
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Frozen mode regime in finite periodic structures
Huanan Li, Ilya Vitebskiy, and Tsampikos Kottos

Phys. Rev. B 96, 180301 — Published  8 November 2017
DOI: 10.1103/PhysRevB.96.180301

http://dx.doi.org/10.1103/PhysRevB.96.180301


Frozen Mode Regime in Finite Periodic Structures

Huanan Li,1 Ilya Vitebskiy,2 and Tsampikos Kottos1, 3

1Department of Physics, Wesleyan University, Middletown CT-06459, USA
2Air Force Research Laboratory, Sensors Directorate,
Wright-Patterson Air Force Base, OH- 45433, USA

3KBRwyle, Dayton, OH 45431

Periodic structures with Bloch dispersion relation supporting a stationary inflection point (SIP)
can display a unique scattering feature, the frozen mode regime (FMR). The FMR is much more
robust than common cavity resonances; it is much less sensitive to the boundary conditions, struc-
tural imperfections, and losses. Using perturbation theory, we analyze the FMR in the realistic case
of a finite fragment of a periodic structure. We show that in close proximity of SIP frequency, the
character of the FMR is qualitatively different from the known case of a semi-infinite structure.

Introduction –The ability to engineer composite struc-
tures with predefined wave dispersion is extremely im-
portant in acoustics and electrodynamics1,2. An out-
growth of this development was the realization of pho-
tonic structures which are now routinely used to con-
trol light propagation, as well as to modify all kinds of
light-matter interactions. An important example is the
possibility to drastically reduce the wave group velocity
vg = ∂ω/∂k in periodic photonic structures, which is
widely used for miniaturization and the enhancement of
light-matter interaction. There are many ways to achieve
a vanishingly small vg. An obvious example is a photonic
band edge, where the Bloch dispersion relation can be ap-
proximated as ω(k) − ω0 ∝ (k − k0)2 . Another type of
slow wave is associated with a stationary inflection point
(SIP), where the Bloch dispersion relation has the form
ω(k)−ω0 ∝ (k−k0)3. A SIP is associated with the frozen
mode regime (FMR)3,4 characterized by nearly total con-
version of an input light into a slow (frozen) mode with
dramatically enhanced amplitude. The FMR is not a res-
onance; unlike common Fabry-Perot (cavity) resonances,
the FMR is not particularly sensitive to the size of the
photonic structure and the boundary conditions. The
FMR can tolerate much stronger losses and structural
imperfections than any known cavity resonance. Finally,
in a combination with non-reciprocity, the FMR can lead
to the phenomenon of electromagnetic unidirectionality5

which, in the presence of gain, can result in a cavity-less
unidirectional lasing6. Due to the underlying mathemat-
ical complexity, the FMR has been fully analyzed only
in semi-infinite periodic multilayered structures7–9 and
multimode waveguide arrays10–12.

Here we are investigating the scattering problem for
a finite multi-mode structure, whose periodic counter-
part display SIPs. Using an abstract transfer matrix
(TM) formalism together with a matrix perturbation ap-
proach, we studied the transmission characteristics of
such set-ups in the FMR. We derived theoretical expres-
sions for the energy flux carried by the slow propagat-
ing mode(s) and identify a new scaling behavior with
respect to the frequency detuning. Specifically, we find
that the energy fluxes, associated with the slow propa-
gating mode(s), undergoes a transition at critical sample
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FIG. 1. (a) Schematic of the tight-binding model. The
couplings κ1,2 = 5 and the on-site potential κ0 = 5 are
indicated in the figure. (b) A pair of symmetric SIP at
ω(±k0 = ±π/2) = −5. (c) The absolute value of the normal-
ized (to the net flux) modal energy flux for the total prop-
agating |Sp| = |Sf

p + Sb
p| and the two pairs of evanescent

|Sev| = |S−
ev + S+

ev| modes versus ν for three different sample
lengths N1 = 32, N2 = 64, N3 = 128. Vertical solid lines in-
dicate νC ∝ 1/N3

C , see Eq. (8). (d) The normalized modal
energy fluxes (linear scale) associated with each of the prop-

agating S
f/b
p and pair of evanescent S∓

ev modes for N = 128.
The super- indeces ∓ in Sev indicate that the corresponding
pair is associated with the T∓ blocks (see Eq. (2)).

lengths LC ∝ |ω − ωSIP|−1/3 from an Sp ∼ O(1) be-
havior (characteristic of semi-infinite structures) to an
Sp ∝ |ω − ωSIP|−2/3 law. The latter divergence is bal-
anced by a simultaneous development of an energy flux
carried by pairs of evanescent modes.

Transfer Matrix Formalism near SIPs– We consider
(finite) periodic composite structures whose infinite
counterpart has a dispersion relation ω(k) which supports
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a SIP at some frequency ωSIP. In the absence of any non-
reciprocal elements, the dispersion relation is reciprocal
ω(k) = ω(−k) and therefore an ωSIP is associated with
two counter-propagating slow modes at ±kSIP. In such
structures, two sets of three modes are responsible for
SIPs at ±kSIP.

The wave propagation is analyzed using the TM ap-
proach. The TM T (z, z0;ω) connects the wave ampli-
tudes (in mode space– see Ref.13 for a coupled mode the-
ory implementation) Ψ of a monochromatic wave at two
different positions z and z0 through the relation Ψ (z) =
T (z, z0;ω) Ψ (z0). For the specific case of periodic struc-
tures, the TM of a unit cell T (ν) ≡ T (1, 0;ω0 + ν) dic-
tates the transport. Here we assumed that the length of
the unit cell is Luc = 1, ω0 = ωSIP and ν is the frequency
detuning.

We consider a minimal model for which the unit TM
T (ν) is 6 × 6 and it is analytic around the SIP. Since a
symmetric spectrum develops two SIPs at ν = 0, T (0)
can be represented by its Jordan normal form as

T (0) = g0 (0)

(
J− 0
0 J+

)
g−10 (0) ;J± ≡ e±ık0

 1 1
1 1

1

 ,

(1)
where g0 (0) =

[
j−0 , j

−
1 , j

−
2 , j

+
0 , j

+
1 , j

+
2

]
is an invertible 6×

6 matrix with columns given by the Jordan basis vectors
and ±k0 = ±kSIP. When ν 6= 0 (but still ν → 0), T (ν)
reduces to its normal form3,14,15

g0 (ν)
−1 T (ν) g0 (ν) =

(
T− (ν) 0

0 T+ (ν)

)
, (2)

where T± (ν) = J± + T±1 ν + · · · ≡ e±ık0 (I3 + Z± (ν))
and the matrix g0 (ν) depends analytically on ν in the
vicinity of ν = 0.

Next we focus on the eigenvalue problem associated
with the individual blocks of the normal form Eq. (2).
Let us consider, for example, the block matrix T− (ν) or
its equivalent problem associated with the matrix Z− (ν).
Simple-minded normal perturbation theory is not use-
ful in cases like ours when the leading term of the op-

eration expansion is nilpotent i.e. (Z−(0))
3

= 0. In-
deed in such cases the standard Taylor series assumed
for the eigenvalues is not the appropriate expansion;
rather one has to develop the eigenvalue perturbation
expansion using a Puiseux series14,15. Nevertheless, a
singular perturbation theory provides a recipe to “re-
construct” the appropriate operator expansion after iden-
tifying the correct leading order term15. Using this ap-
proach we have found that Z− (ν) = Z−0 (ν̃) +Z−1 ν̃+ · · ·

where Z−0 (ν̃) ≡

 0 1 0
0 0 1
0 0 0

 + ν̃

 0 0 0
0 0 0
1 0 0

 and ν̃ ≡

[Z− (ν)]31 = −ı 3!
ω′′′ (−k0)

ν +O
(
ν2
)
.

The diagonalization of Z−0 (ν̃), gives

G−10 (ν̃)Z−0 (ν̃)G0 (ν̃) = ν̃1/3Λ0; Λ0 = diag (c0, c1, c2) ,
(3)

where cn ≡ eı
2π
3 n and the similarity transformation ma-

trix G0 (ν̃) is a Vandermonde matrix16 of order 3. Fur-
ther, the diagonalization process for Z− (ν̃) (or equiva-
lently T− (ν)) can be continued order-by-order, leading
to the following compact form

e−SG0 (ν̃)
−1
T− (ν)G0 (ν̃) eS

=e−ık0
(
I3 + ν̃1/3Λ0 + ν̃2/3Λ1 + · · ·

)
, (4)

where the matrix S ≡ S
(
ν̃1/3

)
= ν̃1/3S1 + ν̃2/3S2 + · · ·

and Λ1, · · · are diagonal matrices. A similar treat-
ment applies for the eigenvalue problem associated with
T+ (ν).

This approach allows us to evaluate perturbatively the
eigenvalues θ∓n (ν) and the eigenvectors f∓n (ν) of the unit
TM T (ν). We get

T (ν) f∓n (ν) = θ∓n (ν) f∓n (ν) , n = 0, 1, 2 (5)

θ∓n (ν) ≈ eı(∓k0+λ
∓
n ); λ∓n (ν) ≡ α∓0 cnν1/3

f∓n (ν) ≈
[
1− ıσ∓2 λ∓n + η∓ (λ∓n )

2
]
j∓0

+
[
ıλ∓n − σ∓1 (λ∓n )

2
]
j∓1 − (λ∓n )

2
j∓2

where α∓0 =
(

3!/ω
′′′

(∓k0)
)1/3

, η∓ = γ∓3 − γ∓1 +

1
2

((
σ∓1
)2

+ σ∓1 σ
∓
2 −

(
σ∓2
)2)

, σ∓l = 1
3

[T∓1 ]
l+1,l

[T∓1 ]
31

, γ∓l =

1
3

[T∓1 ]
l,l

[T∓1 ]
31

and j∓n is the Jordan basis of T (0).

We assume that ν → 0+ and that the incident wave
is entering the finite structure from the left interface at
z = 0; for an example see the dispersion relation in Fig.
1b. We can now decompose any wave inside the struc-
ture to the forward (backward) propagating f−0 (f+0 ) and
evanescent f−1 , f

+
2 (f+1 , f

−
2 ) modes and thus evaluate the

associated conversion coefficients. We shall also analyze
the energy flux carried from these modes and determine
their scaling with respect to detuning ν.

Conversion Coefficients – We consider that the fi-
nite structure consists of N periods of the unit cell.
In contrast to the semi-infinite case3,10, finite struc-
tures involve two interfaces at z = 0 and z = N and
therefore both forward and backward modes can par-
ticipate in the scattering process. When ν → 0+, the
eigenmodes Eq. (5) associated with different blocks in
Eq. (2) become degenerate within the specific block.
This observation forces us to construct a new “well-

behaved” basis Bfb =
{
f−0 , f̃

−
1 , f̃

−
2 , f

+
0 , f̃

+
1 , f̃

+
2

}
, where

the new basis vectors f̃∓1 =
f∓1 −f

∓
0

ıα∓0 ν
1/3(c1−1)

and f̃∓2 =

− 1

3(α∓0 )
2
ν2/3

(
c2f
∓
2 + c1f

∓
1 + f∓0

)
together with f±0 , are

independent in the limit of ν → 0+.
Next we couple semi-infinite leads to the left and right

of the structure. We assume that the leads do not develop
any spectral singularity around ω0. We then request con-
tinuity of Ψ(z) at the interfaces at z = 0, N together with
the scattering condition that the incident wave enters the
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structure from the left i.e. that the coefficients of the
backward modes on the right leads are zero. Finally the
identification of the appropriate (non-degenerate in the
ν → 0 limit) basis guarantee that the scattering problem
has unique solution and that the expansion coefficients
{ϕ+

1 , ϕ
+
2 , ϕ

−
3 , ϕ

−
1 , ϕ

−
2 , ϕ

+
3 } of Ψ (z = 0+) in the basis Bfb

exists for any incident wave.
Obviously the specific values of the expansion co-

efficients depend on the particular form of the inci-
dent wave. Nevertheless some features are independent
of the incident waveform; we find, for example, that
ϕ±l (ν) = ϕ±l (0) + O

(
ν1/3

)
while the envelopes scale as∣∣ϕ±3 (0)

∣∣ ∼ O (N−1) and
∣∣ϕ±j (0)

∣∣ ∼ O (N0
)
, j = 1, 2., in

the large N limit. Correspondingly, in terms of the eigen-
modes of T (ν), the expansion of Ψ (z = 0+) is given as

Ψ (z = 0+) =
∑
σ=±

[
−ϕ−σ3

3(λ−σ0 )
2 +

−ϕσ2
ı(c1−1)λ−σ0

+ ϕσ1

]
f−σ0

+

[
−c1ϕ−σ3

3(λ−σ0 )
2 +

ϕσ2
ı(c1−1)λ−σ0

]
f−σ1 +

[
−c2ϕσ3
3(λσ0 )

2

]
fσ2 , (6)

where σ = +/− correspond to forward/backward modes.
Substitution of the scaling expressions for the expansion
coefficients ϕ±l together with λ−σ0 (see Eq. (5)) in Eq.
(6), allow us to estimate the scaling of the conversion
coefficients. Specifically we find that each of the square
bracket terms in Eq. (6) scale as

[· · · ] ν→0−−−→ β2/(Nν
2/3) + β1/ν

1/3; (7)

where β1,2 are some constants independent of N and ν.

Equation (7) signifies a scaling transition from 1/ν2/3

(small samples) to 1/ν1/3 (large samples) at some critical
sample length

LC = LucNC ∝ Luc/ν
1/3. (8)

While the latter scaling law for the conversion coefficients
is already known from the case of semi-infinite structures,
the former one is completely new and a trademark of the
finite length nature of the scattering setting.

Modal energy flux – We now turn our focus on the
consequences of the scaling (7) in the modal energy flux.
First we recall that near a SIP the Bloch dispersion re-
lation takes the form ω − ω0 ∝ (k − k0)

3
. The group

velocity of the slow propagating mode(s) is

vg =
∂ω

∂k
∝ (k − k0)

2 ∝ (ω − ω0)
2/3

(9)

while the associated energy flux contribution Sp is

Sp = Wpvg ∝Wpν
2/3 (10)

where Wp is the energy density of the slow propagat-
ing mode. An estimation for the scaling of Wp is
provided from the behavior of the conversion coeffi-
cients associated with f±0 , see Eqs. (6,7), i.e. Wp ∝∣∣β2/Nν2/3 + β1/ν

1/3
∣∣2. In other words, Wp undergoes a

transition from an 1/ν4/3 (for N < NC) to an 1/ν2/3 (for
N > NC) scaling with respect to the detuning ν.

In the latter limit of “semi-infinite” samples the sole
contribution to the energy flux comes from the slow mode
and thus S = Sp = Wpvg ∼ O(1), as expected also from
previous studies3,10 (see17). In contrast, in finite scatter-
ing set-ups, the contribution Sp from the slow propagat-
ing mode(s) to the total energy flux S is

Sp = Wpvg ∝Wpν
2/3 ∝ ν−2/3 (11)

where we have used Eq. (10) together with the scaling
behavior of Wp for short samples.

The anomalous scaling Eq. (11) of the modal energy
flux of the propagating modes near the SIP can be bal-
anced only by the same type (but different in sign) of
divergence of modal energy flux Sev carried by the two
pairs of forward and backward evanescent modes. This
is necessary in order to get a total energy flux S ∼ O(1)
and it is a new feature associated with the fact that the
scattering set-up is finite. Below we will check these pre-
dictions using some simple numerical examples.

Tight-binding model – We first consider a tight-binding
(TB) model supporting a symmetric dispersion rela-
tion with two SIPs, see Fig. 1a,b. This system can
be realized as a quasi-one-dimensional array of coupled
resonators18–20. The system consists of M = 3 chains
of coupled resonators where the resonators of each chain
have equal nearest-neighbor coupling (set to be 1 as cou-
pling unit). The vertical inter-chain coupling between
the nearest chains is κ1. In addition, the resonators at
the first two chains have an on-site potential contrast κ0
(with respect to the resonators of the third chain) and
they are also coupled via an inter-chain diagonal cou-
pling κ2. In this TB model a monochromatic wave is
described by

ωE
(1)
l = E

(1)
l−1 + E

(1)
l+1 + κ1E

(2)
l + κ2E

(2)
l+1 + κ0E

(1)
l

ωE
(2)
l =E

(2)
l−1 + E

(2)
l+1 + κ1

(
E

(1)
l + E

(3)
l

)
+ κ2E

(1)
l−1 + κ0E

(2)
l

ωE
(3)
l = E

(3)
l−1 + E

(3)
l+1 + κ1E

(2)
l , (12)

where E
(m)
l is the field amplitude at the site l of the chain

m. Substituting E
(m)
l = A(m)eıkl in Eq. (12), we get

ωuA = DuA; D ≡

 ε(k) v(k) 0
v∗(k) ε(k) κ1

0 κ1 2 cos k

 (13)

where ε(k) = 2 cos k + κ0, v(k) = κ1 + κ2e
ık and uA =(

A(1), A(2), A(3)
)T

. Then the dispersion relation ω (k) is
obtained by setting det (D − ωI3) = 0. Generally there
are three bands for this model and we mainly focus on
the band supporting SIPs characterized by ω′ (±k0) =
ω′′ (±k0) = 0 and ω′′′ (±k0) 6= 0. An example is given in
Fig. 1b, where for the parameter values κ0 = κ1 = κ2 = 5
and SIPs at ±k0 = ±π2 and ω0 = −5.
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FIG. 2. (a) A multilayered photonic structure with ω(k) 6=
ω(−k)17. (b) The dispersion relation of the structure supports
one SIP with one forward slow propagating and two evanes-
cent modes. (c) Scaling of modal energy flux for the (sum
of) propagating |Sp| = |Sf

p + Sb
p| and the pair of evanescent

|Sev| modes versus the frequency detuning ν for three differ-
ent sample lengths N1 = 32, N2 = 64, N3 = 128. Vertical
lines indicate the scaling law Eq. (8) (d) The modal energy

fluxes associated with each of the propagating S
f/b
p and pair

of evanescent S−
ev modes for N = 128.

The scattering sample is attached to the left and to
the right with semi-infinite leads, which are composed of
three decoupled chains with constant nearest-neighbor
coupling κL in each chain. Thus the leads support
a traveling wave whenever its frequency is within the
band ω(kL) = 2κL cos kL where −π ≤ kL < π. The
field amplitude in each lead-chain can be written as

a sum of two counter-propagating waves, i.e., E
(m)
l =

a(m)eı|kL|l + b(m)e−ı|kL|l. In the simulations, we assume
κL = 4 so that b(m) represents the amplitude of incoming
waves since vg ≡ ∂ω

∂kL

∣∣−|kL| > 0.

Finally the energy flux through a section l in the scat-
tering domain is defined using the continuity equation,

d

dt

[∑
m

E
(m)∗
l E

(m)
l

]
= Fl−1→l − Fl→l+1 (14)

where Fl−1→l ≡ 2Im
[∑

mE
(m)
l−1E

(m)∗
l + E

(1)
l−1κ2E

(2)∗
l

]
denotes the flux flowing from section l − 1 to l. At the
same time the field amplitudes can be parametrized as

E
(m)
l−1 = a

(m)
l−1 +b

(m)
l−1 and E

(m)
l = a

(m)
l−1e

ık+b
(m)
l−1e

−ık, where
ω = 2 cos k and k is generally a complex number. The

self-consistency requirements impose E
(m)
l ≡ a

(m)
l−1e

ık +

b
(m)
l−1e

−ık = a
(m)
l + b

(m)
l , which together with Eq. (12) al-

lows us to calculate the unit TM T (ν) such that Ψl =

T (ν) Ψl−1 where Ψl ≡ (a
(1)
l , b

(1)
l , a

(2)
l , b

(2)
l , a

(3)
l , b

(3)
l )T .

We now analyze numerically the scaling of the modal
energy fluxes of the TB model Eq. (12). First we have
verified that Eq. (1) is valid for T (0) using the aforemen-
tioned parameters. In Fig. 1c we report our numerical
findings for the modal energy flux associated with the
slow propagatings Sp and evanescent Sev modes for three
different system sizes N . We find that while for ν → 0
these quantities scale according to the new scaling law
Eq. (11), the modal fluxes saturate to a constant value
at different νC ∝ 1/N3 in accordance to our theoretical
prediction, see Eq. (8). In Fig. 1d we report the data
for one of the N values referring to a linear-linear plot.
We find that S∓ev, associated with each of the two pairs
of evanescent modes (corresponding to the T∓ blocks in
Eq. (2)), balances the divergent of the Sp contribution
so that the total flux S ∼ O(1). Finally we have checked
numerically the robustness of FMR and of Eq. (11) in
the presence of losses and disorder17,21.

Non-reciprocal layered structures – It is straightforward
to reproduce Eqs. (7,8, 11) for finite set-ups with spec-
tral non-reciprocity i.e ω(k) 6= ω(−k). Here, instead,
we confirm numerically the validity of these equations
for the example case of a multilayer periodic magnetic
photonic crystal (PC) with proper spatial arrangement,
see Fig. 2a3,6. We find that the forward slow propagat-
ing mode carries an energy flux which scales according
to Eq. (11) while the pair of the associated evanescent
modes balanced this divergence in a similar manner, see
Fig. 2c,d. The remaining (fast) backward propagating
mode does not show any flux divergence and has minimal
contribution to the total energy flux, see Fig. 2d.

Conclusions - The character of the FMR in finite struc-
tures undergoes a transition which is reflected in a change
of the scaling behaviour (with detuning ν) of the modal
energy flux of the slow propagating modes at critical
lengths LC ∝ 1/ν1/3. As opposed to the semi-infinite
case, below this length-scale, the energy flux is carried
even by (pairs of) evanescent modes. Our results might
have important applications to non-reciprocal transport.
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