, while the linearized optical force must
be comparable to mQ?2 dz. Since mQZ re-
mains finite in 2D, the coefficient of these op-
tical springs must not vanish. Given the lin-
ear nature of the coupling, C3 and C4 are
identical constraints which are satisfied when
122 > e3]gX|? and & < c4]gX|, where c3, ¢y are
fixed constants, and we used C2 to achieve this

(A2 + £2)2 4 22X 2(52 — A?) + g4X*4)”

(

result.

Having established that the force is relevant
for the steady state position and its fluctua-
tions, we can consider dissipative effects. The
damping and noise will be carried into the me-
chanical equations from a. These terms must
vanish if we are to achieve the desired single
temperature bath (C5-C6). The damping is:



AngP I Ak (50X + g X1 (5A% + %) + 3g2X2(5; — JA%2 — 3AY) — (A% + 5)°)

VP =

which, following C1-C4, scales at most as |£;§?
and thus vanishes as X — oo, satisfying C5.
Finally, we consider the optically induced

noise (C6). These noise terms have the form:

hg|Q2 iin
b, = VR g
(A£gX)+ %)

where b;y,, is the noise term in p and ¢ = 1,2
determines the sign of the gz.

These terms should be considered in relation
to the mechanical noise, i.e., we should com-
(6! ybin)
<P2-L,,me>
mechanical bath. Assuming the mechanics have

an ohmic bath, this ratio is:

pute where p;, is the noise from the

(Pl pin)

B2 2|02k |
(A +gX)2 + £2)* 2myke T
(19)

where the plus (minus) corresponds to by (a).
Following the scaling from above, this term

. . hQ2

is proportional to 2gX«7§c:T = Q;}gﬁ, where
RQ2, . .

Qmq = “hRF s the quantum @ for the oscil-

lator. From above, we need k < ¢4]/gX| but we
also need to consider how Qg behaves in the
thermodynamic limit. From the scaling of X,
we have Qmq X V%”v which vanishes so long as
v > ¢5V 722, i.e., if the mechanical noise stays
finite, it will overwhelm the optically induced
noise and form the dominant noise contribution.

With this final constraint in place, we have
demonstrated that our optomechanical system
has a well defined potential with only relevant
coupling to a single bath in the thermodynamic
limit, which can be described by equilibrium
statistical mechanics.

m (A2 4 52)2 £ 202X 2(52 — A2) 4 g4x4)°

)

(17)

IV. THE FREE ENERGY OF THE Z,
SYSTEM

We generalize this analysis to include many
mechanical modes, such as those present in a
membrane, each coupled to the optics in the
same fashion (though, potentially with differ-
ent values of g). We compute the partition
function for these membrane modes and the op-
tically induced potential. We will consider a
membrane with the displacement field u(r,t),
conjugate momentum 7(r,t), a mass density p,
and a Young’s modulus, Y. As an order param-
eter, we identify O(t) = [ d?zg(r)u(r,t), which
appears in the optical potential, V(O). We can
write the classical membrane Hamiltonian and
the full partition function including the optical
potential:

= 2
P
+ f(r,t)u(r,t)] (20)
7 = / DuDrdOd e PHum+V(0))

ei)\(Off drg(r)u(r,t)) , (21)

where f(r,t) is an external force that might
break the symmetry, and we have added the
order parameter, O, in as an auxiliary field.

After transforming to Fourier space and inte-
grating out the membrane momentum, =, dis-
placement, u, and A\, we can rewrite the par-
tition function (up to normalization factors)
purely in terms of the order parameter O, re-
naming the effective ‘spring constant,” & =
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(mee)
Eoz, :

Z':/dO[exp -3

Do |

(0-x8t)
x exp (—BV(0))] , (22)

where g, fr are the Fourier components of the
optomechanical coupling and external forces re-
spectively. From Eqn. 22, we can perform the
integral and compute the free energy, F:

_!
B

Since O grows with system size (and the po-
tential along with it), only the minima of the
effective potential will have finite energy in the
thermodynamic limit. These correspond to the
usual saddle points in steepest descent approx-
imations.

The locations of the minima of F' change non-
analytically as a function of laser power, result-
ing in a phase transition in the steady state of
the coupled mode. Intriguingly, the order and
onset of the phase transition are strongly depen-
dent on the detuning of the optical modes from
the cavity. To see this behavior, we study the
values of the order parameter O which give zero
‘force’. We compute the zero force condition:

0=kO (1- .
O +207(%

F log Z' . (23)

A
—A (AT )
(24)
where we define A = w7 where Q is
the coupling to the laser drive. This quantity is
positive since we are considering red-detuning
(A < 0) and is proportional to the input laser
power. We also note that the second term has
even parity, so solutions with O # 0 will ap-
pear in pairs, providing the Zs symmetry of the
steady state solutions anticipated.
The general solution for the non-trivial phase

(O #£0) is
2
02 = A? - % VA A2 (25)

For the solution to be valid, the right hand side
needs to be real and positive. Enforcing real-
ness, A > A%x2. Recalling that A is propor-
tional to laser power, this constraint gives the
minimum laser power for a transition to occur.
To ensure positivity, we have to consider two
cases, |A| < § and |A] > %. In the first case,
the square root term must be larger than the
first two terms, so only the positive root can be

a solution. For that to be the case, we need
2 2
A= A2 > (’1 - AQ)
K 2 ’ 2 2
K2 9 2
A> (" +4a%) (26)

When this equation is satisfied, there is only
one solution for O%. This case corresponds to
a double well potential where the wells split
from O = 0 as power is increased. The O =0
solution becomes unstable and represents the
peak of the barrier between the two wells at
O = £0,. However, in the case where |[A| > &,
once A > A2k2, a triple well develops with min-
ima at O = 0,£0,4, where Oy, is the larger
solution. We will show below that the smaller
solution, O,_, is unstable and forms the peaks
of the barriers.

To study the stability of the solutions, nec-
essary for the steepest descents approximation,
we determine the local curvature of the poten-
tial at each of these critical points by computing
the second derivative of the potential, 93V (O).

. 2
Defining v = O? and D(u) = u?+2u(% —A?)+

2 .
(A% + £-) for convenience,

kOA

OBV (0) =k [1 — D(a)?

D' (u)20 .

(27)
The O; = 0 solution is stable but decreasingly
so until % = 1 (which is the power at which

as the |A] < § case buckles) and the solution
becomes unstable.
In the buckled state, we see the mechani-

cal spring constant drops out immediately and

ik



the curvature is controlled by the optical re-
sponse. The sign of the curvature is deter-
mined by D'(02,) = +2v/A— A2x2. There-
fore, when |A| > £, the smaller solutions are
unstable, leading to a first order phase transi-
tion, while the outer solutions and the solutions
for |A| < % are stable with a new optically de-
termined spring constant. Thus, as a function
of laser power, the steady state of the membrane
will either experience a 1st or 2nd order phase
transitions which spontaneously breaks the Zo
symmetry of the potential.

V. CONCLUSION

We have developed a set of constraints on
optomechanical systems under which an effec-
tive equilibrium thermodynamic phase transi-
tion can be defined. These constraints, de-
scribed in Table I, allow the mechanics to ex-
plore an optically modified potential in a regime
where the effects of optical fluctuations are over-
whelmed by mechanical ones such that it equi-
librates to the mechanical bath temperature.

Exploring this limit, we define a system which
possesses a phase transition of either 1st or
2nd order, controlled by the system parame-
ters. Specifically, our theory supports the ex-
perimental observation of spontaneous Zs sym-
metry breaking corresponding to the buckling
of the mechanical spring'®.

We also find, more generally, that optome-
chanical systems which do not have conserva-
tive dynamics are generic, and are not well un-
derstood in our thermodynamic limit. Analy-
sis of these systems may point to topological
physics and connect with other related optome-
chanical systems, such as those with exceptional
points?!. While experimental efforts have in-
cluded the ability to cool the mechanical sys-
tem to its ground state??, determining whether
our framework for phase transitions persists at
the quantum level will require further analy-
sis to handle the effects of quantum fluctua-
tions. However, the possibility of observing
quantum phase transitions which spontaneously
break symmetry remain quite compelling and
will drive future theoretical work.
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