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We identify an intrinsic mechanism of the anomalous Hall effect for non-symmorphic chiral su-
perconductors. This mechanism relies on both a nontrivial multi-band chiral superconducting order
parameter, which is a mixture of pairings of even and odd angular momentum channels, and a
complex normal state inter-sublattice hopping, both of which are consequences of the nonsymmor-
phic group symmetry of the underlying lattice. We apply this mechanism to the putative chiral
superconducting phase of the heavy-fermion superconductor UPt3 and calculate the anomalous ac
Hall conductivity in a simplified two-band model. From the ac Hall conductivity and optical data
we estimate the polar Kerr rotation angle and compare it to the measured results for UPt3 [E. R.
Schemm et al., Science 345,190(2014)].

I. INTRODUCTION

Understanding unconventional superconductors has
been one of the central goals in condensed matter re-
search. Among the various unconventional superconduc-
tors, chiral superconductors have attracted a great deal
of attention in recent years, in part because they provide
a platform to study the interplay between spontaneous
symmetry breaking and topology1. In a chiral supercon-
ductor, a Cooper pair carries a nonzero relative orbital
angular momentum whose projection along a certain di-
rection is also nonzero. Choosing this direction as the
angular momentum quantization axis z, different chiral
superconductors that are eigenstates of angular momen-
tum can be characterized by the Cooper pair orbital an-
gular momentum quantum numbers, L = 1, 2, 3, . . . and
Lz = ±1,±2, . . . . A general chiral superconducting or-
der, however, need not be an angular momentum eigen-
state. For example, chiral f-wave may mix with chiral
p-wave, etc.

One of the defining properties of a chiral superconduc-
tor is its spontaneous breaking of parity and time-reversal
symmetry. As a consequence, there can be a nonzero
anomalous Hall effect (i.e., a Hall effect in the absence
of an external magnetic field), which can be detected
by polar Kerr effect measurements2. Experimentally, a
frequency dependent rotation angle between the polar-
ization of incident and reflected light is measured. This
Kerr angle, θK(ω), is related to the ac anomalous Hall
conductivity, σH(ω), by3

θK(ω) =
4π

ω
Im

[
σH(ω)

n(n2 − 1)

]
, (1)

where n is the frequency dependent index of refraction.
A nonzero Kerr signal has been observed in the supercon-
ducting phase of several unconventional superconductors
including Sr2RuO4

4, UPt3
5, URu2Si2

6, PrOs4Sb12
7, and

Bi/Ni bilayers8. Sr2RuO4 is widely thought to be a chi-
ral p-wave superconductor9,10; while the heavy fermion

superconductor UPt3 is expected to be a chiral f -wave
superconductor with E2u symmetry, corresponding to
L = 3, Lz = ±2 in the continuum limit.11,12

However, parity and time reversal symmetry breaking
are necessary but not sufficient conditions for a nonzero
anomalous Hall effect. Breaking of additional symme-
tries, translation and particle-hole, are needed for a
nonzero σH(ω). Consequently, the size of the effect de-
pends crucially on the mechanism by which these symme-
tries are broken. As pointed out previously13–15, σH(ω)
vanishes at all frequencies for a Galliean invariant chiral
superconductor. One way to break translation symmetry
is by extrinsic impurity scattering, which has been stud-
ied by several groups in the context of Sr2RuO4

15–17.
This impurity effect does not contribute to σH in the
lowest order Born approximation and therefore requires
higher order scattering16. However, both Sr2RuO4 and
UPt3 are very clean, and it is not clear if the observed
effect is due to disorder. Even without impurities, trans-
lation symmetry can be broken by certain intrinsic mech-
anisms, which turn out to be rather subtle. There have
been two intrinsic mechanisms proposed previously. One
is based on a collective mode11, combined with the small
but finite momentum of the incident photon and the
breaking of inversion symmetry along the incident exter-
nal electro-magnetic wave propagation direction. How-
ever, the estimated angle for this mechanism is too small
to account for experiments4. The other intrinsic mecha-
nism invokes a multiband effect18–22, arising from struc-
ture within the crystal unit cell, which also involves in-
terband pairing. Here, we will study a generalization of
this multi-band mechanism.

All of these theories (impurity effects, collective modes,
and the multiband effect) have so far only been stud-
ied for the case of chiral p-wave superconductors. This
has led to a better understanding of the Kerr effect in
Sr2RuO4. However, UPt3 is thought to be a chiral f -
wave superconductor in its lower superconducting tran-
sition temperature phase. One might think that the con-
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clusions obtained for the Kerr effect in a chiral p-wave
superconductor can be directly generalized to higher chi-
rality superconductors with |Lz| ≥ 2 without much diffi-
culty. However, such a naive generalization is problem-
atic. As recent studies on non-topologically protected
quantities, such as the integrated edge current23 and the
total orbital angular momentum24,25, have demonstrated
explicitly, chiral superconductors with |Lz| ≥ 2 can be-
have very differently from the chiral p-wave case. Given
that the anomalous Hall conductivity σH(ω) is also a
non-topologically protected quantity13,15, unlike its ther-
mal Hall counterpart, we expect that σH(ω) of chiral su-
perconductors with |Lz| ≥ 2 can be quite different from
that of |Lz| = 1. In fact, as has already been pointed out
by Goryo in Ref. 16, in the continuum limit, the skew im-
purity scattering diagram for the lowest order impurity
contribution to σH(ω) is nonzero only for chiral supercon-
ductors with |Lz| = 1 and vanishes for |Lz| ≥ 2. More
generally, to have a non-zero σH in the continuum limit,
the azimuthal angular integral of kxky∆1∆∗2, where ∆1,2

are the two components of the chiral order parameter,
must be non-zero. While the details differ somewhat for
the different mechanisms, the kxky in the angular integral
effectively arises from the current (or velocity) operators
in σxy and ∆1∆∗2 is the lowest order contribution that di-
rectly brings in the chirality to which σH is proportional.
It follows that σH 6= 0 only for |Lz| = 1. The vanishing
of σH for higher chirality superconductors in the con-
tinuum limit is a concern for UPt3 because the observed
Kerr signal in UPt3

5 is actually larger than in Sr2RuO4
4.

To get a nonzero anomalous Hall conductivity for UPt3

from chiral f -wave order, one needs to include lattice or
bandstructure effects.

UPt3 exhibits multiple superconducting phases in its
temperature-magnetic field phase diagram26–28. At zero
field it undergoes two separate superconducting transi-
tions at T+

c ≈ 0.55K and T−c ≈ 0.5K29–33. A nonzero
Kerr rotation5 has been observed only in the supercon-
ducting phase below T−c . To study whether this UPt3

Kerr effect can arise from the multi-band mechanism,
one needs a model with at least two bands. The simplest
case is two bands arising from the ABAB stacking of the
hexagonal planes of the U atoms along the crystal c−axis.
(See Fig. 1.) Due to this stacking, the crystal has a close-
packed hexagonal lattice structure corresponding to the
nonsymmorphic space group P63/mmc. One can ask if
the two bands resulting from this stacking can give rise to
a nonzero Kerr effect. In fact, as will be discussed later,
one can show that a simple chiral d- or f -wave pairing on
a triangular lattice with ABAB stacking gives zero, even
including lattice effects beyond the continuum limit.

Recently, Yanase34 argued that, due to the nonsym-
morphic space group, the spin triplet superconducting
order parameter is not a simple chiral f -wave or a com-
bination of only f - and p-wave. Chiral d-wave pairing
also mixes with the symmetry of the E2u representation
of the crystal lattice point group D6h. In this model, chi-
ral f - and p-wave are even in the sublattice index, which

can be thought of as an extra pseudospin index, while
chiral d-wave is odd in that index and, consequently, chi-
ral f -pairing is a triplet in the AB-sublattice subspace
while the chiral d-wave pairing is a singlet. Both f - and
d-components involve nearest-neighbor interlayer pairing
and are of the same magnitude, while the chiral p-wave
component involves pairing within the basal plane and
is expected to be smaller. The smaller p-wave pairing
amplitude is presumably conjectured because of the rela-
tively larger in-plane U−U atom distance35 and perhaps
also because the chiral p-component is energetically un-
favorable since it pairs only one spin component. The
mixing of chiral f - and d-wave leads to a more complex
chiral f+d pairing order parameter that is nonunitary.34

As a simple model, following Yanase, we study the two
bands, resulting from the ABAB stacking, that model
the “starfish” like Fermi surfaces29,36, centered on the A
point at the top and bottom of the Brillouion zone (BZ).
There are also four other Fermi surface sheets resolved ex-
perimentally29,36, which, however, will not be considered
in this paper. The four other Fermi sheets are not simply
related by stacking since, in general, the two bands due to
the stacking (the bonding and anti-bonding bands) are
well separated in energy and only one of them crosses
the Fermi energy. However, in the case of the “starfish”
Fermi surfaces on the BZ boundary, without spin-orbit
coupling (SOC) the two bands are degenerate by symme-
try on the top and bottom BZ faces. With SOC, band
degeneracies remain along six directions on the top and
bottom surfaces. These bands give a particularly sim-
ple two-band model for studying the intrinsic multiband
mechanism of the Kerr effect.

In this paper we show that this two band model with
a mixed f + d wave superconducting order parameter
can give rise to a nonzero Kerr effect with or without
the small chiral p-wave pairing component. We find that
mixing of the chiral d-component with the chiral f -wave
pairing is essential for a nonzero σH . We also find that
the nature of the terms that contribute to σH are distinct
from the terms that give a nonzero contribution for the
Sr2RuO4 case18. From σH we estimate the Kerr angle
and find it to be about 10% of the experimental value
in UPt3

5. Factors that might increase (or decrease) this
estimate are discussed.

Although our work is not a complete theory of the Kerr
effect for UPt3, it captures a key possible contribution
and more generally illustrates the necessary ingredients
for a non-zero Kerr effect for a higher chirality supercon-
ductor, a case which is noticeably more subtle than that
of chiral p-wave.

The paper is organized as follows. In Sec. II we de-
scribe the BdG Hamiltonian that we use for the starfish-
like Fermi surface. In Sec. III we derive an approximate
expression for σH(ω) for this BdG Hamiltonian, evalu-
ate it numerically, and identify the key ingredients of the
result. The estimation of the Kerr angle from σH and
comparison to experiment are given in Sec. IV. Sec. V
contains our conclusions and further discussions. Some
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technical computational details are relegated to the Ap-
pendices.

II. MODEL
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FIG. 1. Crystal structure of UPt3. Blue disks denote the
positions of U atoms. There is a Pt atom (not shown) between
each nearest neighbor intra-layer pair of U atoms. The vectors
ei and ri connect two nearest neighbor intra-layer and inter-
layer U atoms, respectively. The coordinate system is chosen
such that x̂ ‖ e1.

We focus on a two-band model proposed by Yanase34

to describe the starfish Fermi surface (FS) of UPt3. With
the two sublattices and two spin components, the BdG
Hamiltonian can be written in terms of an eight compo-
nent spinor Ψ(k) whose transpose is defined as

ΨT
k ≡ (ck1↑, ck2↑, ck1↓, ck2↓, c

†
−k1↑, c

†
−k2↑, c

†
−k1↓, c

†
−k2↓),

(2)

where ckis is the anihilation operator for an electron with
momentum k, sublattice index i and spin quantum num-
ber s. In this basis the BdG Hamiltonian can be written
as

HBdG =
1

2

∑
k∈BZ

Ψ†kĤBdG(k)Ψk, (3)

with

ĤBdG(k) =

(
Ê(k) ∆̂(k)

∆̂†(k) −ÊT (−k)

)
, (4)

where Ê(k) is the normal state Hamiltonian and ∆̂k is the
superconducting order parameter, both 4× 4 matrices.

A. Normal state Hamiltonian and Fermi surfaces

Using σα and sα to denote the four Pauli matrices for
the two sublattices and spin, respectively, we can write
the normal state Hamiltonian Ê(k) as

Ê(k) = ξkσ0s0 +
εk√

2
σ+s0 +

ε∗k√
2
σ−s0 + gk · sσ3, (5)

where σ± = (σ1 ± iσ2)/
√

2 and ξk, εk and gk are given
by

ξk = 2t

3∑
i=1

cosk‖ · ei + 2tz cos kz − µ, (6a)

εk = 2t′ cos
kz
2

3∑
i=1

eik‖·ri , (6b)

gk = ẑ α

3∑
i=1

sink‖ · ei. (6c)

Here, ξk contains all nearest neighbor (NN) hoppings
within the same sublattice, both in-plane hopping with
parameter t and intra-sublattice NN hopping along the
c-axis with parameter tz, µ is the chemical potential
and k‖ = (kx, ky, 0). The three unit vectors, ei =

(cosφi, sinφi, 0) with φi = (i − 1) 2π
3 and i = {1, 2, 3},

are defined within the plane as shown in Fig. 1. (All
lattice spacings are set to unity.) εk describes inter-
sublattice NN hopping with parameter t′. The prefac-
tor cos kz2 in εk comes from the fact that these hop-
pings are defined on the inter-sublattice bonds which
are described by three nonprimitive lattice vectors: ri =
( 1√

3
cosφ′i,

1√
3

sinφ′i,
1
2 ), with φ′i = π

6 + (i − 1) 2π
3 . gk · s

is a Kane-Mele type spin orbit coupling (SOC) 37,38 that
is allowed since the local symmetry of each U atom is
D3h, which does not have inversion. Note this SOC term
cannot exist between two different sublattices because
the center of the inter-sublattice U−U bond is inversion
symmetric. Also the SOCs for the two sublattices must
have opposite signs in order for the U lattice to restore its
global D6h symmetry which preserves inversion34. This
explains the presence of the Pauli matrix σ3 in the SOC
term in the expression of Ê(k). The parameter α in gk

characterizes the SOC strength.
Diagonalizing the Hamiltonian Ê(k) gives the two nor-

mal state band dispersions, E
(n)
± (k) = ξk ±

√
g2
k + |εk|2,

each of which is two-fold degenerate. The Fermi surfaces
are shown in Fig. 2 for the parameters (t, tz, t

′, α, µ) =
(1,−4, 1, 2, 12) from Ref. 34. Fig. 2(a) shows that the FS
is centered around the A−point of the BZ; while Fig. 2(b)
presents a cut of the FS on the zone boundary kz = π
plane. Note, from Fig. 2(b), the two Fermi surfaces in-
tersect at six points on that plane since εk = 0 for kz = π
and gk vanishes along the six-fold symmetric directions:
ky/kx = tan θi with θi = π

6 + (i− 1)π3 .

B. Superconducting order parameter ∆̂(k)

The superconducting order parameter ∆̂(k) proposed

in Ref. 34 is an E2u state that can be written as ∆̂(k) =

η1Γ̂1(k) + η2Γ̂2(k). Here Γ̂1(k) and Γ̂2(k) are two ba-
sis functions of the E2u representation, and (η1, η2) =

∆0(1, iη)/
√

1 + η2, with overall pairing magnitude ∆0

and η a real number that controls the anisotropy of the
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FIG. 2. Starfish Fermi surface (FS). (a) FS in the three dimensional Brillouion zone of UPt3; (b) FS contours in the plane of

kz = π. The red (blue) line is the E
(n)
+ (k) = 0 (E

(n)
− (k) = 0) constant energy contour. Parameters used are (t, tz, t

′, α, µ) =
(1,−4, 1, 2, 12).

order parameter. Due to the relative phase between η1

and η2, ∆̂(k) is chiral, with the chirality determined by
the sign of η.

Γ̂1(k) and Γ̂2(k) are both triplets in spin as suggested

by experiments11,29,39. The spatial parts of Γ̂1(k) and

Γ̂2(k) contain not only f - and p-wave components but
also a d-wave component as discussed above. Spatial in-
version operation not only transforms k → −k but also
interchanges the two sublattices. The f - and p-wave com-
ponents are odd functions of k and triplets in the sublat-
tice index, while the d-component is an even function of k
but a sublattice singlet. As mentioned above, the pairing
amplitudes of the f - and d-wave components connect dif-
ferent sublattices while the p-wave component pairs sites
on the same sublattice. The f - and d-components are
of similar magnitude while the p-wave is smaller. In the
following, we will ignore this small p-component. Then
the two basis functions Γ̂1 and Γ̂2 can be written as34

Γ̂1(k) =
{
f(x2−y2)z(k)σ1 − dyz(k)σ2

}
s1, (7a)

Γ̂2(k) =
{
fxyz(k)σ1 − dxz(k)σ2

}
s1, (7b)

where, for nearest-neighbor intersublattice pairing,

f(x2−y2)z(k) = − sin
kz
2

[cos
kx
2

cos
ky

2
√

3
− cos

ky√
3

], (8a)

fxyz(k) =
√

3 sin
kx
2

sin
ky

2
√

3
sin

kz
2
, (8b)

dyz(k) = − sin
kz
2

[cos
kx
2

sin
ky

2
√

3
+ sin

ky√
3

], (8c)

dxz(k) = −
√

3 sin
kx
2

cos
ky

2
√

3
sin

kz
2
. (8d)

In the expressions for Γ̂1(k) and Γ̂2(k), the spin Pauli ma-
trix s1 = s3 is2 indicates that the spin triplet pairing d
vector is along the ẑ-direction (or the crystal c-axis). The
presence of sublattice Pauli matrices σ1 and σ2 comes
from the fact that the f - and d-wave components are de-
rived from the real and imaginary part, respectively, of a

pairing amplitude for electrons from NN inter-sublattice
U ions. Because of the mixing between the f - and d-wave
components,

∆̂(k)∆̂†(k) =
{
|fk|2 + |dk|2

}
σ0s0 − i

{
fkd
∗
k − f∗kdk

}
σ3s0

(9)

has a term which is not proportional to the identity ma-
trix σ0s0, which makes ∆̂(k) nonunitary40. In Eq. (9),

fk ≡ η1f(x2−y2)z(k) + η2fxyz(k), (10a)

dk ≡ η1dyz(k) + η2 dxz(k). (10b)

C. Reduction of the BdG Hamiltonian

The expressions for Ê(k) and ∆̂(k) defined above can
now be substitued into the BdG Hamiltonian given by
Eq. (4). One finds HBdG(k) reduces to two decoupled
4× 4 blocks:

HBdG = H(a) +H(b)

=
1

2

∑
i=a,b

∑
k∈BZ

[Ψ
(i)
k ]†Ĥ(i)(k)Ψ

(i)
k , (11)

with

Ĥ(a) =

ξk + gk εk 0 ∆12(k)
ε∗k ξk − gk ∆21(k) 0
0 ∆∗21(k) −ξk − gk −εk

∆∗12(k) 0 −ε∗k −ξk + gk

 , (12a)

Ĥ(b) =

ξk − gk εk 0 ∆12(k)
ε∗k ξk + gk ∆21(k) 0
0 ∆∗21(k) −ξk + gk −εk

∆∗12(k) 0 −ε∗k −ξk − gk

 . (12b)

The two bases are

Ψ
(a)
k =

(
ck1↑ ck2↑ c†−k1↓ c†−k2↓

)
, (13a)

Ψ
(b)
k =

(
ck1↓ ck2↓ c†−k1↑ c†−k2↑

)
. (13b)



5

-2 -1 0 1 2
-2

-1

0

1

2

kx

k
y

FIG. 3. Bogoliubov quasiparticle energy line nodes of the
BdG Hamiltonian Ĥ(k) at kz = π. The parameter ∆0 = 0.1 t.
Other parameters used are the same as in Fig. 2.

In the above equations, gk ≡ ẑ · g(k), ∆12(k) ≡ fk +
i dk and ∆21(k) ≡ fk − i dk, where 1, 2 are sublattice
labels. The two blocks are connected to each other by
spin inversion, ↑↔↓, which leaves all matrix elements of
Ĥ(a)(k) and Ĥ(b)(k) unchanged except for a change in
the sign of the SOC term, gk. However, as will be shown
later, the Hall conductivity σH(ω) is an even function of
gk. Therefore we only need to focus on one block, say
Ĥ(a)(k), and multiply the σH computed for that block
by a factor of two. An additional factor of 1/2, arising

from the double-counting of degrees of freedom in BdG
theory, will cancel this factor of 2. Hereafter, we drop the
superscript (a) in Ĥ(a)(k) and simply denote it as Ĥ(k)
for brevity. Note that this decomposition into two 4× 4
blocks is only possible in the absence of the intralayer
p-wave pairing.

From Ĥ(k) one can obtain the Bogoliubov quasiparti-
cle energies, which have line nodes on the kz = ±π plane
that form six rings, as shown in Fig. 3. These nodal
rings are counter examples to Blount’s theorem41–46 and
are topologically protected as a joint consequence of both
the non-symmorphic group symmetries and the nonzero
spin orbital coupling, as discussed in Refs. 44–46.

III. COMPUTATION OF THE ANOMALOUS
HALL CONDUCTIVITY σH(ω)

The Hall conductivity σH(ω) can be computed from
the Kubo formula18,47

σH(ω) =
i

2ω
lim
q→0

{
πxy(q, ω)− πyx(q, ω)

}
, (14)

where πxy(q, ω) is the electric current density Ĵx-Ĵy cor-
relator. At the one-loop level πxy is given by (setting
e = ~ = c = 1)

πxy(q = 0, iνm) =
∑
k

T
∑
n

Tr
{
v̂x(k)Ĝ(k, iωn + iνm)v̂y(k)Ĝ(k, iωn)

}
, (15)

where T is the temperature (set to T = 0 at the end of
the calculation) and ωn = (2n + 1)πT and νm = 2mπT
are fermionic and bosonic Matsubara frequencies, respec-
tively. Ĝ(k, iωn) is the Green’s function of the 4×4 block

Hamiltonian Ĥ(k) with inverse defined by

Ĝ−1(k, iωn) = iωn − Ĥ(k). (16)

From det Ĝ−1(k, iωn) = 0 one obtains the Bogoliubov

quasiparticles energies of the Hamiltonian Ĥ(k). How-
ever, the equation to be solved is not a quadratic equa-
tion for ω2

n but a quartic equation in ωn (see Eq. (A2)
in App. A). Consequently, the analytic expressions for
the quasiparticle energies as well as the final expression
for σH(ω) are quite lengthy, and these results are sum-
marized in App. A in Eqs. (A4) to (A8b). From these
expressions it is difficult to identify which ingredients are
essential to obtain a nonzero σH(ω), and so we also com-
pute σH perturbatively to obtain a much simpler expres-
sion that is valid at intermediate to high frequencies.

We treat the d-wave component of the superconduct-
ing order parameter as a perturbation and write Ĥ(k) =

Ĥ0(k) + Ĥ′(k) where

Ĥ0 =

ξk + gk εk 0 fk
ε∗k ξk − gk fk 0
0 f∗k −ξk − gk −εk
f∗k 0 −ε∗k −ξk + gk

 , (17)

and

Ĥ′ =

 0 0 0 idk
0 0 −idk 0
0 id∗k 0
−id∗k 0 0 0

 . (18)

Ĥ0 and Ĥ′ will be taken as the “unperturbed” and “per-
turbed” Hamiltonian, respectively. We choose this par-
ticular partition because it is precisely the d−component
superconducting order parameter part that makes the
Bogoliubov quasiparticle energy expression complicated
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(see Eq. (A2) in App. A) and also because, as we will see
later, the leading order contribution to σH is linear in dk.

Since we are including the effect of Ĥ′ only perturba-
tively, the results are only reliable for sufficently large
ω. Actually, the perturbative expansion is in βk ∝
i(fkd

∗
k − f∗kdk)gk, not just dk (see Eq. (A2) in App. A

for details). So, the perturbative results are reliable for
ω � βk ∼ (∆2

0 α)1/3, where α is the SOC strength. The
full Green’s function results and the perturbative results
for σH(ω), are compared in App. A in Figs. 7 and 8,
showing the two are essential identical beyond ω & 4t.
Since the laser frequency at which the Kerr effect has
been measured is ω ≈ 0.8 eV5, which is > 20t in our
model, the perturbative results can be used to compare
to experiment.

A. Perturbative calculation

Here we discuss the perturbative calculation of σH ,
with further details given in App. B. Quantities of
different order in Ĥ′ are represented by superscripts
(0), (1), · · · . First, consider zeroth order described by

the Hamiltonian Ĥ0(k). The Bogoliubov quasiparticle
energies, E±, are

E± =

√
a±

√
a2 − b, (19)

with

a = ξ2
k + g2

k + |εk|2 + |fk|2, (20a)

b = (ξ2
k − g2

k + |fk|2 − |εk|2)2 + |fk|2(εk + ε∗k)2, (20b)

which are slightly different from those of the full Hamil-
tonian Ĥ(k). However E− still has nodal rings on the
kz = ±π plane that are almost identical to those obtained

from the full Hamiltonian, Ĥ(k), plotted in Fig. 3. These
nodal rings are protected by the non-symmorphic space
group symmetry and spin-orbit coupling34,44.

The velocity operators, which appear in Eq. (15), are

defined by the normal state Hamiltonian, ĤN (k), which
can be written in terms of the sublattice Pauli matrices,
σα:

ĤN (k) = ξkσ0 + h · σ, (21)

with h = ( εk√
2
,
ε∗k√

2
, gk) and σ = (σ+, σ−, σ3). Then v̂x =

∂kxĤN (k) τ0
15,18, where τ0 is the identity matrix for the

Nambu space, or written out explicitly,

v̂x =

∂kxEa(k) ∂kxεk 0 0
∂kxε

∗
k ∂kxEb(k) 0 0

0 0 ∂kxEa(k) ∂kxεk
0 0 ∂kxε

∗
k ∂kxEb(k)

 ,

(22)

with Ea(k) ≡ ξk + gk and Eb(k) ≡ ξk − gk. v̂y can
be obtained from v̂x by the substitution: ∂kx → ∂ky .
With v̂x, v̂y and Ĝ(0) ≡

{
iωn − Ĥ0(k)

}−1
, one can com-

pute the zeroth order current-current correlator π
(0)
xy (iνm)

from Eq. (15). However, a direct computation shows that

π
(0)
xy (iνm)− π(0)

yx (iνm) = 0, so that σ
(0)
H (ω) ≡ 0. In other

words, a chiral f -wave superconducting order parameter
alone does not give rise to a non-zero anomalous Hall
conductivity from the multiband mechanism if the two
bands arise from ABAB stacking. The mixing between
f -wave and d-wave components is crucial for a nonzero
σH and one needs to go to first order to calculate a non-
zero σH(ω).

From the full Green’s function Ĝ = Ĝ(0)+Ĝ(0)Ĥ′Ĝ(0)+
· · · , one can define the first order Green’s function as
Ĝ(1) = Ĝ(0)Ĥ′Ĝ(0) and, from Eq. (15), the first order
current-current correlator is

π(1)
xy (iνm) =

∑
k

T
∑
n

{
Tr[v̂xĜ(0)(k, iωn + iνm)v̂yĜ(1)(k, iωn)] +

{
(0)↔ (1)

}}
. (23)

This (or, more precisely, π
(1)
xy (iνm) − π(1)

yx (iνm)) is eval-
uated in App. B by first writing the velocity operators
and Green’s functions as linear combinations of Pauli ma-
trices to simplify computing the trace and then doing

the Matsubara sum. After performing a Wick rotation,
iνm → ω + iδ, one obtains the final expression for the
Hall conductivity,

σ
(1)
H (ω) =

∑
k

4i[fkd
∗
k − f∗kdk] ξk

{
8i gk h · ∂kxh× ∂kyh

Sk(ω)

ω
+ Ωxy

Tk(ω)

ω

}
, (24)

where for brevity we have suppressed the infinitesimal imaginary part, iδ, in ω+ iδ. Ωxy is an anti-symmetrized
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velocity factor given by

Ωxy ≡ −i[∂kxεk∂kyε∗k − ∂kxε∗k∂kyεk]. (25)

We have also introduced two frequency dependent func-
tions in Eq. (24), which are defined as (for details see
App. B)

Sk(ω)

ω
≡ F1(k, ω)− ξ2

k − g2
k − |εk|2

E+E−
F2(k, ω), (26)

and

Tk(ω)

ω
≡ F3(k, ω), (27)

with F1(k, ω), F2(k, ω) and F3(k, ω) given by

F1(k, ω) ≈ C++

ω2 − 4E2
+

+
C−−

ω2 − 4E2
−

+
C+−

ω2 − (E+ + E−)2
, (28a)

F2(k, ω) ≈ D++

ω2 − 4E2
+

+
D−−

ω2 − 4E2
−

+
D+−

ω2 − (E+ + E−)2
, (28b)

F3(k, ω) ≈ B+−

ω2 − (E+ + E−)2
. (28c)

The ≈ sign means only the leading order terms in fk
and dk have been kept. There are seven frequency inde-
pendent coefficients in the numerators of F1, F2 and F3.
Their expressions are

C++ = −D−− =
E+

(E2
− − E2

+)3
, (29a)

D++ = −C−− =
E−

(E2
− − E2

+)3
, (29b)

C+− =
E2

+ + E2
−

2E+E−(E+ + E−)3(E+ − E−)2
, (29c)

D+− =
−1

(E+ + E−)3(E+ − E−)2
, (29d)

B+− =
1

2E+E−(E+ + E−)
. (29e)

The subscripts, {++,−−,+−}, in these coefficients di-
rectly reflect the corresponding physical processes that
they are associated with, which can be inferred from the
denominator of each term in the expressions of F1(k, ω),
F2(k, ω) and F3(k, ω). For example, the first term in
F1(k, ω) with coefficient C++ corresponds to a process
where a Cooper pair, with momentum (k,−k), is bro-
ken and a Bogoliubov quasiparticle pair with energies,

E+(k) and E+(−k), are excited by the incident photon
with a frequency ω. The two Bogoliubov quasiparticles
have the same momentum (k,−k) as the broken Cooper
pair because the incident photon momentum q ≈ 0 rel-
ative to k. Energy conservation of this process requires
ω = E+(k)+E+(−k) = 2E+, which explains the denom-
inator ω2 − (2E+)2 in the first term in F1(k, ω). Other
terms in F1(k, ω), F2(k, ω) and F3(k, ω) can be interpre-
tated in a similar way. Notice that in the expressions for
F1(k, ω), F2(k, ω) and F3(k, ω) there is no term with a
denominator ω2 − (E+ − E−)2, which would correspond
to a T > 0 process where a preexisting Bogoliubov quasi-
particle with an energy E− gets excited to a higher energy
level of E+ by the incident photon.

Finally, as noted below Eq. (13b), we can see from

Eqs. (26)-(27), that σ
(1)
H (ω) is an even function of gk,

since the two functions Sk(ω) and Tk(ω) depend on k
only through E±, which are even in gk (see Eq. (19));
Ωxy does not depend on gk (see Eq. (25)), and the fac-
tor gk h · ∂kxh × ∂kyh is also even in gk because the
mixed product contributes one and only one gk since
h = (εk/

√
2, ε∗k/

√
2, gk).

Next we evaluate the expression for σ
(1)
H (ω) in Eq. (24)

numerically. Replacing ω with ω + iδ in Eq. (24), the
imaginary part can be written as

Imσ
(1)
H = − π

2ω

∑
k

4i [fkd
∗
k − f∗kdk] ξk

{
8i gkh · ∂kxh× ∂kyhA1(k, ω) + Ωxy A2(k, ω)

}
, (30)

where A1(k, ω) and A2(k, ω) are:
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A1(k, ω) ≡ [C++ −
ξ2
k − g2

k − |εk|2

E+E−
D++]

{
δ(ω − 2E+) + δ(ω + 2E+)

}
+ [C−− −

ξ2
k − g2

k − |εk|2

E+E−
D−−]

{
δ(ω − 2E−) + δ(ω + 2E−)

}
+ [C+− −

ξ2
k − g2

k − |εk|2

E+E−
D+−]

{
δ(ω − (E+ + E−)) + δ(ω + (E+ + E−))

}
, (31a)

A2(k, ω) ≡ B+−

{
δ(ω − (E+ + E−)) + δ(ω + (E+ + E−))

}
. (31b)

The k summation in Eq. (30) is calculated numerically
for each ω and the results are plotted in Fig. 4 over two
different ranges of ω/t so that the details at larger ω/t,

where |Imσ
(1)
H | is smaller, can be clearly seen. Imσ

(1)
H (ω)

has several sign changes as a function of ω because the
different factors in Eq. (30) change sign at different k
positions with different quasiparticle energies. Also note

that Imσ
(1)
H (ω) is non-zero for arbitrarily small ω since

the external field can excite quasiparticle pairs at arbi-
trarily small energy near the line nodes in the supercon-

ducting gap. Although σ
(1)
H (ω) vanishes as ω → 0, this

feature is not visible in Fig. 4 (left panel) because the
crossover to small ω behavior occurs at very small fre-
quency, ω < 0.01t (see Fig.6 of Ref. 34).

The real part, Reσ
(1)
H (ω), can be computed from the

data for Imσ
(1)
H (ω) by the Kramers-Kronig transforma-

tion,

Reσ
(1)
H (ω) =

2

π
P
∫ ∞

0

ν Im σ
(1)
H (ν)

ν2 − ω2
dν, (32)

where P stands for Cauchy principal value integral. The

results for Reσ
(1)
H (ω) are plotted in Fig. 5. In the right

panel of Fig. 5, the red dashed line is an exact high fre-
quency asymptotic result, whose expression is given by48

σH(ω →∞) =
i

ω2
〈[Ĵx, Ĵy]〉+O(

1

ω4
), (33)

where [Ĵx, Ĵy] is an equal time commutator and the
expectation value 〈· · · 〉 is with respect to the ground
state of the BdG Hamiltonian. In App. C, we com-
pute 〈[Ĵx, Ĵy]〉 to first order in Ĥ′ and find 〈[Ĵx, Ĵy]〉(1) ≈
−i 2.2×10−5t2 e2/(~ d). Similar to Imσ

(1)
H (ω), Reσ

(1)
H (ω)

has further structure at very low frequency, ω < 0.01t.
It saturates to a constant with a zero slope as ω → 0.
Again, due to the large frequency range in Fig. 5 (left
panel), this feature is not visible.

B. Discussions of σ
(1)
H

From Eq. (24), we can identify the necessary ingre-

dients for σ
(1)
H to be nonzero. As emphasized previ-

ously, both the chiral f -wave and the chiral d-wave
components need to be present. In particular, the de-

pendence of σ
(1)
H on these two parameters is through

the combination i[fkd
∗
k − f∗kdk], which is proportional

to the chirality. Under time reversal, this combina-

tion, and consequently σ
(1)
H , changes sign. This can

be seen explicitly from the fact that under time rever-
sal, ∆12(k) → −∆∗12(−k), ∆21(k) → −∆∗21(−k) and
2i[fkd

∗
k−f∗kdk] = ∆21(k)∆∗21(k)−∆12(k)∆∗12(k). This is

the only combination quadratic in ∆12 and/or ∆21 that
is odd under time-reversal. It is also this term that makes
the order parameter ∆̂(k) nonunitary.

The second important ingredient for σH is the complex
inter-sublattice hopping, εk, since both velocity terms
appearing in Eq. (24), h · ∂kxh × ∂kyh and Ωxy, vanish
if εk is real. These velocity terms are consistent with
another general requirement for σH to be nonzero in the
multi-band mechanism. Namely, some antisymmetrized
products of the velocity operators, vxabv

y
cd−v

y
abv

x
cd (where

a, b label orbitals or, in our case, sublattices) need to
be nonzero. Note that SOC, gk, is not necessary for
a nonzero σH . Of the two terms in Eq. (24), only the
first term vanishes if gk = 0. The second term, with Ωxy,
only depends on gk through the Bogoliubov quasiparticle
energies E± and remains nonzero if the SOC is absent.

The two key ingredients identified above, the mixing of
the chiral f - and d-wave order parameters and the com-
plex inter-sublattice hopping, εk, are both direct conse-
quences of the non-symmorphic symmetry of UPt3. They
would both be absent if the lattice were symmorphic. In
this sense, the terms that we have identified for σH are
unique to non-symmorphic chiral superconductors.

The two terms in Eq. (24) can be represented by Feyn-
man diagrams, which are shown in Fig. 6. For each di-
agram in Fig. 6, the time-reversed diagram needs to be
subtracted. There are two types of diagrams. In Fig. 6(a)
only one of the two vertices involves two different orbitals;
while in Fig. 6(b) both the vertices involve transitions
between different orbitals. Of the two terms in Eq. (24),
the term ∝ Ωxy only contributes to Fig. 6(b), while the
other term, ∝ h · ∂kxh × ∂kyh, is a mixture of Fig. 6(a)
and 6(b). This is because h · ∂kxh × ∂kyh can be writ-
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FIG. 4. Numerical results for Im σ
(1)
H (ω). Left panel: small frequency regime ω/t ≤ 14; right panel: large frequency regime

ω/t ≥ 10. Note that the vertical axis scales of the two figures are different. The unit of σH is e2/~d, with d the ĉ−axis lattice
spacing of UPt3. Parameters used are (t, tz, t

′, α, µ,∆0, η) = (1,−4, 1, 2, 12, 0.1, 1.0).
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FIG. 5. Numerical results for Re σ
(1)
H (ω). Left panel: small frequency regime; right panel: large frequency regime. Note

that the scales of the vertical axis in the two figures are different. In the right figure the red dashed line is a high frequency
asymptotic result. Parameters used are the same as in Fig. 4.

ten as a sum of εk∂kxε
∗
k∂kygk + ε∗k∂kxgk∂kyεk −

{
x↔ y

}
and gk∂kxεk∂kyε

∗
k −

{
x ↔ y

}
, of which the former and

latter correspond to Fig. 6(a) and Fig. 6(b), respec-
tively. In the band basis, the Ωxy term in Eq. (24) corre-
sponds to Fig. 6(a) (with i, j now labelling bands), rather
than Fig. 6(b) as in the orbital basis; while the whole
h · ∂kxh× ∂kyh term corresponds to Fig. 6(b). It is clear
in the band basis that both Fig. 6(a) and Fig. 6(b) van-
ish if the inter-band pairing is zero, similar to what was
found in Ref. 18.

Note that Fig. 6(b) type of diagram is absent in Ref. 18
because the model studied there has a real inter-orbital
hopping εk, which makes the contribution from Fig. 6(b)
with the photon polarization (i, j) = (x, y) exactly can-
cel the same diagram with (i, j) = (y, x). On the other
hand, Fig. 6(a) vanishes in the current model unless εk is
complex, while it survives in Ref. 18 for real inter-orbital
hopping, due to the different way the inter-orbital pairing
arises in the two models.
σH(ω) also needs to obey the following two sum

rules49,50, ∫ ∞
0

dω Re σH(ω) = 0, (34)∫ ∞
−∞

dω
ωIm σH(ω)

π
= −i〈[Ĵx, Ĵy]〉. (35)

where Eq. (35) is analogous to the well-known optical
conductivity f -sum rule. In App. C, we show these sum

rules are satisfied, both analytically and numerically, by

σ
(1)
H (ω).

Lastly we mention that the Hall conductivity, quite
generally, needs to satisfy several symmetry constraints.
Under time reversal, all vertical mirror reflections, and
particle-hole interchange, σH must reverse its sign. Both

σ
(1)
H given in Eq. (24), and the full Green’s function result

of σH given in App. A are consistent with these symmetry
constraints.

IV. ESTIMATION OF THE KERR ROTATION
ANGLE θK

From the numerical results of σH(ω), the Kerr rotation
angle, θK , can be estimated using Eq. (1), which also
involves the complex index of refraction, n(ω). Here we
use our results to estimate the Kerr angle for UPt3, where
θK was measured5 at a laser frequency ω ≈ 0.8 eV.

We first estimate n(ω=0.8eV) from experimental data.

By definition n(ω) =
√
ε(ω), where ε(ω) is related to the

conductivity, σ(ω), by ε(ω) = ε∞ + i4πσ(ω)/ω and ε∞
is the high frequency limit dielectric constant. We ex-
tract σ(ω=0.8eV) ≈ (1.7 + i 0.4) × 1015 s−1 from the
experimental data of Ref. 51. Taking ε∞ = 1, we ob-
tain ε(ω=0.8eV) ≈ −3.1 + i 17.5, which gives an index of
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FIG. 6. Diagramatic representation of the non-vanishing contributions to σH , where wiggly lines are photons and double solid
lines with arrows are Green’s functions given by Eq. 16. The photon polarization is labelled by i, j = x, y. a, b are sublattice
labels and s is the spin label. If s = {↑, ↓}, then s̄ = {↓, ↑}. Note that, in each diagram, the spin labels on a right vertex
are opposite to that on the corresponding left vertex. This is because, in each diagram, each Green’s function contributes one
superconducting order parameter that pairs electrons of opposite spin, while all normal state Hamiltonian matrix elements,
including SOC, only connect electrons of the same spin.

refraction,

n(ω = 0.8eV ) ≈ 2.7 + i 3.2. (36)

To obtain a value for σH(ω ≈ 0.8eV), we need to es-
timate the in-plane hopping parameter t in eV, since
we have scaled all energies by t. This can be ob-
tained by comparing the normal state band dispersions
of our two-band model along the symmetry directions
A− L−H−A in the kz = π plane to the corresponding
first-principle calculation results from Ref. 52. The com-
parison gives t ≈ 36meV (for details, see App. D). This
value of t corresponds to ω/t ≈ 22.2 at ω = 0.8eV. From
our numerical results for σH(ω) in Fig. 4 and Fig. 5 we
obtain, at ω/t ≈ 22.2 ,

σH(ω ≈ 0.8eV) ≈ −(2.3 + i 5.1)× 10−8 e
2

~ d
, (37)

where d = 4.9Å is the c-axis lattice spacing of UPt3.
From Eqs. (36), (37) and (1), the Kerr angle is then,

θK ≈ 34× 10−9 rad. (38)

Our estimated θK is about an order of magnitude
smaller than the experimental value of about 350 nanora-
dians measured at the lowest temperatures5. However, it
may still be a significant contribution to the explanation
for the Kerr measurement on UPt3

5 given that there are
uncertainties in the optical constants, the band parame-
ters, and the magnitude of ∆0 used for this estimate. We
briefly comment on these uncertainties.

Ideally, one would like measurements of n(ω) on the
same crystal used for the Kerr measurements. Other
optical data on UPt3 would give somewhat different re-
sults53–55, although we estimate that the uncertainty in
the optical data is unlikely to change the estimated Kerr
angle by more than a factor of 3 or so.

As to the band parameters, uncertainty comes both
from the value of t and from the fact that a very simpli-
fied nearest-neighbour hopping model has been used to
approximate the two bands which give rise to the starfish

Fermi surface. This likely introduces a larger uncertainty
than that from errors in the estimate of n(ω).

The other parameter that can greatly affect the size
of θK is ∆0, the amplitude of the gap function written
in the orbital basis. Note that ∆0 is not the gap that
one would observe in tunneling measurements. Defining
∆g as the position of the coherence peak in the Bogoli-
ubov quasiparticle density of states spectrum, one finds
∆g ≈ 0.16 ∆0 (see Fig.6 of Ref. 34). Experiments have
found values for ∆g of 0.04 meV56, 0.1 meV57, and more
recently, 0.5 meV30. The parameters we used, taken from
Yanase34, with t = 36 meV, corresponds to ∆g = 0.58
meV, roughly consistent with the most recent experimen-
tal value. Since the Kerr angle scales quadratically with
the gap magnitude, smaller values of ∆g would give much
smaller values of θK . For example, setting Tc = 0.53K,
we find ∆g ≈ 0.11 meV for our model in the weak-
coupling limit, which would reduce θK by a factor of
26.

Lastly there are several other Fermi surface sheets that
we did not take into account, which might contribute to
θK . These additional contributions could either increase
or decrease the total θK , depending on their relative mag-
nitude and sign.

With these uncertainties in mind, we conclude that the
θK that we have identified here can be significant for ex-
plaining the Kerr measurement on UPt3, even if it is not
large enough to account for the whole experimentally ob-
served signal. Further experiments and theoretical stud-
ies are needed to resolve the above uncertainties.

V. CONCLUSION AND DISCUSSIONS

To summarize, by considering a simplified two band
model that results from ABAB stacking for the starfish-
like Fermi surface of UPt3, we have identified a contri-
bution to the ac anomalous Hall conductivity for UPt3

within the intrinsic multiband chiral superconductivity
mechanism. The Kerr angle estimated from the com-
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puted Hall conductivity can be significant for under-
standing the Kerr measurement on UPt3. This mech-
anism requires non-zero interband pairing. Since intra-
and inter-band pairing are indistinguishable at the six
points on the kz = ±π plane where the starfish-like
Fermi surfaces of UPt3 intersect, this is a useful model for
studying the multiband chiral superconductivity mecha-
nism.

We have identified two crucial ingredients for the
nonzero σH : a complex inter-sublattice hopping between
U sites and a novel superconducting order parameter that
involves mixing between chiral f -wave and chiral d-wave
pairing. Both of these are consequences of the nonsym-
morphic group symmetry of the UPt3 crystal lattice. If
the inter-sublattice hopping is real or if one of the chi-
ral f - and d-wave pairing components is absent, then σH
and θK vanish. This is a generalization of, albeit some-
what distinct from, the multiband chiral superconductiv-
ity mechanism for the anomalous ac Hall effect in a chiral
p-wave superconductor18. The σH and θK contribution
that we have discussed here can also be applied to other
nonsymmorphic chiral superconductors.

In our analysis we have identified two types of terms
that contribute to σH(ω) at each k point, as can be seen
from Eq. (24). One term does not require SOC, while
the other does. The two make comparable contributions
to σH . However, these two contributions in general can
have different signs at different k points, which results in
multiple sign changes of σH(ω) as a function of ω. Be-
cause of these sign changes the estimated Kerr angle can
be sensitive to the band parameters as well as to the laser
frequency used in the Kerr measurement. Therefore fu-
ture Kerr measurements at different frequencies would be
very helpful in determining how relevant the Kerr angle
contribution identified here is to UPt3.

We should mention that in our calculation we have
neglected a small chiral p-wave component pairing in
the original proposed superconducting order parameter
of Ref. 34. This component is also symmetry allowed
but is expected to be energetically less favorable com-
pared with the dominant chiral f - and d-components. In
the two band model we consider, this p-wave component
alone can also give rise to a nonzero σH(ω). This con-
tribution relies on the nonunitary nature of the p-wave
pairing (it pairs only one spin component if η = 1), and
requires nonzero SOC and complex inter-sublattice hop-
ping. Presumably the admixture of this neglected small
p-wave component will not significantly alter the esti-
mated Kerr angle simply because its pairing amplitude
is thought to be very small..

Recently the authors of Ref. 58 suggested that the
Kerr rotation in UPt3 can not be understood without
invoking pairing in completely filled or empty bands be-
cause the laser frequency used in the Kerr angle mea-
surement5, ω ≈ 0.8 eV, is bigger than the normal state
bandwidth of the partially filled bands of UPt3. How-
ever, this does not need to be the case for two reasons.

First, since the incident photon breaks a Cooper pair
and generates two Bogoliubov quasiparticles, the max-
imum energy cost is not the bandwidth, but twice the
energy difference between the Fermi level and the bot-
tom or top of the band (whichever is greater). From
Ref. 59, this maximum energy along the symmetry direc-
tion A− L−H−A in the kz = π plane is about 0.68 eV,
while from Ref. 52, this is about 0.84 eV. The latter
(which we used to determine the hopping t in our model)
allows energy-conserving transitions within the band at
0.8 eV. Second, both ReσH(ω) and ImσH(ω) can make
significant contributions to θK . Even if the laser fre-
quency is larger than the excitation energy of two quasi-
particles within the band, ReσH(ω) will still be nonzero
at ω = 0.8 eV. Consequently, the observation of nonzero
θK in UPt3 at 0.8 eV may still be understood within a
model of partially filled bands.
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Appendix A: Full Green’s function calculation of
σH(ω)

As mentioned in the main text, the full Green’s func-
tion calculation is much more involved than the pertur-
bative calculation. Here, we present some main steps for
the full calculation of σH(ω), omitting detail of deriva-
tions.

We first establish some notation. We denote the four
Bogoliubov quasiparticle energies of the BdG Hamilto-
nian Ĥ(a)(k), from Eq. (12a) of the main text, as Ei,
with i = {1, 2, 3, 4}. The Ei are solutions to

det
{
ω − Ĥ(a)(k)

}
= 0, (A1)

which can be expanded as

ω4 + αk ω
2 + βk ω + γk = 0. (A2)

where the three coefficients are given by
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αk = −2(ξ2
k + g2

k + |fk|2 + |dk|2 + |εk|2), (A3a)

βk = 4i (fkd
∗
k − f∗kdk) gk, (A3b)

γk = (ξ2
k − g2

k − |εk|2 + |fk|2 + |dk|2)2 + 4|dk|2|εk|2

+ (|fk|2 − |dk|2)(εk + ε∗k)2 + (f∗kdk − fkd∗k)2 − i(fkd∗k + f∗kdk) (ε2k − (ε∗k)2). (A3c)

Eq. (A2) is a quartic equation for ω rather than a
quadratic equation in ω2 due to the βkω term. Because
of this, the solutions Ei do not occur as {+E,−E} par-
ticle hole pairs. However, this does not contradict the
particle-hole symmetry of the full superconducting BdG
Hamiltonian which is restored when Ĥ(a) is combined
with the other 4 × 4 block Ĥ(b)(k), given in Eq. (12b),

to form the full ĤBdG. Also, because of the βkω term in
Eq. (A2), the expressions for the Ei, in terms of the three
coefficients {αk, βk, γk} are much more complicated than
in the case of βk = 0. For brevity we will not present
them here.

With the coefficients {αk, βk, γk} and Ei defined above
we can now write the final result for σH(ω) as follows

σH(ω) =
∑
k

16i ξk h · ∂kxh× ∂kyh
{
F̃1(k, ω) + (ξ2

k − g2
k − |εk|2)F̃2(k, ω)

}
+ 4i ξk (fkd

∗
k − f∗kdk) Ωxy F̃3(k, ω)− 8ξk Oh(k) F̃2(k, ω), (A4)

where Ωxy was defined in Eq. (25). In Eq. (A4) the three frequency dependent functions are defined as

F̃1(k, ω) = −1

2

4∑
i=1

|Ei|
ω4 − ω2(4E2

i − αk) + (3E4
i − αkE

2
i + 3γk)∏4

j=1,j 6=i(Ej − Ei)
{

(Ej − Ei)2 − ω2
} , (A5a)

F̃2(k, ω) = −1

2

4∑
i=1

|Ei|
−2ω2 + (9E2

i + αk + γk/E
2
i )∏4

j=1,j 6=i(Ej − Ei)
{

(Ej − Ei)2 − ω2
} , (A5b)

F̃3(k, ω) = −1

2

4∑
i=1

sgn(Ei)
ω4 − ω2(6E2

i − αk) + (12E4
i + 4γk)∏4

j=1,j 6=i(Ej − Ei)
{

(Ej − Ei)2 − ω2
} . (A5c)

F̃1, F̃2 and F̃3 are connected to the three functions, Fi(k, ω), that we introduced in our perturbative calcu-
lations, by

F̃1(k, ω) =
βk
2
F1(k, ω) +O(β3

k) , F̃2(k, ω) = − βk
2E+E−

F2(k, ω) +O(β3
k) , F̃3(k, ω) = F3(k, ω) +O(β2

k), (A6)

where E± are the two Bogoliubov quasiparticle energies
of the zeroth order Hamiltonian(see Eq. (19)). From
these relations we see that the parameter that controls
our perturbative calculation is βk rather than simply dk.

The Oh(k)F̃2(k, ω) term in Eq. (A4) contains terms of
higher powers, fourth order in fk and dk, compared with
the other terms that are second order in fk and dk (ignor-
ing the fk dependence through the quasiparticle energies
E±). This is clear from Eq. (A3b), the expression for βk,
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and from

Oh(k) = (|fk|2 + |dk|2) gk Ωxy

− (|fk|2 − |dk|2)
{

Re[εk]Ω(1)
xy + Im[εk]Ω(2)

xy

}
+ (fkd

∗
k + f∗kdk)

{
Re[εk]Ω(2)

xy − Im[εk]Ω(1)
xy

}
, (A7)

where we have introduced two additional anti-
symmetrized velocity products Ω

(1)
xy and Ω

(2)
xy , defined as

follows

Ω(1)
xy = 2

{
∂kxgk ∂ky Im[εk]− ∂kxIm[εk] ∂kygk

}
, (A8a)

Ω(2)
xy = 2

{
∂kxgk ∂kyRe[εk]− ∂kxRe[εk] ∂kygk

}
. (A8b)

From σH(ω + iδ) in Eq. (A4) we can derive its imagi-
nary part, ImσH(ω). Then we can numerically evaluate
ImσH(ω) and compare the results with our perturbation

results for Im σ
(1)
H (ω) in the main text. The comparison

is given in Fig. 7. We see that the two are quite different

for ω . 2 t, but they are essentially indistinguishable for
ω & 4t.

We can also compute ReσH(ω) by the Kramers-Kronig

transformation and compare the results with Reσ
(1)
H , pre-

sented in the main text. This comparison is shown in
Fig. 8. Again at ω & 4t the two agree well.

Appendix B: Derivation of σ
(1)
H

In order to compute σ
(1)
H , using Eq. (14) and (23), we

introduce the function F (1)
xy (k; iωn, iνm) such that

π(1)
xy (iνm)− π(1)

yx (iνm) = T
∑
k,ωn

F (1)
xy (k; iωn, iνm). (B1)

From the expression for π
(1)
xy (iνm) in Eq. (23), we can

write F (1)
xy as follows

F (1)
xy ≡

{
Tr[v̂xĜ(0)(k, iωn + iνm)v̂yĜ(1)(k, iωn)] +

{
(0)↔ (1)

}}
−
{
x↔ y

}
. (B2)

This expression contains traces of products of 4 × 4
matrices v̂x, Ĝ(0), v̂y and Ĝ(1). To complete these traces
we decompose the 4×4 matrices into linear combinations
of σατβ , where σα and τα are Pauli matrices for the sub-
lattice and particle-hole Nambu subspaces, respectively.
Then

v̂x = vxασατ0 , v̂y = vyασατ0, (B3)

Ĝ(0) = G
(0)
αβσατβ , Ĝ

(1) = G
(1)
αβσατβ . (B4)

We choose the following basis for the above decomposi-
tion

σα ≡ (σ0, σ+, σ−, σ3), (B5)

τα ≡ (τ0, τ+, τ−, τ3), (B6)

where σ± = (σ1 + iσ2)/
√

2 and τ± = (τ1 + iτ2)/
√

2.

In Eq. (B4), and elsewhere, summations over repeated
indices are assumed. In order to extract the coefficients
vxα, v

y
α, G

(0)
αβ and G

(1)
αβ it will be convenient to introduce

both the conjugate of σα, denoted as σ̄α, and also the
conjugate of α, denoted as ᾱ. Their definitions are

σ̄α ≡ [σα]† = (σ0, σ−, σ+, σ3) ≡ σᾱ. (B7)

Different components of the 4−vectors σα and σ̄α sat-
isfy an orthonormal relation: Tr {σασ̄β} = 2δα,β . Using
this relation we can obtain the coefficients in Eq. (B4) as
follows,

vxα =
1

4
Tr[v̂xσ̄ατ0] , vyα =

1

4
Tr[v̂yσ̄ατ0], (B8)

G
(0)
αβ =

1

4
Tr[Ĝ(0)σ̄ατ̄β ] , G

(1)
αβ =

1

4
Tr[Ĝ(1)σ̄ατ̄β ]. (B9)

Substituting Eq. (B4) into the expression for F (1)
xy in

Eq. (B2) gives

F (1)
xy =

{
vxαG

(0)
βγ v

y
α′G

(1)
β′γ′ Tr [σασβσα′σβ′ ] Tr [τ0τγτ0τγ′ ] +

{
(0)↔ (1)

}}
−
{
x↔ y

}
, (B10)

where we have suppressed the arguments of the Green’s
functions. However, it should be kept in mind that
in each of the two-Green’s function products, the first
Green’s function should be evaluated at (k, iωn + iνm);

while the second should be evaluated at (k, iωn). The
trace over τα Pauli matrix products in Eq. (B10) is
trivial: Tr [τ0τγτ0τγ′ ] = 2 δγ,γ′ . The other trace,
Tr [σασβσα′σβ′ ], is nonzero only for two cases: (1) all
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FIG. 7. Comparison between the numerical results for Imσ
(1)
H (thick black line) and that for ImσH(dashed red line). Left panel:

small ω/t ≤ 14; right panel: large ω/t ≥ 10. Notice that the vertical axis scales of the two panels are different. Parameters
used are the same as in Fig. 4.
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FIG. 8. Comparison between the numerical results for Reσ
(1)
H (thick black line) and that for ReσH(dashed red line). Left panel:

small ω/t ≤ 14; right panel: large ω/t ≥ 10. Note that the vertical axis scales of the two panels are different.

four indices, {α, β, α′, β′}, are different from each other;
(2) the four indices consist of two identical pairs. How-
ever, the latter contribution is even with respect to the
interchange x ↔ y and therefore contributes zero to

F (1)
xy after the antisymmetrization, −

{
x ↔ y

}
. There-

fore the only non-zero contribution comes from the
case with all four indices different. Because each of
the indices,{α, β, α′, β′}, can take four possible values
{0,+,−, 3} there are 4! = 24 different terms in total.

However, half of them are zero because of the following
three identities

G
(0)
+γG

(1)
−γ̄ −G

(0)
−γG

(1)
+γ̄ + {(0)↔ (1)} = 0, (B11a)

G
(0)
−γG

(1)
3γ̄ −G

(0)
3γ G

(1)
−γ̄ + {(0)↔ (1)} = 0, (B11b)

G
(0)
3γ G

(1)
+γ̄ −G

(0)
+γG

(1)
3γ̄ + {(0)↔ (1)} = 0. (B11c)

Then we are left with

F (1)
xy = 8

{{
vx−v

y
3 − vx3v

y
−
}{
G

(0)
0γ G

(1)
+γ̄ −G

(0)
+γG

(1)
0γ̄ +

{
(0)↔ (1)

}}
+
{
vx3v

y
+ − vx+v

y
3

}{
G

(0)
0γ G

(1)
−γ̄ −G

(0)
−γG

(1)
0γ̄ +

{
(0)↔ (1)

}}
+
{
vx+v

y
− − vx−v

y
+

}{
G

(0)
0γ G

(1)
3γ̄ −G

(0)
3γ G

(1)
0γ̄ +

{
(0)↔ (1)

}}}
. (B12)

In obtaining this equation we have used the trace identity
Tr[σ0σ+σ−σ3] = 2 as well as its permutations.

Next we need to complete the the Matsubara summa-

tion T
∑
ωn

in Eq. (B1). This can be done for each of

the three lines in Eq. (B12). The derivations are quite
lengthy, and we do not present them here. The final re-
sults are:
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T
∑
n

G
(0)
0γ G

(1)
+γ̄ −G

(0)
+γG

(1)
0γ̄ + {(0)↔ (1)} = 4i

{
fkd
∗
k − f∗kdk

}
ξk gk

√
2εk Sk(iνm), (B13a)

T
∑
n

G
(0)
0γ G

(1)
−γ̄ −G

(0)
−γG

(1)
0γ̄ + {(0)↔ (1)} = 4i

{
fkd
∗
k − f∗kdk

}
ξk gk

√
2ε∗k Sk(iνm), (B13b)

T
∑
n

G
(0)
0γ G

(1)
3γ̄ −G

(0)
3γ G

(1)
0γ̄ + {(0)↔ (1)} = 4i

{
fkd
∗
k − f∗kdk

}
ξk gk 2gk Sk(iνm)− 2i

{
fkd
∗
k − f∗kdk

}
ξk Tk(iνm).

(B13c)

For brevity we have introduced two frequency dependent functions, Sk(iνm) and Tk(iνm), which are defined as

Sk(iνm) ≈M1 − (ξ2
k − g2

k − |εk|2)M2, (B14)

Tk(iνm) ≈ −iνm
2E+E−(E+ + E−) {(E+ + E−)2 + ν2

m}
, (B15)

where the ≈ sign means only terms of leading order in fk and dk have been kept. M1 and M2 are given by

M1 = −iνm
{

C++

4E2
+ + ν2

m

+
C−−

4E2
− + ν2

m

+
C+−

(E+ + E−)2 + ν2
m

+
C ′+−{

(E+ + E−)2 + ν2
m

}2

}
, (B16a)

M2 =
−iνm
E+E−

{
D++

4E2
+ + ν2

m

+
D−−

4E2
− + ν2

m

+
D+−

(E+ + E−)2 + ν2
m

+
D′+−{

(E+ + E−)2 + ν2
m

}2

}
, (B16b)

where C++, C−−, C+−, C ′+−, D++, D−−, D+−, and
D′+− are eight νm independent coefficients. The expres-
sions for C++, C−−, C+−, D++, D−−, and D+− were
given in Eqs. (29a)-(29e). The other two coefficients are
as follows

C ′+− = D′+− =
−2

(E+ + E−)(E+ − E−)2
. (B17)

Notice that both the C ′+− term in Eq. (B16a) and the
D′+− term in Eq. (B16b) have a second order pole at

νm = ±i(E+ + E−) on the complex νm plane; while all
other terms have first order poles. The second order poles
appear only in the perturbative calculation but not in
the full Ĝ calculation. Numerically we found that the

second order pole contributions to σ
(1)
H from Eq. (B16a)

and (B16b) are negligible at ω � α, where α is the SOC
coupling strength. Hence we will ignore them hereafter.
Performing a Wick rotation, iνm → ω + iδ, we see that
Sk(ω)/ω and Tk(ω)/ω are given by Eqs. (26) and (27).

Now inserting the results from Eqs. (B13a)-(B13c) into

the expression for F (1)
xy in Eq. (B12) we obtain

T
∑
n

F (1)
xy = 64i

{
fkd
∗
k − f∗kdk

}
ξk gk Sk(iνm) h · ∂kxh× ∂kyh + 8

{
fkd
∗
k − f∗kdk

}
ξk Tk(iνm)Ωxy, (B18)

where we have used

h · ∂kxh× ∂kyh = [vx−v
y
3 − vx3v

y
−]εk/

√
2 + [vx3v

y
+ − vx+v

y
3 ]ε∗k/

√
2 + [vx+v

y
− − vx−v

y
+] gk, (B19)

and also introduced a notation Ωxy for the following anti-symmetrized velocity factor

Ωxy ≡ −2i [vx+v
y
− − vx−v

y
+] = −i[∂kxεk∂kyε∗k − ∂kxε∗k∂kyεk]. (B20)

With these compact notations one can substitute

T
∑
n F

(1)
xy from Eq. (B18) back into Eq. (B1) and ob-

tain the final expression for the Hall conductivity as a
function of frequency given in Eq. (24).

Appendix C: Asymptotic result for large ω and sum
rules

In this section we compute 〈[Ĵx, Ĵy]〉 on the right hand

side of Eq. (33) for the BdG Hamiltonian Ĥ(a)(k) in
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Eq. (12a) up to first order in Ĥ′. Denote the basis

of the Hamiltonian Ĥ(a)(k) from Eq. (12a) as Ψ ≡
(Ψ1,Ψ2,Ψ3,Ψ4)T . Then the current operator can be

written as Ĵi =
∑

k

∑
αβ Ψ†α(k) viαβ Ψβ(k), with i =

{x, y}. The velocity operator matrix viαβ is given in

Eq. (22). Using the fact that the equal time expecta-

tion value 〈Ψ†αΨβ〉 = T
∑
n Ĝβα(k, iωn), we obtain

〈[Ĵx, Ĵy]〉 =
∑
k

T
∑
n

{
A
{
G11 −G22 +G33 −G44

}
+B

{
G21 +G43

}
−B∗

{
G12 +G34

}}
, (C1)

with A and B given by

A = ∂kxεk∂kyε
∗
k − ∂kxε∗k∂kyεk, (C2a)

B = 2(∂kxgk∂kyεk − ∂kxεk∂kygk). (C2b)

On the right hand side of Eq. (C1) all Green’s function
matix elements are evaluated at (k, iωn).

In Eq. (C1) if we use the zeroth order result, G
(0)
αβ , for

all the Green’s function matrix elements then we obtain
〈[Ĵx, Ĵy]〉(0) = 0. This is consistent with Eq. (33) and the

fact that σ
(0)
H (ω) ≡ 0.

The nonzero 〈[Ĵx, Ĵy]〉 comes from the next order con-

tribution: 〈[Ĵx, Ĵy]〉(1). Substituting the matrix elements

of the first order Green’s function, Ĝ(1) ≡ Ĝ(0)Ĥ′Ĝ(0),
into Eq. (C1) and completing the Matsubara summation,

〈[Jx, Jy]〉(1) = i
∑
k

−2i ξk(fkd
∗
k − f∗kdk)

E+E−(E+ + E−)

×
{

Ωxy + 8i
gk h · ∂kxh× ∂kyh

(E+ + E−)2

}
, (C3)

where Ωxy is defined in Eq. (25). The remaining k sum-
mation in Eq. (C3) can be evaluated numerically and
the final result is 〈[Jx, Jy]〉(1) ≈ −i 2.2× 10−5t2 e2/(~ d).
Then Eq. (33) becomes

σ
(1)
H (ω →∞)

e2/~ d
=

2.2× 10−5

(ω/t)2
+O(

1

(ω/t)4
). (C4)

It is also possible to perform the integral in Eq. (35)

analytically using Imσ
(1)
H (ω) from Eq. (30). The result

is identical to −i times Eq. (C3). Similarly the integral
of Eq. (34) can be performed analytically using Eq. (24)-
(28c). The zero result follows from the analytic structure
of the Fi(k, ω) in Eq. (28a)-(28c). We also numerically

evaluate the two sides of Eq. (34) and (35) using the data
from Figs. 4 and 5 and confirm that Eqs. (34) and (35)
are well satisfied.

Appendix D: Estimation of the NN hopping t

We plot the two normal state energy band disper-
sions along high symmetry directions in Fig. 9. From

Γ M K Γ A L H A
-30

-25

-20

-15

-10

-5

0

5

E
/t

FIG. 9. Normal state energy dispersions along high symmetry
directions of the hexagonal Brillouion zone at kz = π. The

two energy band dispersions are E
(n)
± (k) = ξk ±

√
g2k + |εk|2,

with E
(n)
+ plotted in full blue line and E

(n)
− in the dashed red

line. The two bands are degenerate along the symmetry axis
A− L because εk = 0 at kz = π and the SOC vanishes along
these directions as well.

the dispersions along A− L−H−A, the correspond-
ing band width in the kz = 0 plane is W ≈ 14t. We
can fit this to the first-principles calculation results from
Ref. 52. From the Supplemental Material Fig.S1(b), we
estimate that the bandwidth of the dispersions along
A− L−H−A is W ≈ 0.5 eV. Therefore, as an esti-
mation, 14t ≈ 0.5 eV⇒ t ≈ 36 meV.

We note that the bands along Γ−M−K− Γ in Fig. 9
are far below the Fermi energy, which is inconsistent with
the realistic first principle calculation result in Ref. 52.
This is due to the oversimplification of our model which
consists of only two bands resulting from the ABAB
stacking. Due to this oversimplification, the dispersions
along Γ−M−K− Γ are not realistic. In order to es-
timate how these unrealistic dispersions affect our cal-
culations of θK , we have recomputed θK by excluding

all k points that satisfy E
(n)
± (k) ≤ E

(n)
− (k = H), where

E
(n)
− (k = H) is the band bottom of the dispersions along

A− L−H−A in Fig. 9. The result is similar to the
value obatined in the main text without this trunca-
tion. In other words, the unrealistic dispersions along
Γ−M−K− Γ do not significantly change our conclu-
sion for θK . This is because the main contribution to σH
comes from kz values closer to kz = π and not from the
region near kz = 0 in the BZ.
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