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We present a force-biased Monte Carlo (FMC) method for structural modeling of the transition-metal clus-
ters of Fe, Ni, and Cu of size 13, 30, and 55 atoms. By employing the Finnis-Sinclair potential for Fe and the
Sutton-Chen potential for Ni and Cu, the total energy of the clusters is minimized using the local gradient of the
potentials in Monte Carlo simulations. The structural configurations of the clusters, obtained from the biased
Monte Carlo approach, are analyzed and compared with the same from the Cambridge Cluster Database (CCD)
upon relaxation of the clusters using the first-principles density-functional code NWChem. The results show
that the total-energy value and the structure of the FMC clusters are essentially identical to the corresponding
value and the structure of the CCD clusters. A comparison of the NWChem-relax FMC and CCD structures is
presented by computing the pair-correlation function, the bond-angle distribution, the coordination number of
the first-coordination shell, and the Steinhardt bond-orientational order parameter, which provide information
about the two- and three-body correlation functions, the local bonding environment of the atoms, and the geome-
try of the clusters. An atom-by-atom comparison of the FMC and CCD clusters is also provided by superposing
one set of clusters onto another, and the electronic properties of the clusters are addressed by computing the
density of electronic states.

I. INTRODUCTION

In recent years, there has been rapid progress in the devel-
opment of global optimization techniques, which encompass
state-of-the-art evolutionary computing1 to the population-
based swarm intelligence and differential-evolution ap-
proaches.2,3 Despite this development, Monte Carlo (MC)
methods, based on simple Metropolis and related algorithms,
continue to play a major role in addressing optimization prob-
lems in science and technology. In the context of struc-
tural modeling of amorphous solids4–6 on the atomistic length
scale, the Monte Carlo procedure is particularly useful for op-
timization of a total-energy functional without any knowledge
of atomic forces or local gradients of the energy functional.
Since calculations of local gradients are computationally more
complex than the evaluation of the total energy of a system,
MC methods are often preferred in many optimization prob-
lems where local gradients are either not available (e.g., for
a discrete or non-smooth optimization problem) or computa-
tionally too prohibitive to compute. However, the computa-
tional advantage of the MC methods is often offset by their
slow convergence behavior, which requires a longer simula-
tion time to produce results with the desired accuracy when
compared to the Newton-like and Conjugate-Direction meth-
ods. Recent works on structural modeling of amorphous ma-
terials using Reverse Monte Carlo (RMC) simulations have
indicated that atomic forces can be profitably used in RMC
simulations to improve the structural quality of amorphous
configurations and the efficiency of the resultant methods.7–9

Toward that end, the main purpose of this paper is to explore
the usefulness of employing local gradients (of a potential)
or atomic forces in Monte Carlo simulations and to apply the
method in determining the most stable structure of transition-
metal (TM) clusters containing several tens of atoms. In
this paper, we present a modified version of the gradient-

based Monte Carlo method, originally introduced by Rossky
et al. ,10,11 to optimize transition-metal clusters and compare
the results with the putative global minima of the clusters re-
ported in the recent literature.12–14 In particular, we compare
the total energy and structures of the transition-metal clusters
of Fe, Ni, and Cu from a force-biased Monte Carlo (FMC)
method with those from the Cambridge Cluster Database. The
latter provides the structures of the putative global minima of
a number of transition-metal clusters obtained by Doye and
Wales.15 These authors employed an improved version of the
basin-hopping algorithm of Li and Scheraga16 to obtain the
global minima of a number of transition-metal clusters using
Monte Carlo simulations, coupled with Conjugate-Gradient
optimizations. In the following, we refer to these clusters as
CCD clusters and use them as a benchmark for a comparison
of the total energy and structures of Fe, Ni, and Cu clusters ob-
tained from the force-biased Monte Carlo (FMC) simulations
presented here. We also examine the stability of the classical
FMC structures by perturbing and relaxing the clusters using
a first-principles total-energy functional within the framework
of the density-functional theory (DFT).

The plan of the paper is as follows. In Section II, we briefly
review the results on the structure of the transition-metal clus-
ters of Fe, Ni, and Cu from classical, semi-classical, and
ab initio density-functional calculations. Section III presents
the computational method associated with the implementa-
tion of atomic forces in Monte Carlo simulations used in this
work. The first-principles total-energy relaxation of the struc-
tures, using the density-functional code NWChem,17 is also
described in this section. In Section IV, we discuss the results
from the classical FMC and ab initio simulations with par-
ticular emphasis on the total energy, the two- and three-body
correlation functions, the atomic-coordination numbers, the
bond-orientational order parameter, and the three-dimensional
distribution of the atoms in the FMC and CCD clusters. This
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is followed by the conclusion of the work in Section V.

II. STRUCTURE OF TRANSITION-METAL CLUSTERS:
AN OVERVIEW

Transition-metal clusters have been studied extensively
from computational13–16,18–37 and experimental38–43 points
of view. They have potential applications in catalysis,44–46

magnetic-recording materials,47 carbon nanotubes,12,48 and
biological applications involving genetic sequencing.49,50

Theoretical efforts to study transition-metal clusters
range from Genetic Algorithms51–55 and Monte Carlo
and molecular-dynamics simulations, using classical56–61

and semi-classical18,62–64 potentials, to ab initio density-
functional calculations.23–35,37 Of particular interest is the
structure of Fe clusters obtained from the Finnis-Sinclair
(FS) potential,65,66 and that of Ni, Cu and clusters bound
by the Sutton-Chen (SC) potential.67 Similarly, the Gupta
potential22 has been extensively used to study the stable
isomers and the corresponding geometry of a number of
transition-metal clusters in several studies.57,61,68,69 The
putative global minima of Ni and Cu clusters have been
studied extensively by Doye and Wales14 using the Sutton-
Chen potential. Likewise, Elliott et al. 13 have addressed
the computation of the global minima of Fe clusters using
the Finnis-Sinclair potential. Transition-metal clusters have
been also studied using tight-binding molecular-dynamics
(TBMD) simulations.18,62–64 Lathiotakis et al.18 studied Nin
clusters (n=11–55) using TBMD simulations to study the
relative stability of the icosahedral and FCC structures and
found that the relaxed icosahedral structure was more stable
than the cuboctahedral structure for 13-atom and 55-atom
clusters. This observation is consistent with the tight-binding
studies of Ni and Cu clusters by other researchers,63,64 where
the most stable structure of M13 (M=Ni, Cu) was found to
be an icosahedron. An extensive analysis of the results from
numerous classical and semi-classical studies appears to indi-
cate a general trend that, at small sizes, the icosahedral motif
is the preferred ground-state structure, whereas large clusters
tend to adopt the structure of a truncated octahedron and a
truncated decahedral structure follows in the intermediate
range.38 This observed trend has been found to be consistent
with the thermodynamics of small systems and the shell
structure of atoms in clusters, which take into account the
internal strain, symmetries or the lack thereof, and the volume
and surface dependence of the binding energy of clusters in
the formation of stable structures.38

While classical and semi-classical approaches can approxi-
mately address the evolution of the most stable structure with
varying cluster sizes, any electronic effects that arise from the
outer shell (valence) electrons of the atoms cannot be treated
within these approaches. This is particularly relevant for the
transition-metal clusters, where the presence of localized d
orbitals can add further complication. For example, recent
ab initio studies on small Au clusters have shown that the
hybridization between 6s and 5d orbitals, due to strong rel-
ativistic effects, can play a significant role in determining the

degree of planarity (of a structure), stability, and energetics of
Au nanocluster formation.70,71

Ab initio density-functional methods have been used exten-
sively to study transition-metal clusters, especially 13-atom
clusters of 3d/4d series, in the last two decades.23–37 However,
the DFT results vary considerably among research groups de-
pending upon the type of the basis functions and the nature of
the exchange-correlation (XC) functional employed in the cal-
culations, and the method used to sample candidate structures
from the potential-energy surface (PES) during simulations.
While a number of low-energy structures have been proposed
as possible ground-state structures for 13-atom TM clusters,
there is still no consensus among the researchers in the com-
munity. Using density-functional calculations, Oviedo and
Palmer25 reported the presence of a number of ‘amorphous’
low-energy isomers of M13 (M = Cu, Ag, and Au) with a to-
tal energy difference of 0–1 eV from each other. The authors
noted that the cuboctahedral structure was more stable than
the icosahedral structure for the ground-state structure of Ag13
– an observation which is at variance with the results from
recent ab initio studies.30–32,35 Chang and Chou26 studied 13-
atom clusters of early and late transition-metal series using the
plane-wave density-functional code VASP.72 The results sug-
gest that a buckled bi-planar (BBP)73 structure is more stable
than the icosahedral structure when the d shell is more than
half-filled. The BBP structure was found to be the most sta-
ble structure for 13-atom Ag and Cu clusters in their study,
which were 0.84 eV and 0.53 eV lower than the correspond-
ing icosahedral structure, respectively. While this observa-
tion is supported by the DFT studies of Longo and Gallego28

and Wang and Johnson,30 a number of Gaussian-orbital and
plane-wave based DFT studies31,32,35 reported different struc-
tures for Ag13 and Cu13 clusters. A similar observation ap-
plies to the Ni13 structure. Pseudoatomic-orbital based DFT
studies28,33 suggest that the icosahedral structure is the most
stable for Ni13, but a number of researchers dispute this ob-
servation by proposing new structures based on plane-wave
based DFT calculations.31,35–37

In summary, while empirical and semi-empirical studies
can predict some trends in cluster morphology with increasing
cluster sizes, it is difficult to predict accurately the ground-
state structure of many transition-metal clusters without tak-
ing into account quantum-mechanical effects explicitly in the
calculations. On the other hand, the density-functional ap-
proach can address the problem fairly accurately, but a few
theoretical issues concerning the use of an appropriate XC
functional and the need for the inclusion of the semi-core
states in the pseudopotential for specific systems (e.g., V and
Cr) continue to exist (see, for example, Refs. 34 and 74).

III. COMPUTATIONAL METHOD

The starting point of our method is to generate a random
configuration such that no two atoms are at a distance closer
than twice the diameter of the constituent atoms. The total
energy of an atomic configuration can be calculated by us-
ing an appropriate classical potential. In particular, we em-
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ploy the Finnis-Sinclair (FS) potential65,66 for Fe clusters and
the Sutton-Chen (SC) potential67 for Ni and Cu clusters. The
Finnis-Sinclair potential, for a system consisting of N atoms,
is written as:

E =
1
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N∑
i

√
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The Sutton-Chen potential is given by,
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In our approach, the initial random configuration was equi-
librated at a temperature T=3000 K for 105 Monte Carlo steps
(MCS). Subsequently, the temperature of the system was de-
creased sequentially by a factor of 0.99 and, at each tempera-
ture, the system was equilibrated for 105 MCS until the final
temperature of the system reduced to 1 K. The total-energy
relaxation was achieved in two steps: a) computing the total
force on each atom (fni ) in the initial state n; b) displacing a
randomly selected atom at site i from an initial state n to a
proposed state m by,10,75

∆rmn
i = α δrmn

i + β A fni . (7)

The parameters α and A in Eq. (7) determine the length of a
random displacement (α δrmn

i ) and the contribution from the
potential gradient (-fni ) in generating a proposed configuration
m, respectively. One may treat β as an optimization param-
eter without any reference to temperature or β can be simply
set to 1

kBT , where kB is the Boltzmann constant. The dis-
placement δrmn

i is generally, but not necessarily, drawn from

a Gaussian distribution with a zero mean and a variance 2A.
It can be shown that the prescription stated in Eq. (7) is related
to Brownian-dynamics simulations in the presence of an ex-
ternal force for an appropriate choice of α δrmn

i andA, where
the motion of a particle is governed by the sum of the external
force(s) and a random force reflecting the complex interac-
tion between the particle and a noisy environment. Following
Rossky et al. ,10 and Allen and Tildesley,11 one can show that a
proposed MC move in Eq. (7) is accepted with the probability
Pmn = min[1, exp(−β∆Emn

i )], where

∆Emn
i = δEmn +

[
1

2
(fni + fmi ) ·∆rmn

i +
βA

4

{
(δfmn

i )2

+ 2fni · δfmn
i

}]
, (8)

and

δEmn = Em − En, δfmn
i = fmi − fni .

In Eq. (8),En andEm are the total energy of the system in the
initial state and the proposed state, respectively. Likewise, fni
and fmi are the total force on an atom at site i before and after
the displacement, respectively. An MC move is accepted or
rejected using the conventional Metropolis algorithm. In this
work, we chose to move one atom at a time but it is possible
to move a group of atoms simultaneously by ensuring that the
change of total energy, ∆Emn, associated with multi-atom
moves, is properly evaluated. To improve the acceptance rate,
we adjusted the step length by assuming a linear temperature
dependence of α with a lower cutoff value of 0.001 Å at 1 K
and an upper cutoff value of 0.05 Å at 3000 K. The value of
A was chosen in such a way that βA was approximately 4–5
×10−3 and δrmn

i was a random number (between -1 and +1)
taken from a uniform distribution.76 In this preliminary study,
we made no attempts to optimize the values of α and A apart
from what we have stated above. These parameters can be
further adjusted during simulations to improve the efficiency
of the method.

To examine the stability of the structure at the putative
global minimum of a classical potential, namely the Finnis-
Sinclair or the Sutton-Chen potential in the present study,
we have carried out ab initio total-energy optimizations of
the CCD clusters and those obtained from our FMC sim-
ulations. Ab initio calculations proceed within the frame-
work of density-functional theory77 using a plane-wave ba-
sis, as implemented in the DFT code NWChem.17 For this
purpose, a cluster was placed in a large cubic supercell such
that the neighboring images of the cluster do not interact
each other in order to prevent the system being treated as
a bulk solid during ab initio relaxations. A cubic supercell
of length 20 Å was found to be sufficient for the present
calculations. The exchange-correlation energy was treated
using the generalized gradient approximation (GGA) in the
Perdew-Burke-Ernzerhof (PBE) formulation,78 and the norm-
conserving pseudopotentials, modified into a separable form
due to Kleinman and Bylander,79 were employed in this work.
The Kohn-Sham eigenstates were expanded in a plane-wave
basis with a kinetic-energy cutoff of 37 Hartrees (1006.8 eV).
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TABLE I. Parameters for the Finnis-Sinclair (for Fe) and Sutton-Chen potentials

n m a (Å) ε (eV) γ c (Å) co c1 c2
Fe – – 3.569745 1.828905 1.8 3.40 1.2371147 -0.3592185 -0.0385607
Ni 9 6 3.52 0.015707 – – 39.432 – –
Cu 9 6 3.61 0.012382 – – 39.432 – –

To verify the sufficiency of the energy cutoff, a few clusters
were tested using a high-energy cutoff of 45 Hartrees (1224.5
eV), which yielded no significant changes in the geometry
and the total-energy values of the clusters in comparison to
the results obtained by using a cutoff value of 37 Hartrees.
Throughout the work, the total-energy optimization of the
clusters was carried out using the spin-polarized PBE-GGA
functional until the total force on each atom of the clusters was
found to be less than 0.01 eV/Å. In addition, Car-Parrinello
molecular-dynamics (CPMD)80 simulations and subsequent
geometry relaxations were used to check the thermal stabil-
ity of the 13-atom Cu/Ni/Fe clusters.

IV. RESULTS AND DISCUSSIONS

A. Global minima from the classical FMC simulations

We begin by addressing the total energy of the putative
global minima of the clusters from the classical FMC simula-
tions and then proceed to compare the results with the corre-
sponding data from the Cambridge Cluster Database (CCD).81

In Table II, we have listed the total energy of 13-, 30-, and
55-atom clusters of Fe, Ni, and Cu from the classical FMC
simulations along with the corresponding CCD values. A di-
rect comparison of the total-energy values, from columns 2
and 3 in Table II, suggests that the FMC values practically
coincide with the CCD values except for Fe30, where a de-
viation as small as 4.4 meV has been observed. This devia-
tion is significantly smaller than the energy associated with
the thermal fluctuations at 300 K. Notwithstanding the ob-
servation that the CCD energy values are consistently lower
than the corresponding FMC values by about 0–5 meV, the
FMC results are quite impressive considering the fact that no
gradient optimization has been performed on the FMC struc-
tures. This reflects the simplicity and efficiency of the FMC
method. The latter is apparent from Figs. 1(a) and 1(b), where
the evolution of the total energy with the CPU time and the
number of the MC steps are plotted, respectively. It is ap-
parent from Fig. 1(a) that the total-energy decay in the FMC
simulation is sufficiently faster than its MC counterpart de-
spite the fact that computationally expensive local gradients
or atomic forces have been evaluated during the FMC simula-
tion. A similar observation follows from the evolution of the
total energy with the MC steps in Fig. 1(b).

To examine the stability of the clusters at the putative global
minimum of the FS and SC potentials, we have listed in Table
III the total-energy values obtained from the first-principles
relaxations of the classical FMC and CCD configurations us-
ing the density-functional code NWChem by perturbing the

TABLE II. Total energy of Cu, Ni, and Fe clusters from the classi-
cal FMC simulation along with the corresponding value of the CCD
clusters. Note that the values in column 4 are given in meV.

System FMC (eV) CCD (eV) Efmc-Eccd (meV)
Fe13 -40.2983 -40.2985 0.2
Fe30 -101.4469 -101.4513 4.4
Fe55 -194.6847 -194.6868 2.1
Ni13 -44.1142 -44.1143 0.1
Ni30 -108.4284 -108.4296 1.2
Ni55 -207.6107 -207.6135 2.8
Cu13 -34.7757 -34.7758 0.1
Cu30 -85.4753 -85.4762 0.9
Cu55 -163.6617 -163.6640 2.3

atomic positions by up to 15% of the average nearest-neighbor
distance between the atoms. Table III suggests that the total-
energy differences are quite small, with a deviation less than
one tenth of an electron-volt, except for 55-atom clusters. A
deviation of 0.1-0.16 eV has been observed for 55-atom clus-
ters, which is partly due to the difficulty in optimizing large
clusters using the computationally expensive CPMD method
and in part to the spin-polarized nature of the calculations.
It may be noted that the total-energy values of the 30-atom
NWChem-relax FMC clusters for all but Cu13 are consistently
lower than the corresponding CCD values, and vice versa for
the clusters with 55 atoms. In view of this observed energy
difference, it would be instructive to examine to what extent
this small energy variation can affect the three-dimensional
structure of the clusters. We address this question in sec-
tions IV-C and IV-D with an emphasis on the two-, three- and
higher-order correlation functions, and compare the real-space
distribution of the atoms obtained from the NWChem-relax
FMC and CCD clusters.

B. Structure of 13-atom Cu/Ni/Fe clusters from ab initio
studies

Our discussion in section II suggests that the electronic ef-
fects arising from the d-electrons can play a significant role in
the determination of the ground-state structure of a number of
13-atom TM clusters, such as Cu and Fe. The great majority
of the simulation studies on TM clusters using classical poten-
tials suggest that the icosahedral structure is the preferred min-
imum for the 13-atom clusters of Cu and Fe, but quite a few ab
initio studies indicate that these systems adopt a bi-planar or
platelet-like form, instead of a more symmetrical icosahedral
structure. Even within the density-functional framework, the
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FIG. 1. The evolution of the total energy of an Fe55 cluster in the classical FMC and MC simulations. a) Total energy versus CPU time, b)
Total energy versus MCS steps.

TABLE III. Total energy of Fe, Ni, and Cu clusters from ab initio
relaxation of the FMC and CCD structures. Note that the values of
Efmc - Eccd in column 4 are given in electron-volt.

System FMC (Hartree) CCD (Hartree)a Efmc-Eccd (eV)
Fe13 -1575.6009 -1575.6018 0.0245
Fe30 -3636.0472 -3636.0366 -0.288
Fe55 -6666.4826 -6666.4886 0.163
Ni13 -556.1933 -556.1940 0.019
Ni30 -1283.9900 -1283.9883 -0.0463
Ni55 -2354.5115 -2354.5154 0.106
Cu13 -707.5190 -707.5205 0.041
Cu30 -1633.1592 -1633.1603 0.032
Cu55 -2994.5459 -2994.5497 0.103

a 1 Hartree = 27.211 eV

results vary considerably from one study to another. For ex-
ample, the plane-wave-based DFT calculations, usingVASP,
by Chang and Chou26 suggest that a BBP structure of Ag13
and Cu13 is more stable than the corresponding icosahedral
structure. However, the results from the Gaussian-orbital-
based DFT calculations by Pereiro et al.31 indicate that the
icosahedral structure is the most stable structure of Ag13. The
results above contrast with those based on the plane-wave
DFT studies, using VASP, by Hue et al. 32 and Piotrowski
et al. ,35 which reported new ground-state structures of Ag13.
Furthermore, recent ab initio studies on TM clusters by Jena
et al. ,82,83 using VASP72 and GAUSSIAN,84 have indicated that
the ground-state energy of 13-atom Cu/Ni/Fe clusters corre-
spond to well-defined spin multiplicities, which need to be
taken into account for accurate total-energy calculations of
13-atom Cu/Ni/Fe clusters. Thus, the structures of some of
the 13-atom TM clusters are still very controversial and there
is a need for accurate ab initio calculations for structural de-
termination of small TM clusters. Since an in-depth study
of 13-atom TM clusters is outside the scope of the present
work, we specifically address here the credibility of the struc-
tures of a few 13-atom TM clusters, which are obtained from
the classical FMC simulations followed by CPMD80 and first-
principles total-energy relaxation using the density-functional

code NWChem. Here, we have used the values of spin multi-
plicities reported in Ref. 82.

TABLE IV. Ab initio total-energy values of 13-atom transition-metal
clusters from a joint FMC-NWChem simulation. For Cu13, the en-
ergy difference ∆E = E − Emin is expressed with respect to the
lowest-energy configuration.

Cluster Initial symmetry Final symmetry E (Hartree) ∆ E (eV)
Ni ICO ICO -556.1921
Fe ICO ICO -1575.6020

Cu
BBP bi-layer1 -707.5611 0.31
ICO bi-layer2 -707.5723 0.0
HBL bi-layer3 -707.5653 0.19

In Table IV, we have listed the total-energy values of 13-
atom Cu, Ni, and Fe clusters obtained from the joint FMC-
NWChem simulations. Starting with the 13-atom icosahedral
structure obtained from the classical FMC simulations, the to-
tal energy of each cluster was minimized using the density-
functional code NWChem. Thereafter, finite-temperature
CPMD simulations were carried out at T = 300 K for 6–10 ps,
with a time step of 0.12 fs, to explore the neighboring regions
of the potential-energy surface, followed by total-energy re-
laxation to determine the equilibrium structure of the clusters.
An examination of the final structures reveals that Ni13 and
Fe13 continue to remain in the icosahedral structure, whereas
Cu13 transforms from the icosahedral structure to a buckled
bi-planar (BBP) structure during 10 ps of thermalization (at
300 K) and eventually adopts a low-energy bilayer structure
upon post-CPMD total-energy relaxation. To further exam-
ine the stability of the bilayer structure of Cu13, additional
CPMD runs were conducted for 10 ps starting with a BBP
structure and a hexagonal bilayer (HBL) structure.73 In both
the cases, the simulations produced bilayer structures, which
were energetically very close to each other but slightly dif-
ferent in structure. Table IV lists the total energy of the clus-
ters, the initial and final symmetries, and the energy difference
(∆E) between the bilayer structures of Cu13. Figure 2 shows
the minimum-energy structures of the 13-atom Cu, Ni, and
Fe clusters, obtained from the joint FMC-NWChem runs, of
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duration 6–10 ps, followed by total-energy relaxations. The
presence of a buckled hexagonal layer with a central atom,
shown in yellow color, is clearly visible in Fig. 2(b). The re-
maining atoms form a highly distorted layer to produce an
approximate bilayer or platelet-like structure. On the other
hand, the 13-atom Ni and Fe clusters are found to be stable
in the icosahedral structure, as shown in Figs. 2(a) and 2(c),
respectively. The transition of the Cu13 cluster from a 13-
atom icosahedral structure to a BBP structure and then to a
bilayer structure indicates that, for an exhaustive molecular-
dynamical search for new structures on the PES, one must
conduct rather long simulations lasting several tens of pi-
coseconds at different temperatures.

C. Local atomic structure and bonding environment

Since the ground-state configuration a cluster must be in-
dependent of the optimization method for a given potential,
it is appropriate to examine whether a small difference in the
total energy between a pair of clusters, mentioned in section
IV-A, can have nontrivial effects on the three-dimensional dis-
tribution of the atoms. This is particularly relevant for large
clusters due to the presence of a multitude of low-lying min-
ima on the potential-energy surface. For large clusters, it is
possible for the system to adopt a number of different struc-
tural configurations, which are either energetically degenerate
or very close to each other (also known as an isomer). Thus,
it is necessary to examine the structural similarities and dif-
ferences between the NWChem-relax FMC and CCD clusters
by systematically addressing the atomic-correlation functions
of increasing order. Since the number density of a cluster can
vary with its size, we have assumed a suitable bounding box
for the computation of the pair-correlation function of a clus-
ter of given size.85 Figure 3 presents the pair-correlation func-
tions (PCF) for a 30-atom cluster of Fe, Ni, and Cu, obtained
from the NWChem-relax FMC and CCD configurations. It is
apparent from Fig. 3 that, apart from a minute difference in
the vicinity of 4 Å for Fe and Cu clusters, the PCFs of the
FMC and CCD clusters effectively coincide with each other,
reflecting the structural similarities as far as the radial corre-
lation of the atoms is concerned. Similar conclusions can be
reached from Fig. 4, where the distribution of the bond angles
between the nearest-neighbor atoms are presented.

Further characterization of the clusters is possible by ana-
lyzing the distribution of the first-shell coordination numbers
of the atoms. To this end, we define the nearest-neighbor
distance between the atoms from the first minimum of the
pair-correlation functions, as shown in Fig. 3. For Fe30, Ni30,
and Cu30 clusters, these values correspond to 3.2 Å, 2.65 Å,
and 2.9 Å, respectively. The values are consistent with the
sum of the atomic radius of the constituent atoms in the clus-
ters. Figure 5 shows the histograms of the first-shell atomic-
coordination numbers of Fe30, Ni30, and Cu30 clusters, ob-
tained from the NWChem-relax FMC and CCD configura-
tions.

D. Bond-orientational order parameter

In the preceding section, we have shown that the radial and
bond-angle distributions, as well as the atomic-coordination
numbers of the NWChem-relax FMC and CCD clusters match
closely with each other. However, this does not necessarily es-
tablish that the FMC and CCD clusters are identical with each
other as far as the three-dimensional distribution of the atoms
are concerned. For example, for a given set of atoms, it is pos-
sible to construct different local-bonding environments that
can have identical radial, bond-angle and atomic-coordination
number distributions. Thus, to obtain information on the ori-
entation of a set of bonds (with respect to a fixed coordinate
system in space) formed by a group of atoms, an appropri-
ate bond-orientational order parameter (BOP) needs to be de-
fined. To this end, we compute the BOP, introduced by Stein-
hardt et al. 86 in an effort to further establish that the FMC and
CCD clusters are nearly identical to each other. Since the BOP
depends on the number of the nearest neighbors and the rel-
ative orientations of the neighbors with respect to the central
atom, it incorporates some aspects of structural information
from higher-order correlation functions of the clusters. The
Steinhardt BOP often provides a simple and effective mea-
sure for determining the presence of micro- or para-crystalline
structural units in solids. The local BOP,Qi

l , reflects the bond-
ing environment of an atom at site i, which is associated with
the orientation of a set of bonds that originate from site i and
terminate at its nearest neighbors. While Qi

l is independent
of the bond lengths, it depends on the number of the near-
est neighbors of site i and their orientations with respect to a
three-dimensional coordinate system with site i at its origin.
In a spherical polar coordinate system, the local BOP Qi

l is
given by,

Qi
l =

√√√√ 4π

2 l + 1

l∑
m=−l

∣∣∣∣ 1

ni

∑
j∈[ni]

Y m
l (θ(rij), φ(rij))

∣∣∣∣2,

and the global BOP, Ql, follows from the sum of the indi-
vidual value of Qi

l at site i. Here ni is the number of the
nearest neighbors of atom i, N is the total number of atoms
in the system, and θ and φ are the polar and azimuthal angles
of the bond rij , respectively. The symbol [ni] indicates the
atomic indices of ni nearest neighbors of atom i, and Ql is
the site-average value of Qi

l over all atomic sites. Different
values of l generally correspond to different crystalline struc-
tures; for example, Q4 and Q6 are often used in the literature
to distinguish a cubic structure from a hexagonal one. Figure
6 shows the bond-orientational order parameter for two sets of
Fe30, Ni30, and Cu30 clusters, obtained from ab initio relax-
ations of the FMC and CCD structures using NWChem. The
results, for each set of the FMC and CCD clusters, are essen-
tially identical except for a minor deviation for Fe30 owing to
subtle differences in the bond-angle distribution of the FMC
and CCD clusters near 110◦, as observed in Fig. 4(a).
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FIG. 2. The putative ground-state structures of 13-atom transition-metal clusters from a joint FMC-NWChem simulation: a) Fe13 (icosahe-
dron); b) Cu13 (bilayer2) with a buckled hexagonal layer (yellow); and c) Ni13 (icosahedron). See Table IV for the ground-state energy of the
structures and the possible low-energy isomers of Cu13.
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FIG. 3. The pair-correlation functions of: a) Fe30; b) Ni30; and c) Cu30 clusters obtained from ab initio relaxations of FMC (blue) and CCD
(red) structures using the density-functional code NWChem.
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FIG. 4. The distribution of the nearest-neighbor bond angles for: a) Fe30; b) Ni30; and c) Cu30 clusters. The results for the FMC and CCD
structures, after relaxation using NWChem, are shown in blue and red colors, respectively.
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FIG. 5. Histograms showing the coordination numbers of the first-shell atoms in: a) Fe30; b) Ni30; and c) Cu30 clusters. The FMC-NWChem
and CCD-NWChem configurations are indicated in the plots.
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FIG. 6. Bond-orientational order parameters (Ql) for: a) Fe30; b) Ni30; and c) Cu30 clusters for several values of l. The results for the
FMC-NWChem and CCD-NWChem structures are shown in blue and red colors, respectively.

E. Geometry of transition-metal clusters

Having established that the two- and three-body correlation
functions, as well as the local structure and the bonding envi-
ronment of the atoms, of the FMC and CCD clusters practi-
cally match with each other, it seems intuitively valid to state
that the clusters are essentially identical. However, a rigor-
ous justification of this statement, based on the results so far
discussed, turns out to be particularly delicate–owing to the
hierarchy of the high-order correlation functions–and a more
direct approach is needed to establish the identical nature of
the FMC and CCD clusters. In an effort to achieve this, we
therefore proceed to compare the structures atom-by-atom in
this section. Toward that end, our approach is based on the fol-
lowing assertion: given two (nearly) identical configurations,
it is possible to construct a series of transformations, involving
translations and rotations in three dimensions, such that one
configuration can be (approximately) mapped onto the other.
We implement this ansatz by: a) translating the center of mass
(CM) of each configuration to (0, 0, 0); b) subsequently, find-
ing a unique direction vector for each configuration (e.g., the
direction vector from the CM to the nearest atom); c) aligning
these direction vectors with the z axis (0, 0, 1) using the axis-
angle representation of vector rotation in three-dimensional
space.87 We emphasize that, in order for this ansatz to work
satisfactorily, the configurations must be nearly identical to
each other. Since the results in the preceding sections demon-
strate unambiguously that this condition is amply satisfied by
the FMC and CCD clusters, we may expect that an appropri-

ate transformation exists and that it can be employed for the
purpose of superposition. Figures 7 and 8 show the geometry
of 30-atom and 55-atom clusters, respectively, obtained from
the joint FMC-NWChem relaxation. For the purpose of direct
comparison with the CCD clusters, each of the FMC clusters
was subjected to a translation and appropriate rotations. The
resulting structures in Figs. 7 and 8 conclusively demonstrate
that the FMC clusters are quite identical to their CCD counter-
parts. Finally, the electronic density of states (EDOS) of Fe30,
Ni30, and Cu30 clusters from NWChem are plotted in Fig. 9. It
is evident from the plots that both the FMC and CCD configu-
rations produce almost identical electronic densities of states
throughout the energy spectrum. Thus, the electronic density
of states of the clusters provide additional and independent
corroboration that the clusters are (nearly) identical in nature.

V. CONCLUSIONS

In this paper, we have studied the most stable structures of
the transition-metal clusters of Fe, Ni, and Cu using classical
simulations followed by quantum-mechanical total-energy re-
laxations using density-functional theory. Starting from a ran-
dom structural configuration, the total energy of a cluster is
computed using a force-biased Monte Carlo (FMC) approach,
which efficiently explores the potential-energy landscape to
determine the most likely configuration of the cluster at the
putative global minimum and the low-energy isomers without
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FIG. 7. Geometry of Fe30, Ni30, and Cu30 clusters obtained from ab initio NWChem relaxations of the FMC (top panel) and CCD (bottom
panel) clusters. For comparison, each configuration was subjected to a translation and appropriate rotations, as described in the text.

employing any gradient-optimization techniques. Our method
is illustrated using the Finnis-Sinclair potential for Fe clusters
and the Sutton-Chen potential for Ni and Cu clusters, with
sizes of up to 55 atoms for which the putative global min-
ima and the corresponding geometry of the clusters are avail-
able in the literature from a number of sophisticated gradient-
based optimization methods. In particular, we have compared
our results from the classical FMC simulations with the corre-
sponding structural data obtained from the Cambridge Cluster
Database (CCD). The results suggest that the classical FMC
method can produce structural configurations that are essen-
tially identical to that of the CCD configurations as far as
the total energy, the pair-correlation function, the bond-angle
distribution, the atomic-coordination numbers, and the bond-
orientational order parameter are concerned. Atom-by-atom
comparisons between the FMC and CCD clusters are pre-
sented by mapping the former onto the latter using a trans-
formation involving a translation and suitable Euler rotations.
The stability of the classical FMC clusters is examined by per-
turbing the atomic positions and relaxing the perturbed con-
figurations using the first-principles density-functional code
NWChem. Ab initio total-energy relaxations of the FMC clus-
ters indicate, with the exception of 13-atom Cu and Fe clus-
ters, that the resulting relaxed structures are practically identi-
cal to the starting FMC structures as far as the pair-correlation
distribution, the bond-angle distribution, and the first-shell co-
ordination number of the atoms are concerned. For Fe13 and

Ni13 clusters, we find that the icosahedral structure is the most
stable structure, whereas Cu13 is found to adopt a bilayer or
platelet-like structure in our study.

We conclude this paper with the following observation. In
this study, our ab initio search for new structures is by no
means exhaustive as the primary goal of our work is to exam-
ine the effectiveness of the FMC approach in determining the
ground-state structures of transition-metal clusters from clas-
sical potentials. Having achieved this goal, we have employed
finite-temperature ab initio molecular-dynamics (AIMD) sim-
ulations to examine the credibility of the ground-state struc-
ture from classical potentials from the first-principles point of
view. Since finite-temperature AIMD cannot adequately ex-
plore the potential-energy surface in a limited simulation time
of a few tens of picoseconds, as observed in numerous DFT
studies on 13-atom transition-metal clusters (see section II),
alternative approaches to sample structures from the potential-
energy surface of the clusters are necessary. In this paper,
we have offered such an approach and have shown unambigu-
ously that the classical version of the approach can effectively
determine the putative ground-state structures of a number of
small transition-metal clusters. It is appropriate to expect that
an ab initio version of the FMC algorithm would be highly
suitable for an extensive search for the ground-state structure
of transition-metal clusters using total energies and forces. Fi-
nally, our method can be applied to model bulk amorphous
solids, using ab initio forces from density-functional simu-
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FIG. 8. The structure of 55-atom Fe, Ni, and Cu clusters obtained from the ab initio NWChem relaxation starting from the FMC and CCD
configurations. The FMC (top panel) and CCD (bottom panel) clusters are shown in dark red and light blue colors, respectively. Each
configuration was subjected to a translation and rotations for comparison.
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FIG. 9. Electronic densities of states of 30-atom Fe, Ni, and Cu clusters. The results for the FMC and CCD clusters are shown in blue and red
colors, respectively. The highest-occupied energy level is shown as a dashed vertical line (black) at 0 eV. For the purpose of comparison, we
have broadened the eigenvalue distributions using a Gaussian function with a broadening parameter of 0.3 eV.

lations, where one is primarily interested in obtaining a set
of stable atomic configurations that correspond to low-lying
local minima on the potential-energy surface. In future, we
will address these problems using an optimized version of the
FMC algorithm.
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