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It is of interest to determine the exit angle of a vortex from a superconductor surface, since this
affects the intervortex interactions and their consequences. Two ways to determine this angle are
to image the vortex magnetic fields above the surface, or the vortex core shape at the surface. In
this work we evaluate the field h(x, y, z) above a flat superconducting surface x, y and the currents
J(x, y) at that surface for a straight vortex tilted relative to the normal to the surface, for both the
isotropic and anisotropic cases. In principle, these results can be used to determine the vortex exit
tilt angle from analyses of magnetic field imaging or density of states data.

I. INTRODUCTION

In the long history of studying vortices and vortex lat-
tices with the help of surface probes (e.g. Bitter dec-
oration [1, 2], Hall bar microscopy [3], magnetic force
microscopy [4], scanning Superconducting QUantum In-
terference Device microscopy (SSM) [5], or scanning tun-
neling microscopy (STM) [6]) vortices were commonly as-
sumed to exit the superconductor perpendicular to the
surface. H. Hess and collaborators were the first to ex-
amine vortex lattices in NbSe2 in tilted fields [6] us-
ing STM. They found a peculiar “comet-like” density of
states (DOS) distribution near the vortex core. Recently,
the STM group of H. Suderow concluded that the vortex
lattice structure in fields tilted relative to a plane surface
of nearly isotropic β-Bi2Pd is affected by the surface con-
tribution to the vortex-vortex interactions due to vortex
stray fields outside the sample [7].

The question then arises as to whether one can de-
termine the vortex orientation relative to the surface by
measuring the field above the sample surface or the DOS
at the surface for a superconductor containing vortices.
This question is addressed in this paper.

There has already been a great deal of work on the
structure of vortices near and above a sample surface.
Abrikosov [8] used Ginzburg-Landau theory to determine
the structure of a vortex lattice in a bulk, isotropic su-
perconductor. Pearl calculated the current distribution
of quantized fluxoids in superconducting thin films [9]
and the currents and fields of vortices near and above
a superconductor-vacuum interface [10]. Brandt [11] de-
scribed a method for calculating the properties of a dis-
torted flux line lattice near a planar surface using the
London theory. Buisson et al. [12] generalized this study
for the case of mass anisotropy orthogonal to the surface.
Kogan, Simonov and Ledvij (KSL) [13] considered a uni-
axial crystal with a surface in an arbitrary crystal plane
and a vortex with arbitrary orientation relative to the
crystal within the general anisotropic London approach.
Carneiro and Brandt [14] gave general expressions for
the magnetic field and energy of straight and curved vor-

tices in an anisotropic superconductor of finite thickness
within anisotropic London theory.

Here we apply the formalism of KSL [13] to the prob-
lem of currents near and fields above the surface for a
tilted vortex in an anisotropic superconductor. The KSL
formalism is quite general, but this “generality” make
the results quite cumbersome and not easily applied. Be-
sides, it is unclear which features of the field distribution
outside, or of the DOS at the interface, are due to the
vortex tilt and which are due to crystal anisotropy.

For this reason, we focus here first on the isotropic
half-space superconductor at z < 0 and a straight vor-
tex approaching the interface z = 0 at an angle θ with
the normal ẑ to the surface. For θ = 0 this problem
has been solved by J. Pearl [10]. We find that even in
the isotropic case, the field distribution above the surface
and the currents J(x, y) flowing at the surface carry mea-
surable signs of the vortex tilt. The stray field hz(x, y; z)
can, in principle, be measured by field sensitive probes
such as scanning Hall bar or scanning SQUID, whereas
|J(x, y)| affects the pair potential and DOS probed by
STM.

In the second part of this paper, we consider tilted
vortices in uniaxial superconductors with the surface in
the ab plane.

II. ISOTROPIC CASE

The formal method we use is straightforward and not
new: one solves the London equations inside the super-
conductor, the Maxwell equations outside, and match the
solutions with proper boundary conditions [10, 12–15].

The field h outside the superconductor satisfies divh
= curlh = 0, so that one can look for this field as h =
∇ϕ with the potential ϕ obeying the Laplace equation
∆ϕ = 0. The general solution of this equation in the
upper half-space z > 0 for ϕ→ 0 as z →∞ is:

ϕ(r, z) =

∫
d2k

4π2
ϕ(k) eikr−kz , (1)
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where

ϕ(k, z) =

∫
d2r ϕ(r, z) e−ikr−kz (2)

is the two dimensional (2D) Fourier transform of the po-
tential ϕ, r = (x, y), k = (kx, ky).

Inside the superconductor, the field components satisfy
the London equations

hi − λ2∆hi = Φ0v̂iδ(x0, y0) . (3)

Here ∆ = ∇2 + ∂2/∂z2 with the 2D Laplacian ∇2; v̂ is
the unit vector along the vortex axis, and (x0, y0) are the
coordinates in the plane perpendicular to the vortex axis
v̂. For an infinite vortex along z0 in uniform material,
the coordinates (x0, y0, z0) are the best, because nothing
depends on z0. In the case of a vortex crossing the surface
of superconducting half-space, this feature is lost, and
the coordinates (x, y, z) with z = 0 being the sample
surface are more convenient. The delta-function at the
right-hand side (RHS) becomes δ(x0)δ(y0) = δ(x cos θ −
z sin θ)δ(y) where θ is the angle between z and v, the
“tilt” angle, and y-axis is chosen to have vy = 0.

The solution of the system (3) of linear differential
equations is the sum of its particular solution and of the
solution hs of the homogeneous equation with zero RHS.
To have a correct singular behavior at the vortex axis,
we choose the particular solution as the well-known field
of an infinite straight vortex hv:

h = hv + hs . (4)

After taking a 2D x, y Fourier transform of Eq. (3) one
obtains at z = 0 (see App. A of Ref. [15]):

hvx(k) =
Φ0 tan θ

λ2Q2
, hvy = 0 , hvz(k) =

Φ0

λ2Q2
; (5)

Q2 = λ−2 + k2 + k2x tan2 θ . (6)

Further, the 2D Fourier transform turns the homoge-
neous Eq. (3) into a system of ordinary differential equa-
tions for hsi (k, z) in the variable z,

hsiλ
−2 + k2hsi − ∂2hsi/∂z2 = 0 , (7)

with solutions:

hsi (k, z) = Hi(k)eqz , q2 = λ−2 + k2 . (8)

Note that all components of hs decay exponentially with
the characteristic length 1/q = λ/

√
1 + λ2k2.

Note also that Hi are not independent: by choosing
the particular solution as the field of an infinite vortex
which obeys divhv = 0, we impose the same condition
on hs:

ikxHx + ikyHy + qHz = 0 . (9)

The boundary conditions of the field continuity at z =
0 read in k space:

ikxϕ = hvx + hsx ,

ikyϕ = hvy + hsy , (10)

−kϕ = hvz + hsz .

Along with Eqs. (5) and (9) these conditions give for the
external potential

ϕ(k, z) = − Φ0 e
−kz

λ2k(k + q)(q − ikx tan θ)
, (11)

and for the coefficients Hi:

Hx = −Φ0

(k2y + kq) tan θ + ikxq

λ2k(k + q)Q2
,

Hy = −Φ0
iky(ikx tan θ + q)

λ2k(k + q)Q2
, (12)

Hz = Φ0
ikx tan θ − k
λ2(k + q)Q2

.

A. Distribution of the field hz(x, y;z)

(a)	 λ	2	hz/Φ0
	 (b)	 λ	2	hz/Φ0

	

(c)	 (d)	λ	2	hz/Φ0
	 λ	2	hz/Φ0

	

FIG. 1. (Color online) Normalized z-component of the mag-
netic fields λ2hz/Φ0 at height z = 0.1λ above a supercon-
ducting surface for a tilted vortex in the isotropic case. The
contours of constant hz (white) are at λ2hz/Φ0 = 0.02, 0.04,
0.06, 0.08, 0.10 and 0.12. The ‘+’ symbols mark the centers
of the vortex coordinate system where the vortex axis touches
the surface.

From the potential (11) we get the z component of the
field outside:

hz(k, z) =
Φ0 e

−kz

λ2(k + q)(q − ikx tan θ)
. (13)

In principle, this field can be measured in scanning Hall
bar or SQUID experiments. Figure 1 shows results of
numerical inversion of this Fourier transform to real
space. The vortex fields above the sample surface be-
come weaker and more elongated in the tilt (x) direction
as the tilt angle increases.

To characterize asymmetry of the field hz for tilted
vortices, we plot in Fig. 2 the fields hz(x, 0) for the tilts of
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FIG. 2. (Color online) Normalized z-component of the mag-
netic fields hz(x, 0) at height z = 0.1λ above the surface for
tilted vortices in the isotropic case. Inset (a): definitions of a
and b to characterize the curves’ asymmetry. Inset (b): b− a
vs tan θ extracted from curves in the main panel.

Fig. 1. Clearly, asymmetry increases with increasing θ. A
simple way to quantify this asymmetry is to consider the
half-width of dome-like curves hz(x, 0) as consisting of
two parts, a and b, separated by the position of the curve
maximum, see Fig. 2. For θ = 0, hz(x, 0) = hz(−x, 0),
and b− a = 0. Since the angle θ enters hz(k, θ) only via
tan θ, we plot a−b vs tan θ to see that in a broad domain
of angles (b − a) ∝ tan θ. In fact, Fig. 2 for z = 0.1λ
suggests an empirical relation (b−a) ≈ 0.5λ tan θ. Thus,
measuring the asymmetry b− a one can estimate the tilt
angle θ.

B. Supercurrents J(x, y) at the surface

Supercurrents flowing at the surface affect the order
parameter and the DOS measured by STM. It is not easy
to track this connection for arbitrary temperatures. For
a qualitative argument we can use the Ginzburg-Landau
theory which gives a simple relation for the order param-
eter suppression by current, ∆2 = ∆2

0(1−J2/4J2
d ), where

∆0 corresponds to zero-current and Jd = cΦ0/16π2λ2ξ is
on the order of the depairing current (ξ is the coherence
length) [16]. According to deGennes the zero-bias den-
sity of states N in the vortex vicinity is related to the
order parameter as N(r)/N0 = 1−∆2(r)/∆2

0 [17]. This
suggests that the contours J2(x, y) = const should be
close to the DOS contours N(x, y) = const. Of course,
the London approach employed here cannot be trusted at
distances on the order ξ, where the current approaches
the depairing value. Still, being interested in a qualita-
tive description of the vortex core shape at the sample
surface, one can study the function J2(x, y).

(a)	 (b)	

(c)	 (d)	

(4π )2λ 6J 2

c2Φ0
2

FIG. 3. (Color online) Normalized absolute value squared
of the vortex currents (4π)2λ6J2/c2Φ2

0 at the superconduct-
ing surface in the isotropic case. The tilt angle of the vor-
tex relative to the sample surface θ = 0◦ (a), 30◦ (b), 55◦

(c), and 80◦ (d). The contours of constant J2 (white) are at
(4π)2λ6J2/c2Φ2

0 = 1, 2, 3, 4, and 5. The ‘+’ symbol marks
the center of the vortex coordinate system where the vortex
axis touches the surface.

The part of the current at z = 0 associated with the
unperturbed tilted vortex has been given in [15]:

Jv
x (k) =

cΦ0

4πλ2
iky
Q2

, (14)

Jv
y (k) = − cΦ0

4πλ2
ikx

Q2 cos2 θ
. (15)

The contribution to the current due to the field hs of
Eq. (8) at z = 0 follows from Maxwell’s equations:

4π

c
Js
x(k) = ikyHz(k)− qHy(k) . (16)

4π

c
Js
y (k) = qHx(k)− ikxHz(k) , (17)

It is worth noting that the continuity of the tangential
fields hx,y assures also the continuity of their tangential
derivatives, in other words, the continuity of the normal
current component Jz. But Jz = 0 outside the sample
and so does the normal component of the total current
inside (Jv + Js)z = 0 at the interface.

Hence, we can evaluate the current value at the surface
in real space:

J2(x, y) = (Js
x + Jv

x )2 + (Js
y + Jv

y )2. (18)

Some numerical evaluations of Eq. 18 are displayed in
Figures 3 and 4. For these calculations we applied a
high frequency filter by multiplying the right hand sides

of Eqs. (14)–(17) by e−k2dz2

with dz = 0.01λ. This
damps out high frequency artifacts at x = 0 and y = 0
without significantly effecting the low frequency proper-
ties of the solutions. The false color scale in Fig. 3 is
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FIG. 4. (Color online) Cross-sections through y = 0 of the
vortex currents (4π)2λ6J2/c2Φ2

0 at the superconducting sur-
face in the isotropic case. The tilt angle of the vortex relative
to the sample surface θ = 0◦, 30◦, 55◦, and 70◦. Inset (a)
defines c and d, the values of |x| when (4π)2λ6J2/c2Φ2

0=10.
Inset (b) plots d− c as a function of tan(θ).

saturated at (4π)2λ6J2/c2Φ2
0=10. Since physically the

core shape (as observed in e.g. STM) is determined
by a contour where J reaches the depairing value, the
contours J2(x, y)=constant will also give the contours
of DOS(x, y)=constant: the observed vortex cores will
become more elongated along the tilt (x) direction as
the tilt angle increases. To avoid misunderstanding,
we stress that the white curves in Fig. 3 are contours
J2(x, y)=const, not the stream lines of the vector J(x, y).

Figure 4 plots cross-sections through y = 0 of the cal-
culated vortex currents of Fig. 3 in the isotropic case for
various vortex tilt angles θ. The inset Fig. 4a diagrams
the intercepts c and d where j̄2 ≡ (4π)2λ6J2/c2Φ2

0 = 10.
Fig. 4b plots (d−c)/λ, a measure of the asymmetry of the
vortex currents at the surface, as a function of tan θ. The
vortex current asymmetry varies roughly linearly with
tan θ, as does the vortex field asymmetry (Fig. 2). When
we fit the vortex current asymmetry to the expression
(d− c)/λ = a1 tan θ+ a2 for various values of j̄2, we find
the empirical relation a1 = α/j̄ with α = 0.335 ± 0.004.
One can in principle determine the vortex tilt angle from
the vortex current asymmetry using this relation.

III. UNIAXIAL CRYSTAL WITH SURFACE AT
ab PLANE

The general case of an anisotropic half-space supercon-
ductor with an arbitrary plane surface and arbitrarily
oriented vortex has been considered in Ref. [13]. Here,
we are interested in the surface coinciding with the ab
plane, Section III.A of [13]. In this case, the coordinates
x, y, z coincide with the crystal’s a, b, c axes, and the mass

tensor is diagonal: mxx = myy = ma, mzz = mc, the
“effective masses” are normalized m2

amc = 1, and the

anisotropy parameter γ =
√
mc/ma = λc/λab.

The basic scheme of the solution is the same as in the
isotropic case: one has to solve the anisotropic London
equations [18] inside and to match them to solutions of
the Maxwell equations for the field outside. Without go-
ing into formal details (for which readers are referred to
Ref. [13]) we note a relevant point: while solving the sys-
tem of London equations for the surface contribution to
the internal field in the form hsi (k, z) = Hi(k)eqz we ob-
tain a system of linear homogeneous equations for Hi(k),
the determinant of which must be zero. This gives pos-
sible values of the parameter q. After straightforward
algebra one obtains two positive roots:

q1 =
√
λ−2
ab + k2 , q2 =

√
λ−2
ab + γ2k2 . (19)

Hence, instead of one mode of the field decay of the
isotropic case, we have now two such modes. The pre-
factors H(1) and H(2) are given by:

H(1)
x = H(1)

y

kx
ky

= H(1)
z

ikxq1
k2

, (20)

H(1)
z = Φ0

ikx tan θ − k
(k + q1)d1

, (21)

d1 = 1 + λ2ab(k
2 + k2x tan2 θ); (22)

H(2)
x = −H(2)

y

ky
kx

= −Φ0

k2y tan θ

k2d2
, H(2)

z = 0, (23)

d2 = 1 + λ2ck
2 + λ2abk

2
x tan2 θ . (24)

The boundary conditions of the field continuity at z =
0 now read:

ikxϕ = hvx +H(1)
x +H(2)

x , (25)

ikyϕ = hvy +H(1)
y +H(2)

y , (26)

−k ϕ = hvz +H(1)
z . (27)

The 2D Fourier components of the field hv at z = 0
are given in App. A of Ref. [15]:

hvx = Φ0 tan θ[1 + λ2ab(k
2
x tan2 θ + k2y) + λ2ck

2
x]/d , (28)

hvy = Φ0 tan θ(λ2c − λ2ab)kxky/d , (29)

hvz = Φ0/[1 + λ2ab(k
2
x sec2 θ + k2y)] , d = d1d2 . (30)

The condition divhs = 0 at z = 0 translates to
ikx(H

(1)
x +H

(2)
x )+ iky(H

(1)
y +H

(2)
y )+q1H

(1)
z = 0, so that

one easily excludes all H’s from the system (25)-(27) to
obtain:

ϕ = − Φ0 e
−kz

λ2abk(k + q1)(q1 − ikx tan θ)
. (31)

Note that λc does not enter this expression. Hence, the
outside field depends only on λab. It is worth noting that
if the vortex as the field source is replaced with some
external source, the response field outside also does not
depend on λc [19].
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FIG. 5. (Color online) Normalized absolute value squared of
the vortex currents (4π)2λ6J2/c2Φ2

0 at the superconducting
surface in the uniaxial anisotropic case with γ = 5. The tilt
angle of the vortex relative to the sample surface θ = 0◦ (a),
30◦ (b), 55◦ (c), and 80◦ (d). The false colormap is saturated
at (4π)2λ6J2/c2Φ2

0 = 50. The contours of constant J2 (white)
are at (4π)2λ6J2/c2Φ2

0 = 5, 10, 15, 20, and 25. The ‘+’
symbol marks the center of the vortex coordinate system.

From the potential we get:

hz = −kϕ(k) =
Φ0 e

−kz

λ2ab(k + q1)(q1 − ikx tan θ)
. (32)

For k → 0, q1 = 1/λab so that the total flux hz(k = 0) =
Φ0, as it should.

A. Surface currents

As before, the current consists of the vortex and surface
contributions, Jv and Js. The surface contribution is
given by

4π

c
Js
x(k) = ikyH

(1)
z − q1H(1)

y − q2H(2)
y , (33)

4π

c
Js
y (k) = q1H

(1)
x + q2H

(2)
x − ikxH(1)

z . (34)

For a tilted vortex, the currents at the surface are given
in Appendix A of Ref. [15]:

4π

c
Jv
x = Φ0

iky[1 + λ2c(k2 + k2x tan2 θ)]

d1 d2
, (35)

4π

c
Jv
y = −Φ0

ikx[1 + λ2ab(sin
2 θ + γ2 cos2 θ)(k2 + k2x tan2 θ)]

d1 d2 cos2 θ
.

(36)

One can now evaluate numerically J2(x, y) = (Js
x +

Jv
x )2 + (Js

y + Jv
y )2 at the surface. Results are shown in

(a)	 (b)	

(c)	 (d)	

(4π )2λ 6J 2

γ c2Φ0
2

FIG. 6. (Color online) Normalized absolute value squared of
the vortex currents (4π)2λ6J2/γc2Φ2

0 at the superconducting
surface in the uniaxial anisotropic case for a tilt angle of 80◦.
The anisotropy parameter is γ= 1 (a), 2 (b), 5 (c), and 10 (d).
The false color scales are saturated at (4π)2λ6J2/γc2Φ2

0= 10.
The contours of constant J2 (white) are at (4π)2λ6J2/γc2Φ2

0

= 1, 2, 3, 4, 5. The ‘+’ symbol marks the center of the vortex
coordinate system.

Figure 5. We again applied a high frequency filter e−k2dz2

with dz = 0.01λ to damp out high frequency oscillations
at x = 0 and y = 0. The false color scale in Fig. 5 is
saturated at (4π)2λ6J2/c2Φ2

0=50. Note that the current
densities are higher and the elongation of the vortex core
along the tilt axis at high tilt angles is less pronounced
as compared with the isotropic case (Fig. 3).

The systematic behavior of the vortex core with uni-
axial anisotropy is illustrated in Figure 6.

IV. DISCUSSION

Numerical analysis of the expressions given above show
that the external magnetic fields from vortices become
weaker as the tilt angle increases, at the same time as
the vortex shape becomes more elongated in the tilt di-
rection (Fig. 1). In contrast, the peak absolute values
of the surface supercurrents are relatively insensitive to
tilt angle, while the vortex core elongation increases with
tilt angle (Fig. 3). For a uniaxial superconductor the
surface currents become stronger with higher anisotropy,
but the vortex cores become less elongated (Fig.’s 5, 6).
This, at first sight, is surprising but could be understood
qualitatively by comparing tilted vortices near the sur-
face in the isotropic and anisotropic cases. Since there
the currents must be parallel to the surface, in isotropic
materials the surface causes a strong distortion of the
currents in its vicinity as compared to the bulk. On the
other hand, in an anisotropic uniaxial sample with the ab
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surface, the unperturbed bulk current planes are already
tilted toward ab due to anisotropy, so that the distortion
caused by the surface is getting weaker with increasing
anisotropy. In the limit γ � 1, the surface distortion
disappears altogether, which we in fact see in our simu-
lations.

Experimental tests of these effects would be a challenge
with existing trilayer [20] or Dayem bridge [21] SQUID
microscopes, which have spatial resolution of somewhat
less than 1µm, while superconducting penetration depths
are typically 0.1µm. However, recent SQUID-on-a-tip
sensors [22] may have the spatial resolution required. Of
course, STM easily has the spatial resolution to look for

the vortex elongations predicted here.
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