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We characterize the information dynamics of strongly disordered systems using a combination
of analytics, exact diagonalization, and matrix product operator simulations. More specifically, we
study the spreading of quantum information in three different scenarios: thermalizing, Anderson
localized, and many-body localized. We qualitatively distinguish these cases by quantifying the
amount of remnant information in a local region. The nature of the dynamics is further explored
by computing the propagation of mutual information with respect to varying partitions. Finally,
we demonstrate that classical simulability, as captured by the magnitude of MPO truncation errors,
exhibits enhanced fluctuations near the localization transition, suggesting the possibility of its use
as a diagnostic of the critical point.

I. INTRODUCTION

In thermalizing quantum systems, it is typically
thought that the microscopic information associated with
any initial state is lost as the system relaxes toward equi-
librium. Even in the case of isolated systems (i.e. absent
a bath), information about an initial state can spread
over the entire system, rendering local measurements in-
capable of any meaningful reconstruction.2,3 However,
strong disorder giving rise to localization can prevent
equilibration, leading to “memory” of the initial state
even at late times. Typically, this memory is associ-
ated with a lack of transport, implying for example, that
microscopic information about the positions of particles
remains at infinitely long times. While originally intro-
duced by Anderson for the case of non-interacting sys-
tems,4 more recently, it has been demonstrated that lo-
calization can persist even in strongly interacting sys-
tems, leading to a new dynamical phase of matter dubbed
many-body localization (MBL).5–32

From an information theoretical perspective, the abil-
ity of localized systems to skirt thermalization suggests
their use as a possible memory resource. In the many-
body case, this paints a particularly intriguing picture
where locally addressable degrees of freedom may emerge
from a strongly-interacting system.12–16,20 However, the
presence of strong interactions also leads to a logarithmic
growth of entanglement entropy, manifesting as an in-
trinsic, slow dephasing mechanism;10–14,20 crucially, this
implies that not all microscopic information of an initial
state survives.
In this article, we perform a numerical study of the

information dynamics in localized systems. By encoding
a single qubit of information in a local region, we quan-
tify the amount of remnant information as a function of
time, using the distinguishability of many-body density
operators. Moreover, we characterize the infinite tem-
perature dynamics of the mutual information between a
region and its complement (which extends the notion of
entanglement entropy from zero to finite temperature,

and satisfies an area law for any local Hamiltonian in
thermal equilibrium33) using matrix product operator
(MPO) simulations.34–37 Finally, we find that “classical
simulability” may serve as a diagnostic of the localization
phase transition.

Our paper is organized as follows. In section II, we
begin by introducing the random field XXZ model and
considering two simple limits: the free, non-interacting
case and the many-body localized l-bit Hamiltonian. In
addition, we outline the numerical tools used in the re-
mainder of the paper. In section III, we investigate the
spreading of locally encoded information in both Ander-
son localized and MBL systems. For Anderson localized
systems, a quantum bit can be stored and trivially re-
covered; in this case, each localized degree of freedom
forms an independent, isolated qubit. For MBL systems,
these local qubits slowly entangle and dephase with one
another, suggesting naively that only classical informa-
tion survives at late times. But this naive picture ignores
the underlying mechanism of MBL dephasing. In partic-
ular, performing a simple local spin echo protocol leads
to a revival of the quantum information and enables the
recovery of a single qubit even at infinite temperatures
for asymptotically long times.13,20,22 Here, we consider a
complementary scenario where one would encode multi-
ple qubits, each in a region of size ℓ. In this case, the
straightforward application of local spin-echo protocols
does not lead to information recovery since dephasing
still occurs between the qubits themselves38. To this
end, we quantify the amount of information remaining
in the region ℓ; this amounts effectively to first tracing
out the remainder of the system, and then asking for the
maximum local recovery fidelity. In section IV, we high-
light the use of infinite temperature MPO simulations to
explore the dynamics of mutual information. By investi-
gating the truncation errors associated with this tensor
network simulation as a function of disorder strength, we
find that the classical simulability may serve as a diag-
nostic of the localization phase transition. This is elab-
orated upon in detail in section V. Finally, we conclude
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by summarizing our results in section VI.

II. MODEL, SETUP AND INTEGRABLE

LIMITS

We consider a one dimensional quantum spin chain of
finite length N with Hamiltonian:

H =

N−2
∑

i=0

J
(

Sx
i S

x
i+1 + Sy

i S
y
i+1 + αSz

i S
z
i+1

)

+

N−1
∑

i=0

hiS
z
i ,

(1)
where Sµ

i (µ ∈ {x, y, z}) are Pauli spin-1/2 operators
acting on particle i, J = 1 is the interaction strength be-
tween nearest neighbors, hi is a random on-site disorder
field drawn from a uniform distribution hi ∈ [−h, h], and
α is a dimensionless parameter characterizing the XXZ
anisotropy. When α = 0, the model reduces to the non-
interacting XY chain with random transverse field, which
exhibits single particle localization for any value h > 0
in the limit N → ∞. When α = 1, the spins couple
via Heisenberg interactions, and the system undergoes
an MBL phase transition with hc ≈ 3.5.9,21,26

As previously described, we are interested in situations
where spin echo protocols are not applicable; to this end,
we focus on the dynamics that lead to the spreading of
information for an initial state, with one bit of informa-
tion encoded in the leftmost spin. The remainder of the
chain is prepared in the maximally mixed state (e.g. in-
finite temperature):

ρϕ = |ϕ〉〈ϕ| ⊗ (11/2)⊗N−1 , (2)

where |ϕ〉 describes the encoded pure state. We will con-
sider two types of states: |ϕ〉 = |X±〉 or |Z±〉, which
correspond to the eigenstates of Sx

0 and Sz
0 . As we will

see later, they can be associated to quantum and classical
information.

A. Non-interacting and l-bit limit

Using the Jordan-Wigner transformation,39 the model
can be written as a quadratic, free-fermion Hamiltonian,
H =

∑

c†pMpqcq where Mpq ≡ −2J(δp,q+1 + δp,q−1) +

2hpδpq and c†i (ci) are creation (annihilation) operators
at position i. The eigenstates of the system can be
simply described by Slater determinant states of non-
interacting single particle eigenmodes bk, which can be
computed by diagonalizing the matrix M = UΛU †, with
bk =

∑

l U
∗
lkcl. Likewise, the spectrum of the system

is completely determined from the single particle energy
eigenvalues Λk. For any non-vanishing strength of the
random magnetic field, each single particle eigenstate k
is spatially localized near some position k0 with a char-
acteristic localization length ξ and |Ulk|2 ∝ e−|l−k0|/ξ.

Starting from Eq. (2) with |ϕ〉 = |X±〉, |Z±〉, the time
evolved density matrix is

ρZ±
(t) =

1

2N−1

N−1
∑

r=0

{

|Vr|2
1± σz

r

2
(3)

∓
∑

s>r

(

VrV
∗
s σ

−
r ⊗ σz

r+1 ⊗ . . .⊗ σz
s−1 ⊗ σ+

s

+V ∗
r Vsσ

+
r ⊗ σz

r+1 ⊗ . . .⊗ σz
s−1 ⊗ σ−

s

)

}

,

ρX±(t) =
1

2N

{

11±
N−1
∑

r=0

(

Vrσ
z
0 ⊗ . . .⊗ σz

r−1 ⊗ σ−
r + h.c.

)

}

,

(4)

where Vr(t) =
∑N−1

l=0 U0le
iΛltU †

lk is the quantum ampli-
tude of a single particle propagating from the 0-th to r-th
site over time t.
For α 6= 0, the model is interacting and there is no

generic analytic solution. However, when the interacting
system is in the MBL phase, one can use a phenomeno-
logical Hamiltonian of the form,12,20

Heff =
∑

i

ǫiτ
[i]
z +

∑

i,j

K
(2)
ij τ [i]z τ [j]z + . . . , (5)

where τ
[i]
z are Pauli operators corresponding to so-called

l-bits (logical bits), and K
(M)
i1,i2,...

are the coefficients of
M -body interactions that decay exponentially in space
and with the number of participating l-bits, M . The
τ [i] operators are related by a quasi-local unitary to the
original spin degrees of freedom and thus, are localized
around a physical site i.40,41 In the remaining sections,
we will utilize this description to estimate the qualitative
behavior of information dynamics in the MBL phase.

B. Numerical method based on tensor networks

To probe system sizes larger than those possible via
exact diagonalization, we will consider approximate nu-
merical simulations based upon tensor network (TNS)
techniques using MPO.34–36 An MPO is a particular ten-
sor network ansatz for operators. For a spin chain of N
sites, MPO’s take the form

O =
∑

{ik,jk}

Tr
[

M [0]i0j0 · · ·M [N − 1]iN−1jN−1

]

× |i0 . . . iN−1〉〈j0 . . . jN−1|, (6)

where ik, jk ∈ {0, 1} label the physical basis of the k-th
site, and each M [k]ij is a D ×D matrix. Such an MPO
can be used as an ansatz to represent the state of a quan-
tum many-body system. Using standard tensor network
techniques,42 it is thus possible to simulate the time evo-
lution of a mixed state, which in the case of Eq. (2) has an
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exact MPO representation with bond dimension, D = 1.
In particular, we can find an MPO approximation to the
time evolved state of the system, ρ(t), by successively
applying small steps of evolution onto the initial state,
and truncating the result to a maximum allowed bond
dimension.
We note that, in the non-interacting case, ρZ±

(t) and
ρX±

(t) in Eq. (3) and (4) can be exactly written as MPOs
of bond dimensions D = 4 and D = 2, respectively (see
appendix A), already indicating that this non-interacting
case can be efficiently simulated using this method. In
a generic interacting case, a larger bond dimension is re-
quired as the system evolves in time, and accurate simula-
tions become more difficult. However, the computational
cost scales polynomially with the system size, enabling
one to explore considerably longer chains than with exact
diagonalization. On the other hand, the cost grows lin-
early with the number of evolution steps applied, so that
the total time that can be simulated with this method
is still limited. More importantly, the truncation of the
bond dimension introduces a numerical error, which may
grow fast with time if the bond dimension required for
a precise description of the true evolved state increases
rapidly. As discussed below, the minimal value of D nec-
essary for a certain precision depends on the Hamiltonian
parameters and the required D is typically small if the
system is in the localized phase.8

III. INFORMATION SPREADING AND

DYNAMICS

As previously discussed, locally encoded information
in MBL systems may dephase over time owing to weak
interactions, and if any part of the system is traced
out, the information can be lost. To make this state-
ment more precise, we focus on a scenario in which the
leftmost spin starts out in a pure state, |ϕ〉, the sys-
tem evolves for time t, and afterwards the rightmost
N − ℓ spins are traced out. We compute the distin-
guishability for pairs of states that were initially op-
positely polarized along either x̂ or ẑ direction. This
quantity measures the optimal probability of distinguish-
ing whether we started with + or − polarization. It
is computed as 1

2‖Dt,ℓ(σα)‖1 = 1
2‖Dt,ℓ(|α+〉〈α+ |) −

Dt,ℓ(|α−〉〈α − |)‖1 (α = x, z), where Dt,ℓ(|ϕ〉〈ϕ|) =
trN−ℓ

[

U(t)|ϕ〉〈ϕ|U(t)†
]

describes the unitary time evo-
lution of the initial state followed by tracing over the
rightmost N − ℓ spins. Notice that 0 ≤ ‖Dt,ℓ(σα)‖1 ≤ 2,
with the maximum value 2, when the states are perfectly
distinguishable (e.g. at t = 0), and the minimum value
0, when both states are indistinguishable and the infor-
mation is completely lost. For very large magnetic field,
we might expect a large value of ‖Dt,ℓ(σz)‖1, even in the
interacting case, and we may relate distinguishability for
the ẑ direction to the classical information that can be
stored. On the other hand, ‖Dt,ℓ(σx)‖1, which we relate
to the quantum information, may be very different. As

we will show, it may happen that the x-distinguishability
vanishes, while the z-distinguishability remains close to
maximal, meaning that we can retrieve a classical but
not a quantum bit.
Furthermore, the distinguishabilities along three or-

thogonal directions also allow us to compute an upper
bound to the recovery fidelity of our protocol. To this
end, after the evolution, a trace preserving completely-
positive map (ie., a physical action), Rℓ, can be applied
to the ℓ leftmost spins in order to recover the encoded
information. The fidelity of the procedure is defined as
the average fidelity between initial and final states,

F (Rℓ, t, ℓ) =

∫

dµϕ〈ϕ|Rℓ [Dt,ℓ(|ϕ〉〈ϕ|)] |ϕ〉, (7)

averaging over all initial pure states of the qubit with
the standard measure. The optimal recovery fidelity,
F (t, ℓ) = supRℓ

F (Rℓ, t, ℓ), corresponds to an optimiza-
tion over the quantum operation, Rℓ, which in general
is difficult to solve. Nevertheless, a strict upper bound
can be computed from the distinguishabilities of pairs
of completely polarized initial states of the qubit along
three orthogonal directions,43

F (t, ℓ) ≤ 1

2
+

1

12

∑

α=x,y,z

‖Dt,ℓ(σα)‖1. (8)

The symmetry of our problem ensures that ‖Dt,ℓ(σy)‖1 =
‖Dt,ℓ(σx)‖1, so that it is enough to consider the previ-
ously mentioned ‖Dt,ℓ(σx)‖1 and ‖Dt,ℓ(σz)‖1.
Non-interacting case.— Using the exact solution in (3)

and (4), the distinguishabilities can then be expressed as

‖Dt,ℓ(σz)‖1 = 2

ℓ−1
∑

r=0

|Vr|2 , ‖Dt,ℓ(σx)‖1 = 2

√

√

√

√

ℓ−1
∑

r=0

|Vr |2.

From the unitarity
∑ℓ−1

r=0 |Vr|2 = 1−∑N−1
r=ℓ |Vr|2 < 1, we

find ‖Dt,ℓ(σz)‖1 ≤ ‖Dt,ℓ(σx)‖1, implying that the distin-
guishability of σx polarization is always better than that
of σz at all times and partitions.
When the system is disordered (h > 0) the eigenmodes

are exponentially localized. We can then bound the prob-
ability that the initial particle propagates beyond the

ℓ-th site at time t,
∑N−1

r=ℓ |Vr(t)|2 ≤ CN(N − ℓ)e−ℓ/ξ

for some constant C, and since
∑N−1

r=0 |Vr|2 = 1, we

conclude that ‖Dt,ℓ(σz)‖1 ≥ 2 − 2CN(N − ℓ)e−ℓ/ξ and

‖Dt,ℓ(σx)‖1 ≥ 2
√

1− 2CN(N − ℓ)e−ℓ/ξ. Thus, in the
non-interacting case information stored in both σx and
σz remains localized at arbitrarily long times.
Figure 1a illustrates the behavior of the time and disor-

der averaged 1
2‖Dt,ℓ(σx)‖1 and 1

2‖Dt,ℓ(σz)‖1 for a chain
of length N = 100 as a function of time with the cut
at ℓ = 4. In the absence of disorder h = 0, both val-
ues in Eq. (9) decay after a certain time as t−1/2, before
finite size effects are apparent. For disordered systems
both quantities saturate within finite time. The satura-
tion times as well as the final values of distinguishabilities
depend on the disorder strength.
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(a) Non-interacting case
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(b) Interacting case
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FIG. 1. Numerical results on the evaporation of information in disordered systems in terms of the time averaged distinguisha-
bilities 1

2
‖Dt,ℓ=4(σz)‖1 and 1

2
‖Dt,ℓ=4(σx)‖1 (respectively shown in (a)-(b) with solid and dashed lines). (a) Non-interacting

case (α = 0) for a chain of N = 100 sites, averaged over 100 realizations for disorder strengths h = 0, 1, 4, and 10 (from the
bottom up). (b) Heisenberg interacting case (α = 1) computed by exact diagonalization for N = 12 sites (lines) and by MPO
time evolution for N = 40 (discrete data points). Disorder strengths are h = 1, 4, and 6 (from the bottom up) and for each
one, data has been averaged over 10 realizations. The error bars indicate the standard deviation for the N = 40 system. (c)
Distinguishability lifetime as a function of disorder strength. Blue upward- and red downward-pointing triangles indicate the
timescales for the time averaged ℓ = 4 distinguishability in X and Z, respectively, to drop below a threshold value 0.99 for a
system of N = 12 sites. Each lighter-colored marker corresponds to an individual instance, with the larger symbols showing
the average over 20 realizations.

Interacting case.— We first make use of the phe-
nomenological l-bit model (5) to qualitatively predict the
behavior of distinguishability in the MBL phase, assum-
ing that the system is deep in the localized phase. In
such case, the physical spins and l-bits coincide, and the
ρX± states approximately correspond to a polarized first

l-bit, (11 ± τ
[0]
x )/2, and totally mixed states of the rest.

Since the coefficients K(m) decay exponentially with the
order, m, we consider, as a first order approximation,
only terms with m ≤ 2. Under these approximations,
the time-dependent reduced density matrix for the first
ℓ spins can be written as

ρ̃ℓ(t) =
1

2ℓ

(

11±
N−1
∏

k=ℓ

cos(2tK
(2)
0k )

[

cos(2tǫ0)τ
[0]
x + sin(2tǫ0)τ

[0]
y

])

. (9)

For initial states ρZ± we may assume the simplest first
order decomposition

σ[0]
z ≈

√

1− β2τ [0]z + βτ [0]x , (10)

where β is a small dimensionless parameter characteriz-

ing the overlap between the physical spin operator σ
[0]
z

and the l-bit operator τ
[0]
x

44. Correspondingly, the time-
evolved density matrix becomes

ρ̃Z±
ℓ (t) =

1

2ℓ

(

11±
√

1− β2τ [0]z ± β

N−1
∏

k=ℓ

cos(2tK
(2)
0k )

[

cos(2tǫ0)τ
[0]
x + sin(2tǫ0)τ

[0]
y

])

. (11)

Thus, for the distinguishabilities, we can approximate

‖Dt,ℓ(σx)‖1 ≈ 2|x(ℓ, t)|,
‖Dt,ℓ(σz)‖1 ≈ 2

√

1− β2(1− x(ℓ, t)2). (12)

where we introduced x(ℓ, t) =
∏N−1

k=ℓ cos(2tK
(2)
0k ). This

parameter x(ℓ, t) characterizes the degree of dephasing of
the first l-bit induced by interactions with l-bits located
further than ℓ sites. Initially, x(ℓ, t = 0) = 1, but even
in the deeply localized regime, this parameter may be-
come smaller and explore all of its allowed value range,
0 ≤ x(ℓ, t) ≤ 1 at late times. For sufficiently large ℓ,
the decrease of x(ℓ, t) occurs only at exponentially long
time as x(ℓ, t) ≈ 1 − 2t2(N − ℓ)e−2ℓ/ξ. From Eq. (12),
we conclude that in the MBL phase, the distinguishabil-
ity of states that encode σz remains lower bounded by

2
√

1− β2. In contrast, ‖Dt,ℓ(σx)‖1 will eventually van-
ish; all the information on the coherence will be lost (see
fig. 2).
We can compare these simple estimates with numeri-

cal results obtained from exact diagonalization for small
system sizes and from MPO approximations for large
system sizes. Figure 1b illustrates the results obtained
with ED for small chains of N = 12, and with MPO for
N = 40 until time t = 400. As expected, simulation re-
sults show that in the interacting case, ‖Dt,ℓ(σz)‖1 and
‖Dt,ℓ(σx)‖1 exhibit qualitatively distinct behavior from
the free fermionic case. We observe that ‖Dt,ℓ(σz)‖1 ≥
‖Dt,ℓ(σx)‖1 at all times, and, moreover, the distinguisha-
bility of σx polarized states decays for all values of the
disorder strength, even deep within the localized regime
(h = 6), at sufficiently long times. The σz distinguisha-
bility, on the other hand, seems to reach a plateau at
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FIG. 2. Distinguishabilities as a function of time in the phe-
nomenological model (12) for a localization length ξ = 10,
β = 0.1 and system size N = 100.

higher value for increasing disorder strength, h. Al-
though we observe similar plateaus even for relatively
small values of the disorder, c.f. h = 1, from more de-
tailed comparison of different system sizes, we attribute
it to the effects of finite system sizes, most important
for the weakest disorder. Such effects are evident even at
moderate times t = O(100), where also the MPO approx-
imate results for N = 40 deviate from the small chain
results.

Based on this analysis, we conclude that in Ander-
son localized systems, information encoded in both σx

and σx polarization may remain localized for an arbi-
trary long time, and can be, in principle, reconstructed
even after some part of the system is traced out. In con-
trast, however, in MBL systems, information encoded in
σz and σx exhibit qualitatively distinct behaviors; while
classical information encoded in the σz polarization (i.e.
qubit states |0〉 or |1〉), remains localized, coherent quan-
tum information encoded in the σx polarization (e.g.
|X±〉 states) is inevitably delocalized and eventually lost
by tracing out. Nevertheless, as shown in Eq. (12) for
strong disorder, the dephasing of the coherence informa-
tion requires an exponentially long time, suggesting that
the spreading of the information still remains slow as
predicted from previous works.10–12,15 This is in agree-
ment with previous results showing that a Hamiltonian
with quasi-local constants of motion will have informa-
tion propagation.45 In Fig. 1c we explicitly show the nu-
merically extracted times for which σx and σz distin-
guishabilities are maintained above a certain threshold
as a function of the disorder. We find that the spread-
ing of the information is dramatically slowed down in
increasing disorder strength.

While the previous analysis provides the bound on the
amount of information that remains near the vicinity of
the initial qubit, it does not necessarily mean that this in-
formation can be feasibly recovered from the local region
via any practical protocol. In order to utilize the remnant
information, one also needs to devise a recovery protocol
that is independent from the encoded information. Here,
we consider one simple example based on time-reversed

unitary evolution, Rℓ[ρ] = U †
ℓ (t)ρUℓ(t), where Uℓ(t) is

1 10 100
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(a) Recovery of classical
information
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(b) Recovery of quantum
information

FIG. 3. Recovery of classical (a) and quantum (b) infor-
mation, ∆mZ±(t) and ∆mX±(t), respectively, for a chain of
length N = 40, and disorder strengths h = 2, 4, 6. The data
(symbols) correspond to MPO calculations up to D = 80 and
an average over 10 instances, with the error bars indicating
the standard deviation. The solid lines show the average dis-
tinguishability of z (x) polarized states for the same set of
instances, as was shown in figure 1b.

the evolution operator for a time t under the Hamilto-
nian restricted to the leftmost ℓ sites. The measurement
of the polarization on the first spin provides the informa-
tion on encoded σz polarization with the correlation

mZ±(t) = tr
[

σ[0]
z Uℓ(t)

†trL−ℓ

(

U(t)ρZ±U(t)†
)

Uℓ(t)
]

.

(13)
If mZ± = 2, the correlation between encoded and de-
coded information is perfect, while if mZ± = 0, all the
encoded information is lost in the decoded state. By
comparing the difference between ∆mZ(t) = mZ+(t) −
mZ−(t) and the distinguishability bound ‖Dt,ℓ(σz)‖1,
one can estimate the performance of our protocol com-
pared to the theoretical bound (see Fig. 3). We observe
that this simple protocol, although not saturating the
bound of the distinguishability, qualitatively behaves in
a similar way, and retrieves most of the encoded infor-
mation for strong disorder. We note that this protocol
can be considered as a generalization of a spin-echo pro-
tocol with constraints, which can be used to identify and
distinguish MBL phase from Anderson localization.13

IV. PROPAGATION OF MUTUAL

INFORMATION

One of the unique features of MBL phase is the loga-
rithmically slow growth of entanglement entropy for an
initially quenched product state,10,11,14 which has been
well explained by development of phase correlations of
localized spins.12,20 The MBL character of the localiza-
tion also affects the entanglement spectrum after such
a quench.46 Since we are interested in the case where
the initial state is mixed, we cannot use the entan-
glement entropy to characterize the MBL phase. In-
stead, the appropriate measure of (total) correlations
is the mutual information. For two subsystems A and



6

0 50 100
0

0.2

0.4

0.6

0.8

1

ℓ

I
(ℓ
,∞

)

 

 

ξ=50
ξ=10
ξ=1

FIG. 4. Asymptotic value reached by the von Neumann mu-
tual information, in the non-interacting case, across each cut
of a chain of length N = 100 for initial states X± (dash-
dotted) or Z± (solid lines) for various localization lengths ξ.

B, the mutual information between the two is given by
I(A : B) = S(ρA) + S(ρB) − S(ρAB), where S(ρµ) is
the entropy of the state ρµ. In the case of a pure state,
the mutual information between a region and its com-
plement coincides (up to a factor 2) with the entangle-
ment entropy.47 When A and B are uncorrelated, i.e.,
the combined system is in a tensor product of two states
ρAB = ρA ⊗ ρB, the mutual information vanishes. Non-
zero mutual information indicates that two subsystems
share correlations. In the case of a global quench from a
product state, the mutual information between a pair of
distant spins has also been shown to grow logarithmically
with time.48

In our case, the initial state in Eq. (2) exhibits zero
correlations with respect to any partitioning of the sys-
tem. As the state evolves over time, the initially stored
information spreads, giving rise to non-trivial correla-
tions across the system. It is thus interesting to study
the propagation of correlations in this setting by ana-
lyzing the time evolution of mutual information I(ℓ :
N − ℓ; t) between the first ℓ spins and the rest of the
chain. Here, we also consider the 2-Rényi mutual infor-
mation, I2(A : B) = S2(ρA) + S2(ρB)− S2(ρAB), where
S2(ρ) = − log[trρ2] is the Rényi entropy of second order.
The 2-Rényi entropies can be efficiently computable for
large systems, if their state is given by an MPO, and can
be measured from experiments.49–51 For any state of the
form (2), the entropy of the full system, which remains
constant during the evolution, is S2(ρ) = N − 1. This
provides a bound on the maximum amount of mutual in-
formation in our scenario; since the maximum possible
entropy for a subsystem corresponds to the number of
spins, the largest allowed value for the mutual informa-
tion is 152. This is in contrast to the case of entangle-
ment entropy, where the entropy grows extensively with
the system size due to many-body correlations. In our

case, such situation does not arise as the system starts
out in maximally mixed state.
Non-interacting case.— Both I(ℓ : N − ℓ; t) and I2(ℓ :

N − ℓ; t) can be efficiently computed for any bipartition
and time, using the exact time evolution (3) and (4). We
obtain

IX±(ℓ : N − ℓ, t) =Hb

(

1 +
√
Vℓ

2

)

, (14)

IZ±(ℓ : N − ℓ, t) =Hb

(Vℓ

2

)

+Hb

(

1 + Vℓ

2

)

− 1, (15)

where Hb(p) = −p log2(p)−(1−p) log2(1−p) is the binary
entropy function, and

IX±
2 (ℓ : N − ℓ, t) =1− log (1 + Vℓ) , (16)

IZ±
2 (ℓ : N − ℓ, t) =1− log

(

1 + V2
ℓ

)

− log
(

1 + (1− Vℓ)
2
)

,

(17)

where we introduced the function Vℓ(t) =
∑ℓ−1

r=0 |Vr(t)|2 = 1 − ∑N−1
r=ℓ |Vr(t)|2, which charac-

terizes the probability that the single excitation remains
in the the subsystem of size ℓ. We find that, in both
cases, the mutual information is only a function of Vℓ(t).
Initially, Vℓ(t = 0) = 1 for any ℓ, so that the initial cor-

relations vanish for all partitions. This is because, in or-
der to develop non-vanishing mutual information across
a certain cut ℓ, the particle must propagate more than
ℓ sites. In the localized regime, this probability is ex-
ponentially suppressed even in asymptotically long time,
e.g. |Vp|2 ∝ e−p/ξ, hence Vℓ remains close to zero for a
partition ℓ > ξ. This implies that the localization length
also determines the asymptotic behavior of the mutual
information for each cut, as illustrated in Fig. 4.
Interacting case.— we first estimate the qualitative be-

havior of the many body localized regime by making use
of the l-bit phenomenological model in Eq. (5). Similar to
the previous section, we assume that our system is deep
in the localized regime such that the initial state corre-

sponds to a pure state of the first l-bit, (1 + τ
[0]
x )/2, and

a maximally mixed state for the rest of the chain. Trun-
cating Eq. (5) at two-body interactions, we compute the
exact evolution and corresponding time-dependent mu-
tual information of this initial state. For a bipartition
(ℓ : N − ℓ) we obtain

I(ℓ : N − ℓ; t) = Hb

(

1 + x(ℓ, t)

2

)

, (18)

I2(ℓ : N − ℓ; t) = 1− log(1 + x(ℓ, t)2), (19)

In contrast to the non-interacting case, the mutual infor-
mation across each cut can reach any arbitrary (allowed)
value in a time that grows exponentially with the size of
the partition, ℓ.
We compare the simplified calculations above with the

exact numerical simulations of the real time dynamics of
the considered systems. The differences between the lo-
calized phases in the non-interacting and the interacting
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FIG. 5. Comparison of correlation spreading in the Anderson
(a, c) and many body localized (b, d) scenario, from exact
calculations on a chain of size N = 12, and averaging over
20 disorder realizations. The contour plots show the mutual
information, I(ℓ : N − ℓ, t), for initial states X+ (a, b) and
Z+ (c, d). In order to visualize the spreading of correlations,
we show results for disorder strength h = 1.5 in the non-
interacting case, while in the interacting case, h = 10.

cases can be appreciated from Fig. 5. In the former, cor-
relations propagate fast at the beginning, but only to a
certain range, and remain localized for arbitrarily long
times. The asymptotic values for various cuts follow the
qualitative estimation shown in Fig. 4. In the interact-
ing case, in contrast, mutual information with respect
to every cut attains a large value, even though it takes
exponentially long in ℓ.

V. CLASSICAL SIMULABILITY

We turn to the simulability of the time dynamics us-
ing MPO representations. Intuitively, one expects that a
tensor network description of a many-body state is effi-
cient when the system is strongly localized. For the case
of pure state evolution, this can be quantified by the en-
tanglement entropy; if the entanglement entropy across
every partition remains small, a matrix product state
provides an efficient description of the system. Since an
MBL system exhibits unbounded growth of entanglement
entropy, the required bond dimension to accurately sim-
ulate the dynamics grows at least polynomially in time.8

In the mixed state scenario, the entropy of a certain par-
tition is not the proper figure of merit. For instance, the
maximally mixed state, ρ ∝ 11⊗N , for which any reduced
state has maximal entropy, has an exact MPO expression
with bond dimension D = 1. A better quantifier of the
representability as a MPO is the truncation error when

using a fixed bond dimension. This error is defined as the
distance between the reference state and the MPO trun-
cated approximation. Since we do not have access to the
exact evolved state, here we take as reference the simu-
lated state with the maximum bond dimension D = 80,
and compute the error induced by a smaller value, Dcut.
More specifically, we compute the Euclidean distance be-
tween the vectorized MPOs, ǫ = ‖ρD − ρDcut

‖2, which in
the following we simply call truncation error. We note
that this truncation error occurs exclusively in the inter-
acting case. For the non-interacting model, α = 0, as
shown in the previous section, the time evolution of ini-
tial states of the form (2) is exactly given at any time by
a MPO with very small bond dimension, irrespective of
the disorder strength.

We simulate the evolution of initial states ρϕ in Eq. (2)
for |ϕ〉 = |X±〉, |Z±〉, for chains of lengths N = 40, and
for various disorder strengths. In each case, we compute
the truncation error ǫ along the evolution for Dcut =
60, until a maximum time t = 400. We observe that
the maximum truncation error generally decreases as we
increase the disorder strength, h (Fig. 6). For small h,
the error grows fast at the beginning, and peaks at short
times t ≈ 10 − 50, to drop afterwards (with small fast
oscillations that do not alter the overall tendency). We
denote the time at which the truncation error reaches
its maximum as tmax to characterize the time scale of
simulability. This non-monotonic behavior softens as the
disorder gets stronger, and for the largest values of h,
we cannot observe a maximum in the error within our
time window, t ∈ [0, 400]. Instead, the truncation error
seems to increase over the entire time evolution, although
at much slower rate.

Once the truncation error reaches a certain threshold,
the MPO should not be taken as a faithful description of
the evolved state. Nevertheless, the dynamical behavior
of the error itself provides information about correlations
being developed in the system and is thus a non-local
probe. Therefore one might expect that tmax can diag-
nose the presence or absence of localization. To this end,
we further investigate the behavior of tmax for each in-
stance of disordered potentials, as summarized in Fig. 7.
As a generic trend, we observe that tmax tends to grow
with h, at a rate that seems to increase for larger val-
ues of the disorder strength, although for some instance
we observe some non-monotonic behavior at intermedi-
ate values of h. The less localizing an instance seems,
the later this larger slope can be appreciated, with the
instances in Fig. 6 being again the extreme cases.

If we average over a sample of 10 instances, the average
ttmax does not show this increasing rate (Fig. 7). Inter-
estingly, the (normalized) variance of tmax over the sam-
ple (inset) exhibits a clear peak in the region of disorder
strengths h ≈ 3, close to ergodic-MBL phase transition
point.9,21 This result suggests that the simulability itself
of the dynamics with MPO may be an indicator of the
MBL transition. Indeed, it has been predicted that, when
approaching the phase transition from the thermal side,
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FIG. 6. Variation of the truncation error evolution for differ-
ent disorder strengths, in a chain of size N = 40 and initial
state ρZ+. We show the average truncation error (solid lines)
corresponding to a cut with Dcut = 60 with respect to D = 80
as well as two instances of disordered potentials hi that ex-
hibit extremely different behavior (dot-dashed lines). For a
weak disorder h = 1 (red), the truncation error reaches its
maximum at short time, followed by rapid decreases. Such a
non-monotonic behavior is not clear (or sometimes absent) in
the case of strong disorder.

the system may cross through a Griffiths phase, where
rare (quasi)-localized regions govern dynamical observ-
ables.24,25 Large fluctuations in tmax are consistent with
such expectations.

VI. CONCLUSION

We have discussed several information theoretical as-
pects of localized phases. Using MPO representations,
we investigate the infinite temperature dynamics of in-
formation that is initially encoded in a single qubit. We
quantify the amount of information that remains near
the vicinity of the initial encoding position by using the
distinguishability of many-body density matrices. More-
over, we explore the propagation dynamics of mutual in-
formation, which exhibit qualitatively distinct behaviors
in thermalizing, Anderson localized and MBL systems.
Unlike the entanglement entropy of a pure state under
quench dynamics, the mutual information remains upper
bounded in all cases.
Finally, we demonstrate that localized dynamics are

reflected in the classical simulability of MBL time evolu-
tion by estimating the truncation error of their approxi-
mate MPO description. We have observed that this error,
which can be interpreted as a non-local probe of correla-
tions, may qualitatively capture the location of the local-
ization transition. In particular, the variance of the time
at which the simulation error reaches its maximum value
(over different disorder realizations), exhibits signatures
of peaking near the nominal critical point.9,21,26
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FIG. 7. Average over 10 instances of the time tmax at which
the maximum truncation error is attained, for initial states
ρZ+ (a) and ρX+ (b) for system sizes N = 16 (blue circles),
20 (green triangles) and 40 (blue diamonds). The scattered
points, in the color corresponding to system size, show the
individual location of the maximum for each instance. The
inset shows the (normalized) variance of the same quantity
over this sample, which exhibits a peak near the critical hc.
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Appendix A: Exact results for the non-interacting

chain

Exact MPO for the time evolved states.— The time
evolution of initial states of the form (2) can be com-
puted using the exact solution of the non-interacting XY
chain, and the resulting time dependent density oper-
ators are MPO36,53 of constant bond dimension. Here
we show explicitly the tensors for such decompositions.
Specifically, the ρX±(t) states (4) correspond to a MPO
of bond dimension 2, specified by the operator valued
matrices

M
(0)
X±(t) =

1

2

(

±σz
n 11

)

,

M
(n)
X±(t) =

1

2

(

σz
n Vnσ

−
n + V ∗

n σ
+
n

0 11

)

, 0 < n < N − 1,

M
(N−1)
X± (t) =

1

2

(

Vnσ
−
n + V ∗

n σ
+
n

11

)

. (A1)

Correspondingly, for the time evolved ρZ±(t) states (3),
the MPO is given by the following tensors

M
(0)
Z±(t) =

1

2

(

11 ∓Vnσ
−
n ∓V ∗

n σ
+
n |Vn|2(11± σz

n)
)

,

M
(0<n<N−1)
Z± (t) =

1

2







11 ∓Vnσ
−
n ∓V ∗

n σ
+
n |Vn|2(11± σz

n)
0 σz

n 0 2V ∗
n σ

+
n

0 0 σz
n 2Vnσ

−
n

0 0 0 11






,

M
(N−1)
Z± (t) =

1

2







|Vn|2(11 ± σz
n)

2V ∗
n σ

+
n

2Vnσ
−
n

11






. (A2)

Thermal equilibrium states.— Total polarization,
∑

i S
z
i ,

or in the fermionic language, total number of parti-

cles, N̂ =
∑

p c
†
pcp =

∑

k b
†
kbk, is conserved in the sys-

tem. Thus, equilibration is only possible to a general-
ized Gibbs ensemble (GGE) compatible with the initial
energy densities and number of particles, of the form
ρGGE(β, µ) ∝ exp(−βH − µN̂).

In terms of the diagonal modes,

ρGGE =
∏

k

11 + (e−βΛk−µ − 1)b†kbk
1 + e−βΛk−µ

, (A3)

which has energy EGGE(β, µ) = H0 +
∑

k
Λke

−βΛk−µ

1+e−βΛk−µ and

number of particles NGGE(β, µ) =
∑

k
e−βΛk−µ

1+e−βΛk−µ .

The initial states ρX± correspond thus to β = µ = 0,
with EGGE(0, 0) = 0 and NGGE(0, 0) = N/2, so the up-
per bound of the mutual information 1 really corresponds
to thermalization. For ρZ± states, instead, the energy is
±h0/2 and the number of particles (N ± 1)/2. The val-
ues of β and µ that produce the GGE with the same
conserved quantities can be determined numerically.

1 H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205
(2013).

2 J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
3 M. Srednicki, Phys. Rev. E 50, 888 (1994).
4 Anderson, P W, Physical Review 109, 1492 (1958).
5 L. Fleishman and P. W. Anderson, Phys. Rev. B 21, 2366
(1980).

6 D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Annals of
Physics 321, 1126 (2006).

7 V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111
(2007).
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