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Unified Spin Model for Magnetic Excitations in Iron Chalcogenides

Patricia Bilbao Ergueta, Wen-Jun Hu, and Andriy H. Nevidomskyy
Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

Recent inelastic neutron scattering (INS) measurements on FeSe and Fe(Te1−xSex), have sparked intense de-
bate over the nature of the ground state in these materials. Here we propose an effective bilinear-biquadratic spin
model which is shown to consistently describe the evolution of low-energy spin excitations in FeSe, both under
applied pressure and upon Se/Te substitution. The phase diagram, studied using a combination of variational
mean-field, flavor-wave calculations, and density-matrix renormalization group (DMRG), exhibits a sequence
of transitions between the columnar antiferromagnet common to the iron pnictides, the non-magnetic ferro-
quadrupolar phase attributed to FeSe, and the double-stripe antiferromagnetic order known to exist in Fe1+yTe.
The calculated spin structure factor in these phases mimics closely that observed with INS in the Fe(Te1−xSex)
series. In addition to the experimentally established phases, the possibility of incommensurate magnetic order
is also predicted.

PACS numbers: 75.10.-b 74.70.Xa, 74.25.-q

I. INTRODUCTION

Iron chalcogenides are considered to be the most correlated
of the iron-based family of superconductors, and have been
the subject of intensive study, both theoretically and exper-
imentally. In Fe1+yTe, it was found early on that the mag-
netic ground state has an unusual double-stripe (DS) structure
characterized by the ordering wave-vector Q = (π/2, π/2) in
the one-iron unit cell notation1–3. This state is in stark con-
trast to the parent compounds of iron pnictides that have a
columnar antiferromagnetic (CAFM) ground state4–6. Upon
doping with selenium, the DS magnetism disappears, result-
ing in a non-magnetic ground state in Fe(Te1−xSex) (for suf-
ficiently large x)7–11. The nature of this state, extending all
the way to the stoichiometric FeSe, has been the subject of in-
tense debate recently, with elastic neutron scattering showing
no sign of magnetic Bragg peaks in FeSe12,13. The INS stud-
ies have found large finite-energy spectral weight at wavevec-
tors Q1,2 = (π, 0)/(0, π)14–17, which are characteristic of the
CAFM magnetic order in the iron pnictides4. This suggests
that FeSe is close to magnetic ordering, presumably to the
CAFM phase. Indeed, it was shown that magnetism can be
reached by applying hydrostatic pressure to FeSe, as indicated
by the recent transport, ac-susceptibility, X-ray scattering and
NMR measurements18–21.

The conspicuous lack of magnetic ordering under ambient
pressure in FeSe has led to several theoretical proposals for the
unusual nature of the ground state in this material22–25. For the
theory to be consistent, it is important that it should be able to
describe not only the lack of magnetic ordering in FeSe, but
also the appearance of magnetism under applied pressure and
with Te doping. In this paper, we show that the recently pro-
posed theory of the spin ferroquadrupolar (FQ) ground state
for FeSe25 indeed satisfies these requirements and success-
fully describes the evolution of the INS data as a function of
Te doping in Fe(Te1−xSex), in qualitative accord with the re-
cent INS experiments11.

In this work, we use the frustrated bilinear-biquadratic
spin-1 Heisenberg model as a basis, employed by many au-

thors to model iron pnictides and chalcogenides23–30:

H =
1
2

∑
i, j

Ji jSi · S j +
1
2

∑
i, j

Ki j(Si · S j)2, (1)

where Si is the quantum spin-1 operator on site i, describ-
ing the Hund’s-coupled spins of conduction electrons in the
half-filled Fe dxz and dyz orbitals. Earlier studies25,27,28 have
proposed that it is sufficient to limit the spatial extent of
the interactions to the 1st and 2nd nearest neighbors: Ji j =

{J1, J2}, Ki j = {K1,K2}, in order to model the INS data on
the iron pnictides and FeSe. In this paper, we show that in-
cluding the third-neighbor Heisenberg interaction J3 is nec-
essary to describe the DS magnetic state of Fe1+yTe and that
the increasing J3 strength describes qualitatively the effect of
Te doping in Fe(Te1−xSex). Using the variational mean-field,
flavor-wave expansion, and the DMRG calculations, we com-
pute the phase diagram and establish that the evolution of the
calculated dynamic spin-structure factor S (q, ω) with increas-
ing J3 mimics that observed in INS data in Fe(Te1−xSex)11.
Crucially, the obtained phase diagram naturally describes both
this evolution, and the tendency towards the CAFM ordering
under the applied pressure in FeSe18–21 within a single unified
theory. This J1-J2-J3-K1-K2 theory, shown earlier to describe
semi-quantitatively the spin dynamics of BaFe2As2 iron pnic-
tides with very few fitting parameters27,28, can thus be con-
sidered an effective spin model of both iron pnictides and
chalcogenides, and is therefore of fundamental importance to
the field of iron-based superconductors. Of course one can
attempt to include third-neighbor biquadratic (K3) and far-
ther interactions, however the predictions of the present model
readily agree with the INS results and guided by Occam’s ra-
zor, we therefore propose that the interactions up to {J3, K2}
order be considered sufficient.

This paper is organized as follows. The analytical ap-
proaches, namely the variational mean-field and flavor-wave
techniques are introduced in section II, with the respective cal-
culated phase diagrams presented in section III. Our conclu-
sions are corroborated with the state-of-the-art DMRG calcu-
lations, summarized in section IV. We proceed to calculate the
dynamical spin structure factors and provide detailed compar-
ison with the INS experiments on Fe(Te1−xSex) in section V,



before exploring the theoretical indications of the incommen-
surate magnetic order in section VI. Finally, we conclude with
the discussion and outlook in section VII.

II. ANALYTICAL APPROACHES

A. Variational Mean field

In FeTe, attempts to fit the experimental spin-wave
dispersion with purely Heisenberg model required highly
anisotropic exchange couplings J1a , J1b

31. In fact, both
of them were required to be ferromagnetic31, in contrast to
all the iron pnictides where the antiferromagnetic superex-
change is necessary6. Below we show that including the bi-
quadratic spin-spin interaction Ki j makes it possible to obtain
the experimentally observed DS phase (also referred to as bi-
collinear phase in the literature) with the ordering wavevec-
tor Q = (π/2, π/2) while maintaining an isotropic nearest-
neighbor (NN) exchange, as shown in the phase diagram in
Fig. 1. We note that a similar problem arises when attempt-
ing to fit the high-energy spin-wave dispersion in the parent
compounds of the iron pnictides in the CAFM phase32,33, and
it was proposed by us and others that this problem can be re-
solved by inclusion of a suitable NN biquadratic interaction
K1 < 027,28.

It is useful to recast the Ji j−Ki j model in terms of the trace-
less symmetric quadrupolar tensor:

Qαβ = S αS β + S βS α −
2
3

S (S + 1)δαβ, (2)

whose 5 independent components are con-
venient to cast into a 5-component vector
Q ≡

(
(Qxx − Qyy)/2, (2Qzz − Qxx − Qyy)/2

√
3,Qxy,Qyz,Qxz

)
.

Using an identity 2(Si ·S j)2 = Qi ·Q j −Si ·S j + 8
3 for S = 1,

the model in Eq. (1) can then be rewritten in the form

H =
1
2

∑
i, j

(
Ji j −

Ki j

2

)
Si · S j +

1
4

∑
i, j

Ki j

(
Qi · Q j +

8
3

)
. (3)

In order to get an insight into the properties of this model,
we first seek a mean-field solution, which is equivalent to writ-
ing the wavefunction in a separable form:

|Ψ〉MF =
∏

i

|~di〉, (4)

in terms of the single-particle states |~di〉 =
∑
α dαi |α〉

25,34. An-
ticipating the magnetic as well as quadrupolar solutions, it is
convenient to use a quadrupolar basis of time-reversal invari-
ant states |α〉 = { |x〉, |y〉, |z〉 }, which are linear superpositions
of the familiar |S z〉 states:

|x〉 = i
|1〉 − |1̄〉
√

2
, |y〉 =

|1〉 + |1̄〉
√

2
, |z〉 = −i|0〉. (5)

The spin operators transform accordingly and can be written
conveniently in the following form:

S ν = −iενγδ|γ〉〈δ|. (6)

Similarly, the quadrupolar operators Qαβ introduced in Eq. (2)
take on the following form in this basis:

Qαβ =
2
3
δαβ − |β〉〈α| − |α〉〈β|. (7)

Using Eqs. (6) and (7), we can now evaluate the energy of the
Hamiltonian in Eq. (3) in the mean-field ansatz given by the
choice of directors |~di〉 =

∑
α dαi |α〉 in Eq. (4). This results in

the following mean-field expression for the energy:

E0 =
1

2N

∑
i, j

[
Ji j|〈~di|~d j〉|

2 − (Ji j − Ki j)|〈~di|~d∗j〉|
2 + Ki j

]
. (8)

We then perform a variational search by minimizing Eq. (8)
with respect to the set of directors {~di} restricted to a supercell
of lattice vectors. Choosing a larger supercell allows one to
consider the states that do not preserve translational symme-
try of the lattice, such as staggered spin or quadrupolar orders.
For the purpose of this work, it was sufficient to choose the a
supercell of dimension 4 × 4 with periodic boundary condi-
tions.

We note that the directors ~di = ~ui + i~vi are complex 3-
component objects satisfying the constraints |~ui|

2 + |~vi|
2 = 1

and ~ui · ~vi = 0. It follows from Eq. (6) that the expectation
value of spin:

〈~d|S|~d〉 = 2~u × ~v, (9)

so that the long-range dipolar order is only present when both
~u and ~v are non-zero, whereas the pure quadrupolar states are
identified by 〈S〉 = 0 and correspond to the director ~d being
purely real or purely imaginary.

Depending on the parameter regime, we find 5 magnetically
ordered phases:

(i) CAFM, with ordering wavevector Q = (π, 0)/(0, π);

(ii) Néel state with Q = (π, π);

(iii) DS state with Q = ±(π/2, π/2), depicted in Fig. 2a);

(iv) Plaquette (PL) state, with Q = (±π/2,±π/2), depicted in
Fig. 2b);

(v) Staggered dimer (SD) state depicted in Fig. 3a), identi-
fied by Q = (±π/2, π)/(π,±π/2).

In addition, we also find an extensive region of the non-
magnetic FQ phase, characterized by a uniform set of direc-
tors ~di = ~d ∀i, with a vanishing magnetic (dipolar) moment:
0 = 〈Si〉 ≡ 2 Re[~di] × Im[~di]. This is the only stable non-
magnetic state in the phase diagram for the studied parame-
ter regime and is natural to interpret as the ground state of
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FIG. 1. Phase diagram of the Hamiltonian Eq. (1) with J1 = 1, J2 = 0.8 and periodic boundary condition on 4 × 4 cluster as a function
of J3 and K1 for (a),(e) K2 = 0, (b),(f) K2 = −0.3, (c),(g) K2 = −0.8 and (d),(h) K2 = K1 ≡ K. Panels (a) to (d) were obtained within
variational mean-field calculation. The effect of spin dipolar and quadrupolar fluctuations on the phase diagram is shown in panels (e) to (h)
by flavor-wave calculation. The white regions show the regime of parameters where the flavor-wave expansion is unstable, indicating likely
incommensurate spin order.

FeSe, as was shown in Ref. 25. This interpretation is fur-
ther strengthened by a very good accord between the theoreti-
cal spin-structure factors25 and those measured in INS exper-
iments15,17.

The mean-field energies of the aforementioned phases are
as follows:

ECAFM = −2J2 + 2J3 + 3K1 + 4K2, (10a)
ENéel = −2J1 + 2J2 + 2J3 + 4K1 + 2K2, (10b)

EDS/PL = 3K1 + 3K2 − 2J3, (10c)

ESD = −J1 +
7
2

K1 + 3K2, (10d)

EFQ = 4K1 + 4K2. (10e)

The resulting mean-field phase diagrams, shown in Fig. 1, will
be discussed later in section III. We note that within the vari-
ational mean-field method, the bicollinear DS phase (Fig. 2a)
is degenerate in energy with the PL state depicted in Fig. 2b).
We shall comment further on the distinction between these
two states when discussing the phase diagram results in sec-
tion III and the DMRG results in section IV.

B. Fluctuations around mean-field: Flavor wave expansion

In order to improve on the mean-field solution, we have
performed a series of flavor-wave calculations, which ac-
counts for the fluctuations in the spin dipolar as well as spin
quadrupolar channels34–37. The essence of this technique con-
sists in expanding the local operators Oi in terms of the 3
species (α, β = {0, 1, 2}) of bosons that transform in the fun-
damental representation of group SU(3):

Oi =
∑
αβ

b†i,αOαβ
i bi,β,

∑
α

b†i,αbi,α = 1. (11)

In a phase with long-range order (including quadrupolar
orders), some linear combination of bosons is condensed,∑
α〈V

α0
i b†i,α〉 ≡ 〈b̃

†

i,0〉 , 0. This can be cast in terms of a
unitary transformation into a new basis:

b̃i = V
†

i bi, (12a)

Õi = V
†

i OiVi, (12b)

where the matrix form of Vi is determined by the mean-
field ground state in Eq. (4) expressed by an appropriate
choice of directors |~di〉.

Below, we outline the key steps in the flavor-wave proce-
dure, while relegating further details to the Appendix A:

1) for a given mean-field ansatz |~di〉, determine the unitary
matricesVi (for each sublattice i);

2) condense the appropriate boson with the local constraint

by writing b̃i,0 =

√
1 − b̃†i,1b̃i,1 − b̃†i,2b̃i,2;

3) expand the square roots in the Hamiltonian Eq. (3) up to
quadratic order in b̃†i,a and b̃i,a (a = 1, 2);

4) diagonalize the resulting expression using the Bogoliubov
transformation, to obtain the flavor-wave Hamiltonian in
terms of new bosonic operators {α†q,ν, αq,ν}:

Hfw =
∑
q

∑
ν

ωq,ν(α†q,ναq,ν + 1/2) + N · const, (13)
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a) b)DS PL

FIG. 2. Schematic depiction of (a) bicollinear DS state and (b) PL
state.

where ν denotes different excitation branches.

The contribution of the zero-point fluctuations:

Ezp =
1

2N

∑
q,ν

ωq,ν + const (14)

lowers the energy compared to the mean-field value, resulting
in the shift of the phase boundaries, as seen in Figs. 1e) to 1h).
As we shall see in the following section, in certain cases (espe-
cially near the phase boundaries) the mean-field solution turns
out to be unstable, as evidenced by the softening in the spec-
trum of flavor-wave excitations which then acquire imaginary
component. At this point, the mean-field solution is not to be
trusted, and a different method (such as DMRG) must be used
to establish the nature of the ground state, as we discuss in
section IV. Nevertheless, we shall demonstrate in section VI
that even when the mean-field solution turns out to be unsta-
ble, the analysis of the flavor-wave spectrum softening allows
one to glean further information into the nature of the result-
ing ground state, including the possibility of incommensurate
order.

III. PHASE DIAGRAMS

A representative mean-field phase diagram is shown in
Figs. 1a) to 1d) for four different cases: K2 = 0, K2 = −0.3,
K2 = −0.8, and K2 = K1 ≡ K, respectively. We have chosen
the units such that J1 = 1 and further fixed J2 = 0.8, in accord
with the ab initio calculations27. This leaves J3 and K1,K2
as free parameters in the calculations. In this article, we fo-
cus on negative values of K1 and K2, as those are obtained by
fitting the INS spectra to the Ji j − Ki j model27,28. If, on the
contrary, one were to take K1 to be positive, one finds a (π, π)
Néel phase stable in a large portion of the phase diagram25,
which is clearly not realized in the iron pnictides. This pro-
vides additional motivation for only considering negative Ki j.

a) b)SD AFM*

FIG. 3. Schematic depiction of (a) staggered-dimer (SD) state and
(b) AFM∗ (π/2, π) state introduced in Ref.30. We find the two states
to always be degenerate in the entire studied parameter regime pre-
sented in this paper.

Regarding the microscopic origin of these couplings, the large
negative K1 was found in the so-called spin crossover model
by Chaloupka and Khaliullin38. A large negative K1 also natu-
rally arises within the Kugel-Khomskii type models when the
orbitals order inside the nematic phase39.

As Fig. 1 indicates, the CAFM phase dominates for small
J3, provided |K1| is not too large; while for sufficiently neg-
ative K1 we observe the appearance of either the FQ or the
(π, π) Néel phase. This is due to the fact that in the ab-
sence of K2, a negative biquadratic coupling K1 renormalizes
the NN Heisenberg interaction, making the (π, π) correlations
stronger28,39. Since the Néel phase has not been observed in
either iron pnictides or chalcogenides, our calculations sup-
port the conclusion that K2 must be present and negative.
Above a certain critical value of K1, the FQ order is stabilized
and a direct transition between the FQ and CAFM phases is
achieved25, mimicking the experimentally observed transition
from the non-magnetic to the antiferromagnetic state in FeSe
under applied pressure18–21. For sufficiently large J3, a DS
magnetic order is obtained in Fig. 1, which is well established
in Fe1+yTe1–3. An intermediate SD phase (colored green in
Fig. 1) also typically appears between the CAFM and DS or
PL phases [although there is a parameter regime where it is
absent, see Fig. 1c) and g)]. This phase, characterized by
wavevectors (π,±π/2) or (±π/2, π), breaks the lattice C4 sym-
metry and is depicted schematically in Fig. 3a). There may be
indirect experimental evidence of such an intermediate phase
in FeSe under applied pressure21. We note that the SD phase
is distinct from the so-called AFM∗ (π, π/2) phase studied in
Ref. 30 [see Fig. 3b)]; within the mean-field treatment, we find
both phases to be degenerate in the entire parameter regime
presented in this paper.

As depicted in Figs. 1a)-d), the DS and PL phases are ex-
actly degenerate at the mean-field level. However quantum
fluctuations, captured within the flavor wave expansion, lift
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the degeneracy, so that one or the other phase becomes the
true ground state, depending on the region of the parameter
regime. For small values of K2 [see Fig. 1e)], we find the PL
phase is the ground state within its region of stability. Outside
of this region, fluctuations destroy the PL order and the DS
phase is stabilized instead over a wider parameter range. For
larger values of K2 [see Fig. 1g)], the behavior is the opposite,
with the DS phase being lower in energy when both phases are
possible, but the PL phase remaining stable in the wider pa-
rameter regime. Fig. 1f) shows the PL phase to always be the
ground state for K2 = −0.3. However, the energy differences
between the PL and DS phases are in this case the smallest out
of all the cases we studied and their stability regions almost
overlap. The K2 = K1 case [see Fig. 1h)] showcases the same
behavior that is observed for the larger values of K2 when it
comes to the PL/DS regions. Additionally, we find that taking
into account the effect of quantum fluctuations greatly reduces
the region of stability of the SD phase (colored green), com-
pared to the mean-field results in Fig. 1d).

Due to the stability regions being different for the PL and
DS phases, there is a first-order discontinuity in the energy at
the phase boundary between the two. This is shown in Fig. 4
for the two cases where this jump is most appreciable. For the
rest of cases, the energy difference even smaller and vanishes
when the phase boundaries approach one another. The K2 =

−0.3 case [see Fig. 1f)] is a good example thereof, with the PL
phase being only slightly lower in energy than the DS phase,
and the two phase boundaries almost overlapping.

As mentioned earlier in section II B, the flavor-waves may
result in unstable regions near the mean-field phase bound-
ary between different phases. Physically, this means that or-
der parameter fluctuations destroy the given long-range or-
der, indicating the tendency of the systems towards a differ-
ent ground state. Such unstable solutions are indicated by the
white unshaded regions in Figs. 1e)-h). Besides the appear-
ance of these unstable regions, the qualitative behavior of the
phases remains the same, with only the numerical values of
the phase boundaries shifting with respect to their mean-field
values. The flavor-wave expansion is nevertheless very valu-
able for two reasons: first, it allows for the calculation of the
dynamical quantities, such as spin structure factor which will
be discussed in section V; and second, the details of the insta-
bility in the flavor-wave spectrum provide clues as to the ori-
gin of the true ground state, as we shall explore in section VI.

IV. DMRG SOLUTION

Having established the mean-field phase diagram, we ver-
ify the stability of the phases shown in Fig. 1 using unbiased
SU(2) DMRG calculations40–43 on L × 2L rectangular cylin-
ders with L = (4, 6, 8)44. We keep up to 4000 SU(2) states,
leading to truncation errors around 10−5. The finite-size analy-
sis for the CAFM and FQ phases is identical to that performed
in Ref. 25 so we only show the results on the largest cylin-
der (L = 8 unless noted otherwise), taking a horizontal cut at
K1 = K2 ≡ K = −0.3 in the phase diagrams in Figs. 1d) and
h) and studying the effect of increasing J3.
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FIG. 4. The zero-point energies of the PL (solid line) and DS (dashed
line) phases, including the contribution from flavor-wave fluctua-
tions, plotted across a constant J3 = 1.0 cut through the phase bound-
ary between the two phases, for two different values of K2: a) K2 = 0
and b) K2 = K1. A first-order jump in energy is observed at the
transition, more pronounced for small |K2| as in panel (a).

First we show in Fig. 5 the real space spin configurations
for the CAFM and the PL order obtained through the calcu-
lations of the spin-spin correlation functions by DMRG on
L = 8 cylinder. Due to the cylindrical geometry, the CAFM
automatically chooses an anti-parallel configuration along the
y-direction and a parallel configuration along the x-direction
[see Fig. 5a)]. Note that the PL order shown in Fig. 5b)
is distinct from the DS order shown in Fig. 7; however the
two solutions have degenerate ground state energies given by
Eq. (10c).

In order to analyze the structure of the spin correlations in
different phases, it is more convenient to work in reciprocal
space. Shown in Fig. 6a) for different values of J3 is the static
spin structure factor

m2
S (q) =

1
L4

∑
i j

〈Si · S j〉eiq·(ri−r j). (15)

In the above formula, the indices i, j are only partially
summed on L × L sites in the middle of the cylinder, in or-
der to reduce boundary effects42,45–47. The leftmost panel,
at J3 = 0.2, is in the CAFM phase and corresponds to the
real space spin configuration shown earlier in Fig. 5a). Pre-
dictably, m2

S (q) is maximized at Q1 = (0, π) (as noted above,
the cylindrical DMRG geometry selects Q1 over Q2). At
J3 & 0.8, a PL phase becomes stable, with the spin structure
factor attaining maximum at Q = (π/2, π/2). The J3 = 0.8
panel in Fig. 6a) corresponds to the real space configuration
shown in Fig. 5b) above.

In between the CAFM and the PL phase, the static spin
structure factor is featureless, indicative of the absence of the
conventional static magnetic long-range order. In order to
shed more light on the nature of spin correlations in this phase,
we have calculated the static spin-quadrupolar structure factor,
defined as

m2
Q(q) =

1
L4

∑
i j

〈Qi · Q j〉e
iq·(ri−r j). (16)

The results are shown in Fig. 6b) as a function of increas-
ing J3. On general grounds, one expects non-zero quadrupo-
lar correlations inside a conventional long-range order phases,
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FIG. 5. The real space spin correlations in the middle of the cylinders
for (a) CAFM phase at J3 = 0.2; and (b) for PL phase at J3 = 0.8.
In both cases, J2 = 0.8 and K1 = K2 = −0.3. The green site is the
reference site; the blue and red colors denote positive and negative
correlations of the sites with the reference site, respectively. The area
of each circle is proportional to the magnitude of the spin correlation,
and is also indicated by the circle’s color for clarity.
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FIG. 6. Static spin and quadrupolar structure factors obtained from
DMRG on RCL−2L cylinders with J1 = 1, J2 = 0.8,K2 = K1 = −0.3
as function of J3. (a) First row: m2

S (q) for L = 8. (b) Second row:
m2

Q(q) for L = 8.

such as the CAFM (leftmost panel) and the PL (two rightmost
panels). However it is the intermediate regime 0.2 . J3 . 0.8
that is most interesting. In this phase, m2

Q has a pronounced
maximum at q = (0, 0) whereas the spin structure factor is fea-
tureless in Fig. 6a), corroborating the ferroquadrupolar nature
of this phase.

By comparing the DMRG results with the mean-field phase
diagram in Fig. 1c), we observe that the FQ phase occupies a
much wider region in DMRG, whereas it is only predicted to
be stable at K1 = K2 < Kc (KMF

c = −2/3) by the mean field

FIG. 7. The real space spin correlations for DS phase at J3 = 0.8 on
the tilted geometry with J2 = 0.8 and K1 = K2 = −0.3. The green
site is the reference site; the blue and red colors denote positive and
negative correlations of the sites with the reference site, respectively.
The area of the circle is proportional to the magnitude of the spin
correlation.

analysis. This is consistent with our earlier DMRG results at
J3 = 0 in Ref. 25, which also found the FQ phase to be stable
in a wider region than the mean-field prediction.

As was mentioned in sections II A and III above, the bi-
collinear DS phase [Fig. 2a)] and the PL phase [Fig. 2b)]
have the same energy within the mean-field calculation. Our
DMRG calculations indicate that either of the two phases can
be stabilized, depending on the setup geometry. Namely, we
find the PL phase to be the ground state in the L = 8 rect-
angular geometry, whereas the DS phase is favored by the
tilted geometry (cylindrical axis at 45◦ angle to the lattice
base vectors). The energies of the two phases at J3 = 0.8
and K1 = K2 = −0.3 on the L = 8 cylinder are very close
to each other: Erect = −3.88345 and Etilt = −3.87157, re-
spectively, making the DMRG inconclusive as to the choice
of the ground state. It was shown recently that the apparent
degeneracy of the two states is robust over a wide parameter
regime and persists to higher spin values (S = 3/2, 2); the
4-site ring-exchange interaction lifts the degeneracy, favoring
the DS order29.

V. DYNAMICAL SPIN STRUCTURE FACTOR AND
COMPARISON WITH EXPERIMENT

Experimentally, Fe(Te1−xSex) series provides a unique op-
portunity to study the transition from the non-magnetic FeSe
to the double-stripe phase in Fe1+yTe. Given the interpre-
tation advanced in Ref. 25 that FeSe has the FQ ground
state, it is very interesting to study the transition from the
FQ to DS phase and compare with the available INS data on
Fe(Te1−xSex). Our calculations (see Fig. 1) indicate that a siz-
able value of J3 is required in order to stabilize the DS phase
observed in FeTe. It is therefore natural to mimic Te doping
of FeSe with increasing the value of J3. To this end, we have
calculated the dynamic spin structure factors S (q, ω) from the
flavor-wave expansion (see Appendix A) with increasing J3
along the horizontal cut along K1 = K2 ≡ K = −1 in Fig. 1d).
These are shown in Fig. 8. Of course we realize that other pa-
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rameters will generically also be affected by Te doping, chart-
ing a complex path in the phase space of the model, however
since we are after the qualitative trend, this admittedly simpli-
fied picture is justified.

According to our phase diagrams in Fig. 1, the CAFM
phase is separated from the DS phase by either the non-
magnetic FQ phase for K1 < Kc, or by the intermediate mag-
netic SD or PL phase for K1 > Kc. While it is possible to
fine-tune the model parameters in such a way as to make the
transition from CAFM to DS direct [see e.g. Fig. 1c)], the
above presented scenario is generic. In Fig. 8, we have cho-
sen such a generic cut of the phase diagram across the FQ
phase, and we follow the evolution of the spin structure factor
as the DS phase is approached from inside the FQ phase.

Inside the FQ ground state, the spin-rotational symmetry of
the Hamiltonian Eq. (1) is broken without however breaking
the time-reversal symmetry. The resulting Goldstone modes
at q = 0 therefore have vanishing intensity (S (0, ω) ∝ ω35,36)
in the static limit, consistent with the absence of Bragg peaks
in FeSe under ambient pressure12,13. For small J3, close to
the CAFM boundary, the spin structure factor has pronounced
minima at Q1,2 = (π, 0)/(0, π) as can be seen in Fig. 8a), in
accord with the INS on FeSe14–17. Upon increasing J3, we
observe another set of peaks at Q3,4 = (π/2 + δ,±(π/2 + δ))
become lower in energy [Figs. 8b),c)]. This is especially pro-
nounced close to the boundary with the DS phase [Fig. 8c)].
These are generally incommensurate [δ , 0, see Fig. 10)];
eventually, these peaks evolve into the Goldstone modes in-
side the DS phase when δ = 0. These features are in qual-
itative accord with the INS data on Fe(Te1−xSex), where the
low-energy spin excitations evolve from being dominated by
the Q1,2 minima for x ≈ 17–10, to that of Fe1+yTe1–3 upon de-
creasing x.

It has been reported that applying pressure to FeSe leads to
the onset of magnetism18–20, reportedly the CAFM phase21.
Comparing with Fig. 1, we conclude that the effect of apply-
ing pressure corresponds to decreasing the ratio x = J3/J1
and decreasing the biquadratic couplings |Ki|/J1 in the (J3,K)
phase diagram, resulting in the transition from the FQ into the
CAFM phase. This conclusion is corroborated by the ab ini-
tio calculations by Glasbrenner et al. in Ref. 22 who find that
applying pressure to FeSe indeed suppresses the ratios of both
J3/J1 and K1/J1. This trend is indicated qualitatively by a
corresponding arrow in the phase space of model parameters
in Fig. 9. Doping with Te, on the other hand, can be thought of
as increasing the ratio J3/J1 and possibly also |Ki|/J1, as we
have remarked in the beginning of this section. Therefore, the
theoretical phase diagrams in Fig. 1, together with the trends
indicated by arrows in Fig. 9, capture the salient features of
both tellurium doping and of applying hydrostatic pressure to
FeSe. The actual trajectories in the phase space of the model
parameters that correspond to these experimental knobs are
likely more complicated, nevertheless our analysis provides
an important qualitative insight into the physics of the spin
degrees of freedom in FeSe and Fe(Te1−xSex).

Intriguingly, the neutron spin structure in superconducting
Fe(Te1−xSex) samples undergoes a complicated transforma-
tion as a function of temperature, with the high-temperature

a) b)

c) d)
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PL

DS
SD

e)

J3

K
1= 

K
2

FIG. 8. Dynamic spin structure factor S (q, ω), calculated along the
horizontal cut through K1 = K2 ≡ K = −1 in Figs. 1d) and h): (a)-
(c) inside FQ phase at J3 = 0.325, 0.6 and 0.75, respectively; (d)
inside the DS phase at J3 = 1.1. These points are indicated in the
corresponding cut of the phase diagram (e) by the circle, the square,
the diamond and the asterisk, respectively.

data (T & 100 K) characterized by the DS wavevector
(π/2, π/2) and evolving to Q1,2 upon cooling11. Remarkably,
it was found that in non-superconducting Fe(Te1−xSex) sam-
ples (due to excess of Fe), the magnetic correlations remain
pinned at (π/2, π/2)11. The authors of Ref. 11 have concluded
that the observed thermal change in characteristic wavevec-
tor is therefore correlated with the tendency towards nematic
xz/yz orbital splitting at low temperature, which favors su-
perconductivity. Theoretical verification of these conclusions
requires taking into consideration multi-orbital character of
conduction electrons and is beyond the effective spin model
studied in this paper. It was suggested48 that the orbital and su-
perexchange physics is particularly sensitive to the Fe–(Se,Te)
– Fe bond angle, which in Fe(Te1−xSex) is controlled by the
height of the chalcogenide ions above and below the Fe lay-
ers49,50. This complexity notwithstanding, we can neverthe-
less conclude that in the samples with excess Fe, where the
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FIG. 9. Trajectories in the space of the model parameters that quali-
tatively correspond to the transitions from the non-magnetic phase of
FeSe into various magnetically ordered states upon applied pressure
and Te doping.

aforementioned orbital effects are less pronounced, our effec-
tive spin model correctly predicts the characteristic wavevec-
tor of low-energy spin excitations to evolve from (π, 0)/(0, π)
towards (π/2, π/2) upon Te doping.

VI. INCOMMENSURATE PHASES

It is interesting to note that early INS experiments have
indicated that the high-temperature spin-structure factor in
Fe(Te1−xSex) may be incommensurate51–53. While the latest
INS data indicate that this may not in fact be the case11, it is
instructive to consider predictions of our theory in this regard.
The variational mean-field phase diagrams in Figs. 1a) to 1d)
contain only commensurate phases, which is understandable
given the constraint that the solution must obey the periodic
boundary conditions on a 4 × 4 Fe-site cluster. Similarly, the
DMRG on cylindrical geometry is limited to small L ≤ 8,
which makes the search for incommensurate spiral phase very
difficult. The flavor-wave analysis, on the other hand, is by
its nature a thermodynamic expansion around the mean-field
solution and is not limited to commensurate wave-vectors. As
noted earlier, the white regions in Figs. 1e) to 1h) indicate an
instability of the flavor-wave expansion towards other solu-
tions, including incommensurate spin spiral states. In order to
shed more light on the issue, we have analyzed the low-energy
dynamical spin structure factor near the FQ phase boundaries
K = Kc(J3) approaching the unstable white regions. In this
regime, we find softening of the flavor-wave dispersion at
certain (generally incommensurate) wave-vectors, which in-
dicates tendency towards respective magnetic ordering. The
wavevectors of these unstable modes are shown in Fig. 10.

We see from Fig. 10 that for small J3 near the CAFM
boundary, the flavor-wave instability is pinned at (π, 0)/(0, π),
as reported in Ref.25. Upon increasing J3, the characteristic

0 0.4 0.8 1.20

0.1

0.2

0.3

0.4

J3

δ/
π

a)

0 0.4 0.8 1.2−3

−2

−1

0

CAFM

FQ

PL

DSSD

b)

(π,δ)
(π/2+δ,π/2+δ)

J3

K

FIG. 10. (a) The characteristic wavevector of the flavor-wave insta-
bility along the FQ phase boundary K = Kc(J3), shown in panel (b)
as a red/blue line. The red segment indicates the instability towards
the (π, δ) phase, and the blue segment towards the (π/2 + δ, π/2 + δ)
phase. The remainder of the phase diagram is the same as in Fig. 1h),
calculated within the flavor-wave method as a function of J3 and
K1 = K2 ≡ K, using J1 = 1, J2 = 0.8.

wave-vector becomes incommensurate (π, δ), with δ increas-
ing smoothly towards, but stopping shy of π/2. For higher
J3, on approaching the DS phase boundary from inside the
FQ phase [blue line in Fig. 10b)] , the flavor wave dispersion
softens at an incommensurate (π/2 + δ, π/2 + δ) wave-vector.
While true long range incommensurate order cannot be stud-
ied in this way for technical reasons (flavor wave expansion
around commensurate Q becomes unstable), the above anal-
ysis provides a strong indication that the reported soft modes
would eventually become Bragg peaks as the incommensurate
long range order settles in.

VII. DISCUSSION

In this work, we have advanced an effective spin model for
iron chalcogenides in an effort to better understand the evo-
lution of the neutron scattering spectra in FeSe upon apply-
ing pressure and tellurium doping. Our starting point is the
strong-coupling approach, justified in the limit when Coulomb
interaction U is considerably larger than the electron hopping
t. Although the iron chalcogenides are not charge insulat-
ing systems, the strong coupling approaches have been suc-
cessfully used to elucidate many aspects of these materials,
from the nature of electron nematicity26,28,39 and effects of or-
bital selectivity54–57, to the origin of the superconducting pair-
ing58–62. One of the justifications for using the strong coupling
approach, is the large fluctuating iron moment observed in in-
elastic neutron scattering (M2

e f f ∼ 5µ2
B per Fe ion63), which is

difficult to obtain in the weak-coupling scenario from consid-
ering only the electrons near the Fermi surface. This is not to
say that the conduction electrons are somehow unimportant –
on the contrary, they are crucial for superconductivity and the
multi-orbital effects that are beyond the scope of this work.
Nevertheless, we argue that the presented effective spin model
is important for understanding the effects of magnetic frus-
trations in the iron chalcogenides, which have been brought
to focus most prominently by the surprising observation of
the apparently non-magnetic ground state in FeSe12–17. Hav-
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ing proposed an explanation for this state in terms of the spin
quadrupolar order in an earlier work25, the present study seeks
to provide an accurate, consistent description of the spin de-
grees of freedom in both the iron pnictides and chalcogenides
within a single microscopic spin model. Although construct-
ing such an effective model inevitably required simplifications
of the multi-orbital nature of these materials, the agreement
that we have obtained with the INS experiments testifies to
the importance of utilizing this effective description.

In summary, we have demonstrated that the evolution of the
low-energy spin excitations in FeSe under applied pressure
and tellurium doping in Fe(Te1−xSex) can be successfully un-
derstood within a single effective spin model. Although the
exact dependence of the model parameters on these experi-
mental variables is unknown, we sketch in Fig. 9 the approx-
imate corresponding trajectories in the model phase space,
based on the analysis of our computed phase diagrams and
consistent with prior ab initio calculations22. Using a com-
bination of analytical techniques and state-of-the-art DRMG
calculations, we have established the phase diagram of the ef-
fective model and computed the dynamical spin response. In
particular, the calculated evolution of the characteristic wave-
vector of the spin excitations matches that observed in INS ex-
periments on Fe(Te1−xSex) and the possibility of the incom-
mensurate spin orders upon Te doping has been analyzed in
detail. The effects of conduction electrons, while of course
very important, are beyond the scope of this effective spin
model; nevertheless, given the recently observed correlation
between superconductivity in Fe(Te1−xSex) and the appear-
ance of the (π, 0)/(0, π) inelastic peaks in the low-temperature
dynamical spin correlation11 puts the present work in a wider
context of superconductivity in iron chalcogenides. This con-
nection certainly deserves further theoretical study, perhaps
in the framework of realistic multi-orbital models that should
take into account the essential features predicted by the effec-
tive spin model presented here.
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Appendix A: Flavor Wave Calculation of Dynamical Spin
Structure Factors

By virtue of the fluctuation–dissipation theorem, the dy-
namical spin structure factor at T = 0, S αβ(q, ω) is propor-
tional to the imaginary part of the spin susceptibility:

S µν(q, ω) = χ′′µν(q, ω)

=
NS

N

∑
αβ

∑
f

〈g.s.|S µ
α,q | f 〉〈 f |S ν

β,−q |g.s.〉δ(ω − E f + Eg),

(A1)

where | f 〉〈 f | = 1 is the complete set of states, {α, β} denote
different sublattices, and N/NS is the total number of different
sublattices.

For magnetically ordered states, the ground state will add
nonzero elastic contribution ∼ δ(ω) to χ′′µν(q, ω), as shown in
the following subsections. For the ferroquadrupolar state, on
the other hand, the ground state | f 〉 = |g.s.〉 does not con-
tribute to χ′′µν(q, ω) and consequently, no magnetic Bragg peak
is found at ω = 0 in elastic neutron scattering. This can be
readily understood since the quadrupolar states do not break
time-reversal symmetry and as a result, do not couple in the
static limit to the neutron spin.

1. Flavor Wave for FQ

In the FQ state the directors ~di are identical on all sites (in
total one sublattice N/NS = 1). Due to the spontaneous break-
ing of the SU(2) symmetry in the FQ phase, we can conve-
niently choose the director corresponding to the quadrupolar
order parameter to lie along the z-direction:

~di = {1, 0, 0}. (A2)

Correspondingly, the transformation matrix Vi defined in
Eq. (12a) is simply an identity matrix and is the same on every
site i:

Vi =

1 0 0
0 1 0
0 0 1

 . (A3)

The local constraint on the condensed boson number,

b̃i,0 =

√
1 − b̃†i,1b̃i,1 − b̃†i,2b̃i,2, (A4)

can be expanded up to quadratic terms in the boson cre-
ation/annihilation operators, resulting in:

Hfw=
∑
q,a

[t(q) + λ] (b̃q,ab̃†q,a + b̃†−q,ab̃−q,a)+

+
∑
q,a

[
∆(q)b̃†q,ab̃†−q,a + h.c.

]
+ NE0,

(A5)
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where:

t(q) = J1(cos qx + cos qy) + 2J2 cos qx cos qy

+ J3(cos 2qx + cos 2qy), (A6a)
∆(q) = (K1 − J1)(cos qx + cos qy) + 2(K2 − J2) cos qx cos qy

− J3(cos 2qx + cos 2qy), (A6b)
λ = −2(K1 + K2), (A6c)

E0 = 4(K1 + K2). (A6d)

Bogoliubov transformation:

αq,a = cosh θq b̃q,a − sinh θq b̃†−q,a, (A7)

with

tanh 2θq = −
∆(q)

t(q) + λ
. (A8)

The diagonalized Hamiltonian:

Hfw =
∑
a=1,2

∑
q

ωq(α†q,aαq,a + 1/2) + N(E0 − 2λ), (A9)

where the dispersion ωq is given by:

ωq = 2
√

[t(q) + λ]2 − ∆2(q). (A10)

Since there is only one sublattice, we can omit the sublat-
tice indices {α, β}, and only use notation S µ

±q for the Fourier
components in this subsection. To calculate the dynamic spin
susceptibility, the spin operators in Eq. (A1) are kept up to
linear order:

S x
q = 0, (A11a)

S y
q = −i

(
b̃†
−q,2 − b̃q,2

)
, (A11b)

S z
q = i

(
b̃†
−q,1 − b̃q,1

)
. (A11c)

Then Eq. (A1) can be written down explicitly:

χ′′xx(q, ω) = 0, (A12a)

χ′′yy(q, ω) =
t(q) + λ + ∆(q)√

[t(q) + λ]2 − ∆2(q)
δ(ω − ωq), (A12b)

χ′′zz(q, ω) =
t(q) + λ + ∆(q)√

[t(q) + λ]2 − ∆2(q)
δ(ω − ωq). (A12c)

Note that at ωq = 0, the Bogoliubov angle θq = 0 in
Eq. (A8) and it follows that t(q) + λ + ∆(q) = 0 in the nu-
merator on Eqs. (A12b) and (A12c). We see that as a result,
the spin structure factor vanishes at q = 0, in other words,
the Goldstone mode of the FQ state does not contribute to the
static spin susceptibility, as seen in Fig. 8. This fact is well
known for the quadrupolar states25,35,36) and is consistent with
the absence of the magnetic Bragg peaks in the elastic neutron
scattering in FeSe12,13.

2. Flavor Wave for CAFM

There are in total two sublattices N/NS = 2, whose direc-
tors can be chosen as:

~di∈A =
1
√

2
{0, 1, i}, (A13a)

~di∈B =
1
√

2
{0, 1,−i}. (A13b)

Correspondingly, the transformation matrices are written
below:

Vi∈A =
1
√

2

0 0
√

2
1 i 0
i 1 0

 , (A14a)

Vi∈B =
1
√

2

 0 0
√

2
1 −i 0
−i 1 0

 . (A14b)

The quadratic terms of the resulting Hamiltonian now in-
clude cross-terms between sublattices:

Hfw=
∑
q,a

(taa + λaa) (b̃A,q,ab̃†A,q,a + b̃†A,q,ab̃A,q,a+

+ b̃B,q,ab̃†B,q,a + b̃†B,q,ab̃B,q,a)+

+
∑
q,a

∆aa

(
b̃†A,q,ab̃†B,−q,a + b̃†B,q,ab̃†A,−q,a + h.c.

)
+ NE0.

With the coefficients λaa, taa(q) and ∆aa(q) depending on
the parameters of the model as follows:

λ11 =2(2J2 − K2) − 4J3, (A15a)
λ22 = − K1 + 2(J2 − K2) − 2J3, (A15b)

t11(q) =K1 cos qy, (A15c)
t22(q) =J1 cos qy + J3[cos (2qx) + cos (2qy)] (A15d)

∆11(q) =K1 cos qx + 2K2 cos qx cos qy, (A15e)
∆22(q) = − (J1 − K1) cos qx−

− 2(J2 − K2) cos qx cos qy, (A15f)
E0 =3K1 − 2J2 + 4K2 + 2J3. (A15g)

The diagonalized Hamiltonian looks as follows:

Hfw =
∑
a=1,2

∑
q

ωq,a(α†q,aαq,a+1/2)+N(E0−λ11−λ22), (A16)

and the diagonalized Bogolibouv dispersions finally taking
the following form (with a = 1, 2):

ωq,a = 2
√

[taa(q) + λaa]2 − ∆2
aa(q). (A17)
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3. Flavor Wave for Néel State

In this case, both the Hamiltonian as well as the diagonal-
ized dispersions have the same symbolic expression as in the
CAFM case. However, the coefficients are now given by:

λ11 =2(2J1 − K1) − 2(2J2 − K2) − 4J3, (A18a)
λ22 =2(J1 − K1) − 2J2 − 2J3, (A18b)

t11(q) =2K2 cos qx cos qy, (A18c)
t22(q) =2J2 cos qx cos qy+

+ J3[cos (2qx) + cos (2qy)], (A18d)
∆11(q) =K1(cos qx + cos qy), (A18e)
∆22(q) = − (J1 − K1)(cos qx + cos qy), (A18f)

E0 = − 2J1 + 4K1 + 2J2 + 2K2 + 2J3. (A18g)

4. Flavor Wave for DS

Unlike in the previous two cases where the introduction of
two sublattices was enough, four are necessary in this case.
However, since there are still only two distinct directors, the
previously shown transformation matrices are enough to de-
rive the Hamiltonian. It is now convenient to write the actual
Hamiltonian down so that it becomes block diagonal. This is
due to the lack of cross terms between the bosonic operators
of the different modes. The quadratic terms can be written in
the following matricial form:

Hfw=2
∑
q

(ψ†11ψ
†

22)Hfw

(
ψ11
ψ22

)
+ NE0, (A19)

with the block-diagonal form of the Hamiltonian matrix ex-
plicitly written as:

S̃ ν
i = V

†

i S ν
iVi, (A20)

Hfw =

(
J 0
0 K

)
, (A21)

and where: ψaa = (bA,q,a, bB,q,a, b
†

C,−q,a, b
†

D,−q,a)T . The ma-
trix elements of each 4 × 4 block-diagonal matrix are given
by:

J11 = J22 = J33 = J44 =

= 4J3 + K2 cos (qx − qy) ≡ A, (A22a)
J12 = J∗14 = J∗21 = J23 = J∗32 = J34 = J41 = J∗43 =

=
K1

2
(eiqx + eiqy ), (A22b)

J13 = J24 = J31 = J42 = K2 cos (qx + qy) ≡ B. (A22c)

and

K11 = K22 = K33 = K44 =

= −(K1 + K2) + 2J3 + J2 cos (qx − qy) ≡ C, (A23a)

K12 = K∗21 = K34 = K∗43 =
J1

2
(eiqx + eiqy ), (A23b)

K∗14 = K23 = K∗32 = K41 = −
(J1 − K1)

2
(eiqx + eiqy ), (A23c)

K13 = K24 = K31 = K42 = −(J2 − K2) cos (qx + qy)−
− J3[cos (2qx) + cos (2qy)] ≡ D. (A23d)

And the constant terms of the energy are: E0 = 3K1 +3K2−

2J3.
The dispersions can be derived immediately from a stan-

dard Bogoliubov transformation of the Hamiltonian above.
This is done by obtaining the eigenvalues of the new matrix
resulting from the similarity transformation: H̃fw = ΘHfw,
where the matrix Θ = diag(1, 1,−1,−1). This gives the fol-
lowing result:

ωq,1,± = 2
√
A2 − B2 ± 2

√
κ1, (A24a)

ωq,2,± = 2

√
C2 −D2 −

K1

2
(K1 − 2J1) ± 2

√
κ2, (A24b)

where κ1 and κ2 are given by:

κ1 =
K2

1

2
(A2 + B2)[1 + cos (qx − qy)]−

−
K2

1AB

2
[cos (2qx) + cos (2qy) + 2 cos (qx + qy)]−

−
K4

1

16
[sin (2qx) + sin (2qy) + 2 sin (qx + qy)]2,

(A25)

κ2 =
1
2

[J2
1C

2 + (J1 − K1)2D2][1 + cos (qx − qy)]+

+
J1(J1 − K1)CD

2
[cos (2qx) + cos (2qy) + 2 cos (qx + qy)]−

−
J2

1(J1 − K1)2

16
[sin (2qx) + sin (2qy) + 2 sin (qx + qy)]2.

(A26)
And the diagonalized Hamiltonian is written as:

Hfw =
∑
σ=±

∑
a=1,2

∑
q

ωq,a,σ(α†q,a,σαq,a,σ + 1/2)+

+ N(E0 + K1 + K2 − 6J3).
(A27)

In order to obtain the dynamical spin-spin structure factor,
we first obtain the expressions for the spin operators. These
can be immediately deduced from the rotated matrices. These
are explicitly given in this case by:
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S̃ x
i∈A,B = V

†

i∈A,BS x
i∈A,BV∈A,B =

=
1
2

 0 1 −i
0 −i 1
√

2 0 0


0 0 0
0 0 −i
0 i 0


0 0

√
2

1 i 0
i 1 0

 =

1 0 0
0 −1 0
0 0 0

 ,
(A28)

and similarly:

S̃ y
i∈A,B = V

†

i∈A,BS y
i∈A,BV∈A,B =

1
√

2

 0 0 −1
0 0 −i
−1 i 0

 , (A29)

S̃ z
i∈A,B = V

†

i∈A,BS z
i∈A,BV∈A,B =

1
√

2

 0 0 i
0 0 1
−i 1 0

 . (A30)

For the remaining two sublattices, the rotated spin matrices
are now:

S̃ x
i∈C,D = V

†

i∈C,DS x
i∈C,DV∈C,D =

−1 0 0
0 1 0
0 0 0

 . (A31)

S̃ y
i∈C,D = V

†

i∈C,DS y
i∈C,DV∈C,D =

1
√

2

0 0 1
0 0 −i
1 i 0

 . (A32)

S̃ z
i∈C,D = V

†

i∈C,DS z
i∈C,DV∈C,D =

1
√

2

 0 0 i
0 0 −1
−i −1 0

 . (A33)

In order to obtain the approximate structure factors up to
quadratic order in the bosonic operators, we take the following
expressions for each component of spin:

S x
A(B),q ' 1, (A34a)

S y
A(B),q ' −

1
√

2

(
b̃†A(B),−q,2 + b̃A(B),q,2

)
, (A34b)

S z
A(B),q '

i
√

2

(
b̃†A(B),−q,2 − b̃A(B),q,2

)
, (A34c)

S x
C(D),q ' −1, (A35a)

S y
C(D),q '

1
√

2

(
b̃†C(D),−q,2 + b̃C(D),q,2

)
, (A35b)

S z
C(D),q '

i
√

2

(
b̃†C(D),−q,2 − b̃C(D),q,2

)
. (A35c)

Finally, the structure factors are given by the following ex-
pressions:

χ′′xx(q, ω) = 1, (A36a)

χ′′yy(q, ω) =
1
8

∑
i=1,4

|(V1i
q + V2i

q ) − (V3i
q + V4i

q )|2δ(ω − ωq,2,+)+

+
1
8

∑
i=2,3

|(V1i
q + V2i

q ) − (V3i
q + V4i

q )|2δ(ω − ωq,2,−), (A36b)

χ′′zz(q, ω) = χ′′yy(q, ω). (A36c)

5. Flavor Wave for SD

Just like before, all the symbolic expression are the same as
those in the section above, with the coefficients of the matrix
in Eq. (A21) given by:

J11 = J22 = J33 = J44 = 2J1 − K1 ≡ A, (A37a)
J12 = J∗14 = J∗21 = J23 = J∗32 = J34 = J41 = J∗43 =

=
K1

2
eiqx + K2e−iqx cos qy, (A37b)

J13 = J24 = J31 = J42 = K1 cos (2qy) ≡ B. (A37c)

and the coefficients Ki j taking on the form:

K11 = K22 = K33 = K44 = J1 −
3K1

2
− K2+

+ J3 cos (2qy) ≡ C, (A38a)

K12 = K∗21 = K34 = K∗43 =
J1

2
eiqx + J2e−iqx cos qy, (A38b)

K∗14 = K23 = K∗32 = K41

= −
(J1 − K1)

2
eiqx − (J2 − K2)e−iqx cos qy, (A38c)

K13 = K24 = K31 = K42 =

= −(J1 − K1) cos qy − J3 cos (2kx) ≡ D. (A38d)

The constants contributing to the energy are now given by:
E0 = −J1 + 7

2 K1 + 3K2.
And after diagonalizing, the resulting dispersions are now:

ωq,1,± =2
√
A2 − B2 ±

√
κ1, (A39a)

ωq,2,± =2

√
C2 −D2 −

K1

4
(K1 − 2J1)−

−K2(K2 − 2J2) cos2 qy ±
√
κ2, (A39b)

with:

κ1 =(A2 + B2)(K2
1 + 4K2

2 cos2 qy)−

−
1
2

(K2
1 − 4K2

2 cos2 qy)2[1 − cos (4qx)] − 8ABK1K2 cos qy+

+ 2(AK1 − 2BK2 cos qy)
(2AK2 cos qy − BK1) cos (2qx),

(A40)
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κ2 =C2(J2
1 + 4J2

2 cos2 qy) +D2[(J1 − K1)2 + 4(J2 − K2)2 cos2 qy]−

−
1
2

[J1(J1 − K1) − 4J2(J2 − K2) cos2 qy]2[1 − cos (4qx)]+

+ 4CD[J1(J2 − K2) + J2(J1 − K1)] cos qy−

− 2[CJ1 + 2D(J2 − K2) cos qy]
[2CJ2 cos qy +D(J1 − K1)] cos (2qx).

(A41)
Where, as always, we write the resulting diagonalized

Hamiltonian in the following form:

Hfw =
∑
σ=±

∑
a=1,2

∑
q

ωq,a,σ(α†q,a,σαq,a,σ + 1/2)+

+ N(E0 − 3J1 +
5
2

K1 + K2).
(A42)

6. Flavor Wave for PL

Unlike in the previous two cases, four sublattices are not
enough to accurately describe the PL state and we must
introduce four additional ones. The Hamiltonian matrix is
still block diagonal with 8x8 block matrices and where: ψ†aa =

(bA,q,a, bB,q,a, bC,q,a, bD,q,a, b
†

E,−q,a, b
†

F,−q,a, b
†

G,−q,a, b
†

H,−q,a).
The constants of the Hamiltonian are the same as on the case
of the DS phase and the matrix elements are given by:

K11 = K22 = K33 = K44 =

= K55 = K66 = K77 = K88 = 4J3, (A43a)
K15 = K26 = K37 = K48 =

= K51 = K62 = K73 = K84 = 0, (A43b)
K13 = K28 = K31 = K46 =

= K57 = K64 = K75 = K82 = K2 cos (qx + qy), (A43c)
K17 = K24 = K35 = K42 =

= K53 = K68 = K71 = K86 = K2 cos (qx − qy), (A43d)
K12 = K25 = K38 = K43 =

= K56 = K61 = K74 = K87 =
K1

2
eiqx , (A43e)

K16 = K21 = K34 = K47 =

= K52 = K65 = K78 = K83 =
K1

2
e−iqx , (A43f)

K14 = K23 = K36 = K45 =

= K58 = K67 = K72 = K81 =
K1

2
eiqy , (A43g)

K18 = K27 = K32 = K41 =

= K54 = K63 = K76 = K85 =
K1

2
e−iqy , (A43h)

(A43i)

J11 = J22 = J33 = J44 =

= J55 = J66 = J77 = J88 = 2J3 − (K1 + K2), (A44a)
J15 = J26 = J37 = J48 = J51 = J62 = J73 = J84 =

= −J3[cos (2qx) + cos (2qy)], (A44b)
J13 = J31 = J57 = J75 = J2 cos (qx + qy), (A44c)
J24 = J42 = J68 = J86 = J2 cos (qx − qy), (A44d)
J28 = J46 = J64 = J82 = −(J2 − K2) cos (qx + qy), (A44e)
J17 = J35 = J53 = J71 = −(J2 − K2) cos (qx − qy), (A44f)

J12 = J43 = J56 = J87 =
J1

2
eiqx , (A44g)

J21 = J34 = J65 = J78 =
J1

2
e−iqx , (A44h)

J14 = J23 = J58 = J67 =
J1

2
eiqy , (A44i)

J32 = J41 = J76 = J85 =
J1

2
e−iqy , (A44j)

J25 = J38 = J61 = J74 = −
(J1 − K1)

2
eiqx , (A44k)

J16 = J47 = J52 = J83 = −
(J1 − K1)

2
e−iqx , (A44l)

J36 = J45 = J72 = J81 = −
(J1 − K1)

2
eiqy , (A44m)

J18 = J27 = J54 = J63 = −
(J1 − K1)

2
e−iqy , (A44n)

(A44o)

Because of their complexity in this case, analytical expres-
sions for the dispersions are not included in this case. How-
ever, these can be obtained using the technique described in
section 5 above. The Hamiltonian takes the following form:

Hfw =
∑
σ

∑
a=1,2

∑
q

ωq,a,σ(α†q,a,σαq,a,σ + 1/2)+

+ N(E0 + K1 + K2 − 6J3),
(A45)

where the index σ is added in order to account for the sum-
mation over all the different dispersions obtained for each of
the two modes.
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C. Meingast, H. v. Löhneysen, and S. Uji, J. Phys. Soc. Jpn. 84,
063701 (2015).
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