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Here we report small-angle neutron scattering (SANS) measurements and theoretical modeling of U3Al2Ge3.
Analysis of the SANS data reveals a phase transition to sinusoidally modulated magnetic order, at TN = 63 K to
be second order, and a first order phase transition to ferromagnetic order at Tc = 48 K. Within the sinusoidally
modulated magnetic phase (Tc < T < TN), we uncover a dramatic change, by a factor of three, in the ordering
wave-vector as a function of temperature. These observations all indicate that U3Al2Ge3 is a close realization
of the three-dimensional Axial Next-Nearest-Neighbor Ising model, a prototypical framework for describing
commensurate to incommensurate phase transitions in frustrated magnets.

I. INTRODUCTION

The Axial Next-Nearest-Neighbor Ising (ANNNI) model
is a historical framework which has successfully described
frustrated magnetism in a variety of materials, and in partic-
ular, commensurate to incommensurate phase transitions.1,2

The three-dimensional ANNNI model, describing the compet-
ing nearest neighbor (NN) interaction J1, and the next nearest
neighbor (NNN) interaction J2, between Ising moments in one
direction and simple ferromagnetic (FM) interactions between
Ising moments in the same plane, was first proposed by R. J.
Elliott in 1961,3 and has been studied extensively ever since.
Subsequently, the ANNNI model was generalized to lower
dimensions, and to XY or Heisenberg spins.2,4,5 This model
and its variants have been shown to be relevant to a broad
class of systems, including alloys, magnets, ferroelectrics and
adsorbates.1,2

For the case of magnetic materials, compounds contain-
ing rare-earth or actinide ions with 4 f and 5 f electrons, re-
spectively, are expected to feature ANNNI physics due to the
presence of Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
actions, which can be approximated in many cases by the
competing NN and NNN exchange integrals.6 f -electron ma-
terials, where the Fermi-surface-topology-determined RKKY
interaction also competes with crystal field effects and spin or-
bit coupling, contain rich phase diagrams with a multitude of
magnetically ordered states. For example, in the presence of
a quasi-nested Fermi surface, the RKKY interaction becomes
maximal at a nonzero wave vector Q, resulting in a magnetic
spiral ground state, with a period 2π/Q, typically incommen-
surate with the underlying chemical lattice.7–9 With the addi-
tion of uniaxial magnetic anisotropy, the magnetic spiral can
become distorted, resulting in higher harmonic wave vectors,
and potential quasi-continuous changes to the ordering wave
vector Q as a function of temperature, arising due to the com-
petition of RKKY interactions and thermal fluctuations.10 Al-
though the ANNNI model provides a theoretical framework
to describe this succession of long-period incommensurate

phases as function of temperature, it was found that close ful-
fillment of its predictions for the temperature dependence of
Q is rare. Maybe the best known realization of the ANNNI
model in f -electron materials is the semimetal CeSb,11–13 with
the caveat that additional further-neighbor interactions were
found to be important.12,13

In this work, we demonstrate that the tetragonal f -electron
compound U3Al2Ge3 is a close realization of the three-
dimensional ANNNI model. Hallmarks of the ANNNI model
include (i) a magnetic phase which features a temperature-
dependent magnetic ordering wave vector, owing to a com-
petition between the NN and NNN interactions and mag-
netic fluctuations, in the vicinity of the phase transition to the
paramagnetic (PM) phase, between which lies a second or-
der phase transition, and (ii) a FM phase at low temperature
that is entered via a first order transition, at which the mag-
netic ordering wave vector features a logarithmic singularity.2

A previous neutron powder diffraction study suggests that
U3Al2Ge3 features several of these ingredients, including a
low temperature FM phase below Tc = 48 K, an incommen-
surately sinusoidally modulated magnetic state (Tc < T < TN,
with TN = 63 K) with ordering wave vector Q = [0, 0, δ],
and a second-order transition between said phase and a PM
phase, making this material a potential candidate for ANNNI
realization.14 However, to confirm if U3Al2Ge3 is indeed well-
characterized by the ANNNI model several key aspects need
to be clarified. (a) Although the incommensurate magnetic
phase was reported to be sinusoidally modulated, symme-
try, in principle, also allows for spiral magnetic order, which
would not agree with the ANNNI model. Notably, powder
diffraction can frequently not unambiguously distinguish be-
tween a sinusoidal and spiral magnetic order. (b) Previous to
our study, no temperature dependence of the magnetic order-
ing wave vector has been reported. (c) The nature of the tran-
sition between the FM and incommensurate phases remains
unknown.

Here, to address these issues, we have carried out a detailed
neutron scattering study on a single crystal of U3Al2Ge3 in
combination with theoretical modeling based on the ANNNI
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model. Using small-angle neutron scattering (SANS), a pow-
erful technique for accurately studying long-wavelength mag-
netic structures, we have confirmed that Q = [0, 0, δ] indeed
shows a pronounced temperature dependence, and determined
the nature of the magnetic phase transitions. Our results
clearly reveal a second order phase transition from paramag-
netic to sinusoidally modulated Ising moments at TN = 63 K,
followed by a first-order phase transition at Tc = 48 K to a
FM state. Through theoretical modeling we are able to as-
cribe these experimental observations to the ANNNI frame-
work; both the measured and calculated phase diagram can
be understood in terms of the 3D ANNNI lattice model, with
frustrated interactions in the direction of modulation, given by
the ratio J2/J1 = −0.2815, where J1 is the nearest neighbor
ferromagnetic interaction, J2 is the next nearest neighbor anti-
ferromagnetic interaction,2 and the ratio J2/J1 is given by the
Q vector at TN, i.e. cos(δc/2π) = −J1/4J2, in which c is the
c-axis lattice parameter. Furthermore, at the incommensurate-
to-FM phase transition we confirm the presence of a logarith-
mic singularity in the temperature dependence of Q, an essen-
tial feature of the three-dimensional ANNNI model, as stated
above. Therefore, we find that U3Al2Ge3 is a close realiza-
tion of ANNNI model, offering an important playground for
investigating its rich physics.

The manuscript is organized in the following way: In Sec-
tion II we describe the theoretical model that motivated our
experimental study. In Sections III and IV we report the sam-
ple synthesis and characterization, and our SANS results, re-
spectively. Finally, in Section V we will discuss and summa-
rize our combined theoretical and experimental results.

II. MODEL

To motivate this experimental study we develop the follow-
ing model accounting for the experimentally observed mag-
netic phase diagram14, making several experimental predic-
tions. The neutron powder diffraction results14 determined
that in U3Al2Ge3 the magnetic moments lying on the Uranium
8c and 2a1 symmetry sites (but not the 2a2 sites), with mag-
netic moments µU = 2.37 µB and µU = 2.12 µB, respectively,
align parallel to the a-axis due to strong easy-axis anisotropy,
modulate along the c-axis, and order ferromagnetically in the
ab-plane, allowing us to reduce the problem to one dimen-
sion. Due to the small ordering wave vector, we expand the
magnetic free energy in terms of the magnetization density M
and ordering wave vector Q in the continuum limit,

F (M) =
α

2
M2 +

β

4
M4 +

δ

6
M6 −

µ

2
(∂zM)2

+
η

2
(∂2

z M)2 +
γ

2
M2(∂zM)2 −

A2

2
M2

x ,

(1)

where A2 is the easy-axis anisotropy, and µ, η and γ are associ-
ated with the stiffness of the magnetic modulation. The com-
peting interactions J1 and J2 along the c-axis in the ANNNI
lattice model are captured by the µ > 0 and η > 0 terms.
Approaching the Néel temperature TN from the paramagnetic
phase, we can neglect the quartic and higher order terms of

M. To take advantage of the anisotropy, the system stabilizes
a state with sinusoidal moment modulation, Mx ∝ sin(Qr) and
My = Mz = 0. We obtain the optimal Q by minimizing F with
respect to Q, which yields Qo =

√
µ/2η at TN. Here TN is de-

termined by the condition that the coefficient of the quadratic
term in Mx vanishes

α − A2 −
µ2

4η
= 0, (2)

which is enhanced due to the presence of the easy-axis
anisotropy A2. To fulfill the condition for second order phase
transition between incommensurate and paramagnetic phase
at TN, we assume β > 0.

Lowering the temperature results in an increase of the mag-
netic moment. Higher-order terms and easy-axis anisotropy
both tend to distort the simple sinusoidal modulation. The
wave is squared up as moments are forced to align along the
easy-axis, creating harmonics in the wave vectors. To take the
advantage of the anisotropy, the moments lie in the easy-axis
direction. The magnetic state can be described by an elliptic
function

Mx = ∆ sn(z/ξ, k), My = Mz = 0, (3)

where sn(z) is the Jacobi elliptic function. The meanings of ξ,
k, ∆ become clear in the limit k → 0, sn(z, k = 0) = sin(z): k
describes the deviation from a perfect sinusoidal modulation,
thus reflecting the importance of harmonics for the magnetic
modulation, ξ is a length scale appearing in the period of the
magnetic modulation, and ∆ is the amplitude of the modula-
tion. When the coefficients in Eq. (1) satisfy a certain relation
(shown below), the magnetic state can be found exactly us-
ing Eq. (3). For generic parameters, we can use variational
calculations using Eq. (3) to determine ξ, k and ∆.

Let us first construct the exact solution.15 We note that Mx
in Eq. (3) solves the following equations

ξ2∂2
z Mx + (1 + k2)Mx − 2

k2

∆2 M3
x = 0, (4)

ξ2(∂zMx)2 + (1 + k2)M2
x −

k2M4
x

∆2 = ∆2. (5)

Differentiating Eq. (4) with respect to z twice, we obtain

∂4
z Mx +

(1 + k2)
ξ2 ∂2

z Mx +
12k4

∆4ξ4 M5
x −

6k2(1 + k2)
∆2ξ4 M3

x

−12
k2

∆2ξ2 [Mx(∂zMx)2 + M2
x∂

2
z Mx] = 0.

(6)

Multiplying Eq. (4) by M2
x and Eq. (5) by Mx and then adding

them together, we have

k2

∆2ξ2

[
M2

x∂
2
z Mx + Mx(∂zMx)2

]
+

2k2(1 + k2)
∆2ξ4 M3

x

−
3k4
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x −
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ξ4 Mx = 0.
(7)
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FIG. 1. (color online) Temperature dependence of (a) free energy F ,
and (b) wave vector Q for model in Eq. (1). Near the commensurate-
incommensurate transition, Q follows Eq. (13). The magnetic order
sets in at τ = 1/4. We have used βγ/δµ = −10/3 in the calculations.

We multiply Eq. (7) by a factor A and Eq. (4) by a factor
B(1+k2)/ξ4 and add to Eq. (6). We then compare the resulting
equation to Eq. (1), from which we obtain the equations for
coefficients

(12 − A)
k2

∆2ξ2 =
γ

η
,

(B + 1)
(1 + k2)
ξ2 =

µ

η
,

(12 − 3A)k4

∆4ξ4 =
δ

η
,

k2(1 + k2)(2A − 6 − 2B)
∆2ξ4 =

β

η
,

(1 + k2)2B − Ak2

ξ4 =
α′

η
,

(8)

with α′ = α − A2. In principle we can determine A, B, k, ∆

and ξ from Eq. (8); however, the solutions are not guaranteed
to exist for arbitrarily coefficients of F , as can been seen from
the equations with γ and δ. This generally implies that Eq.
(3) is not an exact solution. We consider the case of a partic-
ular set of coefficients, such that Eq. (3) is the exact solution,
to demonstrate explicitly the dependence of Mx on tempera-
ture. In any case, Eq. (3) should be a good variation ansatz to
describe the spatial profile of Mx.

At TN corresponding to α′ = µ2/4η, the modulation of Mx
should be a sinusoidal wave. We have ∆ = 0 and k = 0 while
∆k = ∆/k = constant, in the limit k → 0. We obtain B = 1,
ξ2 = 2η/µ, ∆k = −3β/2δ. As in the usual Ginzburg-Landau
theory, we assume that the temperature dependence can be
modeled in α′ by introducing τ = α′/( µ

2

η
), and other coeffi-

cients do not depend on T . Here τ is the reduced temperature.
Upon a change in temperature, k and B change continuously,
but both A and ∆kξ are independent of T . We have

B(τ, k) = −
−1 + 2τ +

√
1 − 4[1 + (12 +

3βγ
δµ

)k2(1 + k2)−2]τ

2τ
.

ξ =

√
(B + 1)

(1 + k2)η
µ

, ∆k =

√
−3βη

δ(B + 1)(1 + k2)

The corresponding free energy density

F

F0
=
−k4

[
10I2 − (k2 + 1)(11 + B)I4 + 14k2I6

]
[(k2 + 1)(B + 1)]3 , (9)

where

F0 =
−3βµ2

2δη
, I2 =

1
k2

[
1 −

E(k)
K(k)

]
, (10)

I4 =
2 + k2

3k4 −
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3k4

E(k)
K(k)

, (11)

I6 =
4(k2 + 1)

5k2 I4 −
3

5k4

[
1 −

E(k)
K(k)

]
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with E(k) and K(k) being the complete elliptic integral of the
second and first kind, respectively. We have used the conven-
tion E(k) ≡

∫ π/2
0

√
1 − k2 sin2 θdθ. To determine the optimal

k, we numerically minimize the free energy density F , given
by Eq. (9), with respect to k, and then obtain other parameters
from k. We then obtain ξ.

The period of the sinusoidal wave is given by the expression

λI = 4ξK(k). (13)

Here λI diverges when k → 1, corresponding to the FM state.
Near the phase transition between sinusoidal wave and FM at
τ2, we can expand K(k) near k = 1,

λI = ξ(τ2)
[
8 ln 2 − 2 ln(1 − k2)

]
, (14)

Close to τ2 from above, we expand 1 − k2 = α2(τ − τ2)β2

and then obtain the logarithmic temperature dependence of
the ordering wave vector

Q = 2π/λI ∝ −1/ ln(τ − τ2), (15)

near the commensurate-incommensurate (sinusoidal
modulation-FM) transition.1,2
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The free energy F and Q as a function of temperature τ are
presented in Fig. 1. Upon lowering the temperature from TN,
the system first becomes an Ising density wave with Q varying
continuously with T , becoming FM at low temperature, with
the free energy density

FFM

F0
= −

1
18

[
(1 +

√
1 − 6τ)

(
1
3
− 2τ

)
− τ

]
. (16)

The transition from the paramagnetic phase into the
sinusoidally-modulated phase is of second order by construc-
tion, following the experiments shown below and Ref. 14,
and the transition from the sinusoidally-modulated phase to
the FM is shown to be first order, which can be seen from the
slope of F in Fig. 1 (a). As we will show, these results agree
qualitatively with results of the experimental analysis of the
SANS data (cf. Fig. 4(b)).

III. SYNTHESIS AND CHARACTERIZATION

To confirm the accuracy and predictions of our model, a
single crystal of U3Al2Ge3 (tetragonal structure I4 (No. 79
in the International Tables for Crystallography), a = 7.769 Å,
c = 11.036 Å, cf. Fig. 3(a), derivative of ordered antitype-
Cr5B3) was prepared by the Czochralski technique in a tri-
arc furnace with a continuously purified Argon atmosphere
(< 10−12 ppm O2). The sample was characterized using X-
ray Laue backscattering and via magnetic susceptibility mea-
surements performed in a Quantum Design Magnetic Property
Measurement System (MPMS). As shown in Fig. 2, mag-
netic susceptibility data, both taken on warming after zero-
field cooling, with no changes between runs, reveal typical
ferromagnetic behavior with Tc = 48 K, with a fully saturated
susceptibility below 30 K, The susceptibility also exhibits an
additional anomaly at 63 K corresponding to the onset temper-
ature of the incommensurate magnetic state.14 For the small-
angle neutron scattering (SANS) measurements, a 1 g piece of
the single crystal was orientated such that [100] was along the
beam and [001] was in the scattering plane, allowing to access
the magnetic ordering wave vector Q = [0, 0, δ]. SANS mea-
surements were performed at the NG7-SANS beam line at the
NIST Center for Neutron Scattering and the GP-SANS beam
line at the High-Flux Isotope Reactor (HFIR) at Oak Ridge
National Laboratory. SANS data were collected by rocking
the sample ±10◦ about the vertical axis, with an incident neu-
tron wavelength of λ = 6 Å.

IV. EXPERIMENTAL RESULTS

In the following section we present the results of the SANS
measurements. All SANS data shown were obtained by angle
integrating monitor-normalized SANS detector intensities. In
order to obtain the magnetic intensity as a function of mo-
mentum transfer q, the magnetic scattering was azimuthally
averaged in the FM phase, whereas in the incommensurate
phase radial cuts through the two magnetic satellite positions
at Q = [0, 0, δ] were performed.
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FIG. 2. (Color Online) Magnetic susceptibility χ of a single crystal
of U3Al2Ge3 taken with H = 10 Oe. Vertical lines indicate second-
and first-order transitions at TN = 63 K and Tc = 48 K, respec-
tively. Inset: Zoomed region of magnetic susceptibility χ showing
the second-order transition at TN = 63 K. Different symbols repre-
sent separate runs on the same sample.

Starting in the low-temperature FM phase, T < 48 K we
only observe strong scattering near the direct beam and no
characteristic magnetic ordering wave vectors, confirming the
FM state. Furthermore, scattering near the direct beam ap-
proximately follows Porod’s Law I ∝ S q−4,16,17 as shown in
Fig. 3(b), which indicates the presence of large ferromagnetic
domains with specific surface area S = 0.251(7) nm2, from
least-squares fitting.

Increasing temperature above 48 K we observe the emer-
gence of strong magnetic scattering at Q = [0, 0, δ], indi-
cating the entrance of the incommensurate phase. Although
the original neutron powder diffraction study indicated this
phase to be a sinusoidally modulated magnetic phase, from
representational analysis of the crystallographic lattice struc-
ture determined in Ref. 14, as shown in Fig. 3(a), and the
magnetic ordering wave vector Q = [0, 0, δ], both helical and
sinusoidal magnetic ordering are allowed by symmetry. To
confirm the magnetic structure, we therefore performed spin-
polarized SANS measurements at the NG7-SANS instrument
at T = 56 K, with the polarization pointed along the [001]
direction, and the detector positioned 4 m from the sample. In
the case where the incident polarization is aligned along q, i.e.
P0 ‖ q, the magnetic cross-section is given by

σ± = |M⊥|2 ± P0C. (17)

Here M⊥ is the magnetic interaction vector defined as M⊥ =

Q̂ × (ρ(Q) × Q̂), where ρ(Q) = −2µB
∫
ρ(r) exp(iQ · r)dr is

the Fourier transform of the magnetization density ρ(r) of the
investigated sample, and Q̂ is a unit vector parallel to the scat-
tering vector Q. The associated coordinate frame is defined
to have x parallel to Q, z perpendicular to the scattering plane
and y completing the right-handed set. We note that the term
C = 2=(M∗⊥y · M⊥z) is only non-zero for magnetic structures
that display chirality, such as magnetic spirals, and is therefore
denoted as the chiral term.18 Because, (σ+−σ−)/P0 = 2C, we
would expect that for a single peak the difference between the
cross section obtained with incident neutrons polarized paral-
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FIG. 3. (Color Online) (a) U3Al2Ge3 tetragonal crystal structure and
the magnetic configuration in the ferromagnetic phase, with the three
U site symmetries individually labeled (8c, 2a1, 2a2). (b) Low-q
scattering in the ferromagnetic phase (T = 40 K), fitted to Porod’s
Law I ∝ q−4, illustrating the expected behavior for FM domains.
(c) Polarized SANS cross-sections with the incident beam polarized
parallel (σ+) and antiparallel (σ−) to the momentum transfer q, and
their difference, taken at NG7-SANS. As explained in the text, the
difference should only be non-zero in the case of a spiral magnetic
structure. (d) Radial cuts of SANS data showing the evolution of
the ordering wave vector as a function of temperature taken at GP-
SANS. Data in (b) and (c) are normalized to monitor counts, and data
in (d) are scaled and vertically shifted for clarity.

lel (σ+) and antiparallel (σ−) with respect to q would give rise
to a non-zero chiral term C, only if the magnetic structure had
spiral order. This is contrary to our observation, where such
a subtraction results in no residual intensity, within the error
bars (cf. Fig. 3(c)), confirming that the magnetic structure is

sinusoidal, as surmised originally in Ref. 14.
Further increase in temperature reveals a pronounced

change, by a factor of three, in the magnetic ordering wave
vector, as illustrated by the select SANS data for 49 K ≤ T ≤
67 K shown in Fig. 3(d), which have been scaled and shifted
to illustrate the drastic change in the magnetic ordering wave
vector as a function of temperature. In Fig. 4 we display
the results of analysis of the angle-integrated SANS data for
each temperature, taken at the GP-SANS instrument. For the
temperature-dependent analysis we use data measured in two
configurations: (1) with the detector at 7 m from the sample,
which provides a momentum range of 0.1 . q . 0.8 nm−1,
and (2) with the detector 17 m from the sample, which pro-
vides a momentum range of 0.025 . q . 0.3 nm−1. In the 7 m
configuration, we can clearly see that the propagation vector
Q changes abruptly as a function of temperature at Tc ∼ 48 K,
while at 63 K the Q saturates, as shown by the circle symbols
in Fig. 4(b). The 17 m detector configuration, due to its lower
momentum range which allows us to observe scattering that
would have been lost in the direct beam signal in the 7 m con-
figuration, reveals that there is indeed a quasi-discontinuous
change in the wave vector at Tc. It is noteworthy that the in-
tensity continues to increase slightly above the transition. This
situation may arise in the case where the data were taken upon
warming, as we have done here; since the transition from the
FM to the modulated phase is first order, we may expect some
hysteresis, i.e. it is possible for “droplets” of the FM phase
to persist above Tc.19 This would therefore result in the ap-
pearance of the satellite peaks associated with the modulated
phase immediately above Tc, but with reduced integrated in-
tensities. As the FM droplets shrink, the intensity of the satel-
lite peaks will gradually increase, reaching a maximum at the
temperature where the entire system is within the modulated
phase, here T ∼ 50 K. It should also be noted here that in
the 17 m configuration, the ordering wave vector of the sinu-
soidal phase lies at the limits of the detector range, resulting
in substantial error in the intensity, as illustrated by the error
bars in Fig. 4(b). Furthermore, we find that the wave vector
is well described by the logarithmic function −1/ ln(T − Tc)
(cf. Eq. 15), as illustrated by the dashed line in Fig. 4(b).
This function directly originates from the ANNNI models, as
we discussed above in Section II. This quasi-discontinuity in
Q indicates a first-order transition between the sinusoidal and
FM phases, supporting the assertion of a first-order transition
predicted by our model.

In contrast, above TN = 63 K we observe no discrete peaks
on the detector, but instead a broad ring of scattering which
gradually decreases in intensity up to ∼67 K, above which it
disappears below the background completely. This behavior,
along with the magnetization data in Fig. 2, strongly supports
a second-order transition between the paramagnetic (PM) and
sinusoidal phase.

V. DISCUSSION AND SUMMARY

It is found that the lattice constants change in the si-
nusoidally modulated phase, indicating the existence of
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FIG. 4. (Color Online) Results of analysis of the SANS data: (a)
the integrated intensity and (b) wave vector of the Bragg peaks, ob-
tained by fitting Gaussian functions to radial cuts along the momen-
tum transfer q, like those shown in Fig. 3(d). Different symbols rep-
resent unique configurations: blue circles were obtained using a 7m
detector distance, the orange triangles using a 17m detector distance.
Error bars represent the errors obtained from least-squares fitting.
The red dashed line in panel (b) represents a fit to the logarithmic
singularity expression, Q ∝ −1/ ln(T − Tc).

magneto-elastic coupling.14 Therefore, the measured change
of Q by neutron scattering has two contributions, with one be-
ing from the lattice expansion/shrinkage, and the other from
the magnetic competing interaction. The former contribu-
tion is negligible compared to the latter one according to the
experiments.14

One key feature of the ANNNI framework on a lattice
model is the appearance of the devil’s staircase, where Q
varies quasi-continuously with temperature. In certain tem-
perature window, Q is fixed. Outside the temperature window,
Q then jumps to another Q through the proliferation of mag-
netic solitons.20 This behavior is not captured by the model in
the continuum limit in Eq. (1). For Q = 0.76 nm−1, the Q
steps are extremely narrow. In experiments with finite reso-
lution, Q varies nearly continuously with temperature, as de-
picted in Fig. 4.

True realizations of the ANNNI model in magnets is rare,
particularly in metals. In fact many of the potential examples
of ANNNI-like materials require notable modification to the
ANNNI model to explain observed behavior. The best known
example is semimetallic CeSb,21 the magnetization of which
features the famous “devil’s staircase”, discrete sharp steps in
the magnetization within the incommensurate phase.1 How-
ever, the ANNNI model notably does not capture additional

experimentally observed Bragg reflections in CeSb, requir-
ing a modification of the ANNNI model.12,13 A later study of
CeBi also required modification of the ANNNI model, i.e. an
additional competing exchange coupling.22 More recently, the
phase diagram of metallic TmB4, which features a fractional
plateau in magnetization, has been described in terms of the
ANNNI model, but again, two additional exchange terms were
required as modification of the model.23

Several other modern examples of potential ANNNI com-
pounds do exist, however. In U(Ru1−xRhx)2Si2, powder neu-
tron diffraction observed multiple Q states as a function of
temperature, suggested by the authors to perhaps be related to
the ANNNI model.24 A recent study has reported a semimetal-
lic compound closely related to CeSb, CeSbSe which was
found to feature discrete steps in magnetization and resistivity,
which have been suggested to arise due to underlying ANNNI
type magnetic interactions and the associated existence of a
devil’s staircase.25 The heavy fermion metal CeRhIn5, which
exhibits incommensurate helical and elliptical magnetic or-
dering that transition to a commensurate order with magnetic
field,26 has been suggested as a candidate.8,27

In summary, we have studied the magnetic order in f -
electron compound U3Al2Ge3, finding it to be well described
by the three-dimensional Axial Next-Nearest Neighbor Ising
model. Our experimental results determine the transition be-
tween the paramagnetic and sinusoidal phases to be second or-
der, and the lower transition between the sinusoidal and ferro-
magnetic phases to be first order, which arises naturally from
our model. Furthermore, we have confirmed the logarith-
mic singularity in the sinusoidal ordering wave vector at the
boundary to the FM phase, an essential feature of the ANNNI
model. These results demonstrate that U3Al2Ge3 represents a
prototypical material for investigating ANNNI physics.
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