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The anomalous Hall effect is classified into two based on the mechanism. The first one is the intrinsic Hall

effect due to the Berry curvature in momentum space. This is a Hall effect that solely arises from the band struc-

ture of solids. On the other hand, another contribution to the Hall effect, so-called extrinsic mechanism, comes

from impurity scatterings such as skew scattering and side jump. These two mechanisms are often discussed

separately; the intrinsic Hall effect is related to the Berry curvature of the band while the skew scattering is

studied using the scattering theory approaches. However, we here show that, in an electronic system with finite

Berry curvature, the skew scattering by nonmagnetic impurities is described by the noncommutative nature of

the real-space coordinates due to the Berry curvature of the Block wavefunctions. The anomalous Hall effect

due to this skew scattering is estimated and compared with the intrinsic contribution.

PACS numbers: 72.15.-v,72.15.Gd,72.20.Dp

I. INTRODUCTION

Berry phase connection

a(k) = i〈uk|∇k|uk〉

of the band structures in solids, which describes how the two

neighboring Bloch functions overlap in the crystal momentum

(k)-space, plays important roles in a variety of phenomena1–3.

(|uk〉 is the periodic part of the Bloch function with crystal

momentum k, and ∇k is the gradient operator with respect to

k.) This a(k) plays the role of the vector potential and leads

to the Berry curvature b(k) = ∇k × a(k) analogous to the

magnetic field. The Berry connection a(k) has the physical

meaning of the intracell coordinate, i.e., the real-space posi-

tion of the wavepacket measured from the Wannier coordinate

reads4–8

r = i
∂

∂k
+ a(k). (1)

On the other hand, the Berry curvature b(k) gives a nonzero

commutation relation between the components of the real-

space coordinate r. For example,

[x, y] = [i ∂
∂kx

+ ax(k), i
∂

∂ky
+ ay(k)]

= i

[

∂ay

∂kx
− ∂ax

∂ky

]

= ibz(k). (2)

Therefore, the wavepackets made of the Bloch functions are

described by the noncommutative quantum mechanics9–15.

This fact leads to the so-called anomalous velocity and also

the intrinsic anomalous Hall effect (AHE) in metallic ferro-

magnets4,16–21. Namely, the transverse anomalous velocity to

the external electric field is induced by the Berry curvature

b(k)3,19, which is the dual to the Lorentz force due to the

magnetic field in real space. This intrinsic mechanism due

to the geometric nature of the Bloch wavefunctions is now

confirmed in many materials by the comparison between the

first-principles calculations and experiments22–27.

Historically, however, the intrinsic mechanism of the AHE

was questioned for a long period, as the impurity scatterings

relax the momentum distribution to the steady state under the

external electric field. As impurity scatterings are inevitable

in solids and they seem to cancel the force acting on the elec-

trons, the anomalous velocity induced by the Berry curvature

was expected to vanish28; thus, no intrinsic AHE. Therefore,

the extrinsic mechanisms due to impurity scattering were es-

tablished earlier. Historically, Smit was the first to propose

the extrinsic mechanism of AHE by the skew scattering28,29,

where the transition probability for the scattering k → k′ is

different from that of k′ → k, i.e., the detailed balance condi-

tion is broken. Later, another extrinsic mechanism called side

jump was proposed30, where a transverse shift of the electron

trajectory occurs at the scatterers. In these mechanisms, the

spin-orbit interaction (SOI) plays a key role in the asymmetry

of the scattering amplitude.

Usually, the intrinsic and extrinsic mechanisms of AHE are

discussed separately; the effect of impurities are often con-

sidered to be irrelevant for the intrinsic Hall effect, while the

skew scattering is studied as a scattering problem and the

effect of the Berry phase is not (explicitly) considered. In-

deed, the two contributions are considered to be dominant in

different regimes of the longitudinal resistivity ρxx
31,32; the

intrinsic one is dominant in the region 1µΩcm < ρxx <
1mΩcm while the skew scattering is dominant for ρxx <
1µΩcm27,33,34. The side jump mechanism is also effective, but

often smaller than these two. Technically, skew scattering ap-

pears in the second Born approximation29,35; it appears from

the interference of the first order and second order scattering

processes.

In this paper, we study the scattering by an impurity poten-

tial for the electronic states with finite Berry curvature in terms

of the noncommutative quantum mechanics. The key obser-

vation is that the nonzero commutators between the compo-

nents of the real-space coordinates urge to introduce the new

canonical coordinates, which satisfies the usual commutation

relations [See Eqs. (5) below.]. This results in the asymmetric

scattering as we see in Eqs. (7) and (13), which leads to the

skew scattering. The results imply that the skew scattering is

a ubiquitous phenomenon that appears in a system with finite

Berry curvature.
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The paper is organized as follows. In Sec. II, we in-

troduce the model we consider throughout this paper; a

non-interacting electron system with non-magnetic impuri-

ties without SOI. A difference from the conventional scatter-

ing problem is that the position operators do not commute

with each other due to the non-zero Berry curvature. Using

this model, in Sec. III, we discuss how the noncommutativity

leads to skew scattering using the second Born approximation.

In Sec. IV, using the scattering rate obtained in Sec. III, we

present the explicit form of the anomalous Hall conductivity

using the semiclassical Boltzmann theory. We also discuss the

competition between the AHE induced by skew scattering and

that by intrinsic mechanism, which both arise from the Berry

curvature. Section V is devoted to discussions and summary.

II. MODEL

In this paper, we consider a three-dimensional space de-

noted by x = (x, y, z) = (x1, x2, x3) and its momentums

p = (px, py, pz) = (p1, p2, p3) with the following commuta-

tion relations:

[x1, x2] = ib, (3a)

[xi, x3] = 0, (3b)

[xi, pj] = iδij , (3c)

[pi, pj] = 0, (3d)

where i, j = 1, 2, 3. In solids, the noncommutativity of the

position operators is a consequence of the Berry curvature4–6;

it is briefly explained in Eqs. (1) and (2) of Sec. I. Throughout

this paper, we put h̄ = 1. To study the effect of impurity

scattering, we here consider a single particle Hamiltonian of

spinless fermion with (non-magnetic) impurities:

H = H0 +HV , (4a)

H0 =
p2

2m
, (4b)

HV = V
∑

i

δ(x− xi), (4c)

where H0 is the Hamiltonian for the free electrons and HV

is the impurity Hamiltonian; V is the strength of potential in-

duced by a scatterer, δ(x) is the three-dimensional delta func-

tion, and xi is the position of the impurity. The sum in the

second term is over all impurities indexed by i. Note that V
has the dimension of (energy)×(length)3; when we consider

the case of impurity atoms replacing the host atoms that form

a crystal, V should be replaced by va3, where v is the poten-

tial energy and a the lattice constant (Hereafter, we take the

unit a = 1.). In the discussion below, we treat HV as a pertur-

bation and assume V is the same for all impurities. However,

an extension to a set of impurities with different scattering

strength is straightforward.

III. ASYMMETRIC SCATTERING RATE

We first investigate the scattering problem with one impu-

rity at the center, i.e., x0 = 0. We discuss that an asymmetric

scattering term arises from the noncommutativity of position

operators, which has the same form as the skew scattering. For

simplicity, we set b = (0, 0, b) to be constant. The eigenstates

of single particle Hamiltonians with the commutation relation

in Eq. (3) can be obtained by introducing an alternative set

of commutative “position” operators, X1 and X2, that gives

two sets of canonical coordinates and momenta, (X1, p1) and

(X2, p2)
14:

X1 = x1 +
b

2
p2, (5a)

X2 = x2 −
b

2
p1, (5b)

X3 = x3. (5c)

Using Xi instead of xi in Eq. (3), we obtain three sets of

canonical coordinates and momenta:

[Xi, Xj] = 0, (6a)

[Xi, pj] = iδij , (6b)

[pi, pj] = 0. (6c)

We, here, use this new coordinate to calculate the scattering

amplitude of the Hamiltonian in Eq. (4a). Using Xi, the im-

purity Hamiltonian reads

〈k′|V δ(x)|k〉 = 〈k′|

(

V

(2π)3

∫

dq eiq·x
)

|k〉,

= 〈k′|

(

V

(2π)3

∫

dq eiq·Xei
b
2
(p×q)3

)

|k〉,

= ei
b
2
(k×k′)3 , (7)

where (· · · )3 is the i = 3 component of the vector in the round

bracket. Here, we used Baker-Campbell-Hausdorff formula to

factorize the exponential function.

To calculate the scattering rate Wk→k′ , we here use the

Born approximation29,35. Within the second Born approxima-

tion, Wk→k′ reads

Wk→k′ = 2π|F (1)(k′,k) + F (2)(k′,k)|2δ(εk − εk′),

(8)

where

F (1)(k′,k) = 〈k′|V δ(x)|k〉,

=
V

Ω
ei

b
2
(k×k′)3 , (9)

and

F (2)(k′,k) = 〈k′|V δ(x)G(0, εk)V δ(x)|k〉,

= −
V 2m

Ω

eik|
b
2
(k3−k′

3
)|

∣

∣

b
2 (k3 − k′3)

∣

∣

, (10)

are the first and second Born terms, respectively. Here, |k〉
is the eigenstate for p, p|k〉 = k|k〉, εk = k2/2m is the
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eigenenergy of |k〉 (k = |k| is the length of vector k), Ω is the

volume of the system, and G(x, ω) is the Green’s function for

H0,

G(x, ω) =

∫

dk′

(2π)3
G(k′, ω)eik

′
·r, (11)

where G(k′, ω) is the Fourier transform of G(x, ω),

G(k′, ω) =
1

ω − k′2

2m + iǫ

Λ2

k′2 + Λ2
. (12)

In Eq. (12), Λ is the cutoff introduced to avoid the divergence

that appears in the integral for k′ in Eq. (11); we take the

Λ → ∞ limit at the end of the calculation of F (2) = (k′,k).
The result in Eq. (10) is after taking the Λ → ∞ limit; it turns

out F (2)(k′,k) converges to a finite value in the limit.

Using the F (1)(k′,k) and F (2)(k′,k), we calculate

the asymmetric part of the scattering rate W (asym)

k→k′ . We

find that the leading order of the asymmetric part is

V 3; it arises from the products F (1)(k′,k)[F (2)(k′,k)]∗ +

[F (1)(k′,k)]∗F (2)(k′,k). The leading order of W
(asym)

k→k′ reads

W (asym)

k→k′ =
1

2
(Wk→k′ −Wk′→k) ,

= −
(2π)3

Ω

niV
3m

(2π)2
4wk′,k(b)

|b(k3 − k′3)|
δ(εk − εk′),

∼ −
(2π)3

Ω

niV
3m

(2π)2
kb(k × k′)3δ(εk − εk′). (13)

Here,

wk′,k(b) = sin [(b/2)(k × k′)3] sin [(k/2) |b(k3 − k′3)|] ,

(14)

ni = Ni/Ω is the density of impurities, Ω is the volume, and

Ni is the number of impurities. In Eq. (13), we expanded

wk′,k(b) by k assuming k2F b ≪ 1; it has the same k depen-

dence as that of skew scattering induced by an impurity with

spin-orbit interaction27,29.

IV. ANOMALOUS HALL CONDUCTIVITY

In this section, we evaluate the Hall conductivity using the

Boltzmann transport theory35,36. Recently, this method has

been shown to be a useful approach for studying AHE that can

take into account of the intrinsic and other impurity-induced

mechanisms36–39. For simplicity, however, we here focus on

the skew scattering term and calculates the explicit formula

for the anomalous Hall conductivity that arise from the im-

purity scattering studied in Sec. III. In the leading order, the

contribution from other terms are given as a simple sum of

the different contributions such as side-jump37. Therefore, it

should be straightforward to evaluate the Hall conductivity in

presence of all different contributions.

The semiclassical Boltzmann equation reads:

qvk ·Ef ′

0(εk)

= −
gk
τ

+
Ω

(2π)3

∫

dk′3W
(asym)

k′
→kgk′ ,

= −
gk
τ

+

∫

dθ′ sin θ′dφ′
ρ(εF )

4π
Ṽ (k) ·

k × k′

k2
gk′ ,(15)

where q is the charge of the particle, E is the external d.c.

electric field, vk = ∇kεk is the velocity of the electron in k

state, f ′

0(ε) = df0(ε)/dε with f0(ε) is the Fermi-Dirac distri-

bution function, and ρ(εk) = mk/2π2 is the density of states

for H0 at energy εk. We here assumed the occupation of elec-

trons fk is close to f0(εk), i.e.,

fk = f0(εk) + gk,

where gk is the small deviation from f0(εk); the equation is

expanded to the linear order in gk. In addition, in the first line

in Eq. (15), we used the relaxation time approximation for the

symmetric part of the scattering rate,

W (sym)

k→k′ =
1

2
(Wk→k′ +Wk′→k) ,

that is, the scattering term that involves W (sym)

k→k′ is replaced by

−gk/τ , where τ is the relaxation time.

For the integral in Eq. (15), we assumed the form

W (asym)

k′
→k = Ṽ (k) ·

k × k′

k2
, (16)

with Ṽ (k) = [Ṽ1(k), Ṽ2(k), Ṽ3(k)] being the function of k;

this is a generalization of the antisymmetric scattering term

in Eq. (13). The integral is written using the polar coordinate

k′ = (k′ cos θ′ cosφ′, k′ cos θ′ sinφ′, k′ sin θ′); the radius is

fixed to k′ = k due to the energy conservation, i.e., the delta

function in Eq. (13).

Equation (15), is solved using a self-consistent approach.

For this, we introduce a new parameter

P (k) =

∫

dφ′dθ′ sin θ′k′gk′ . (17)

Using Eqs. (15) and (17), gk become

gk = −τqvk ·Ef ′

0(εk) +
τρ(k)Ṽ (k)

4πk2
· k × P (k). (18)

Substituting Eq. (18) into gk in the integrand of Eq. (17), the

solution for P (k) reads

P (k) = −τq
2πk2

m
f ′

0(εk)
E + τ

2ρ(k)E × Ṽ (k)

1 +
{

τ
2ρ(k)Ṽ (k)

}2 ,

∼ −τq
2πk2

m
f ′

0(εk)E. (19)

Here, we assumed Ṽ ⊥ E. In the second line, we expanded

the result to the leading order in τ . Therefore, to the leading

order in E and τ , Eq. (18) reads

gk = −τqf ′

0(εk)vk ·
(

E +
τ

2
ρ(k)Ṽ (k)×E

)

. (20)
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Hence, the contribution from impurity scattering to the trans-

verse conductivity reads

σxy = −
nq2τ2

2m
ρ(εF )Ṽ3(kF ), (21)

where kF is the Fermi velocity and εF is the Fermi energy.

For the W (asym)

k′
→k in Eq. (13), Ṽ (k) reads

Ṽ (k) = −2πniV
3mk3bx̂3, (22)

where x̂3 = (0, 0, 1) is the unit vector along the x3 axis.

Therefore, the transverse conductivity become

σxy =
nq2τ2ni

2π
V 3mk4F b. (23)

In the last, we discuss the scaling relation of the skew scat-

tering induced Hall effect. When the major source of scat-

tering is the elastic scattering by the impurities, τ in Eq. (21)

is estimated to be 1/τ ∼ niV
2ρ(εF ). On the other hand,

from Eq. (13), we see that the leading order of Ṽ (k) reads

Ṽ (k) ∼ niV
3ρ(εF )bk

2
F . Therefore, similar to the skew

scattering by an impurity with SOI, the Hall conductivity is

σxy ∼ ρ(εF )V k2F bσxx with σxx = nq2τ/m being the longi-

tudinal conductivity. Hence, the Hall angle for the AHE due to

skew scattering is estimated as σxy/σxx ∼ V ρ(εF )k
2
F b. This

result indicates a relation between the longitudinal (ρxx) and

transverse (ρyx) resistivities ρyx ∝ ρxx with the fixed strength

of the impurity potential V .

In addition to the skew scattering we discussed here, an

electronic band with a finite net Berry curvature shows intrin-

sic AHE4,17,18; the intrinsic Hall conductivity is proportional

to the number of carriers and Berry curvature, σ(int)
xy ∼ nq2b.

A key difference is that σ(int)
xy is insensitive to the longitudi-

nal conductivity while the anomalous Hall conductance by

skew scattering is σ(sk)
xy ∝ σxx. Therefore, it is expected

that the skew scattering becomes the major cause of Hall

effect when the system is clean while the intrinsic Hall ef-

fect dominates when σxx is small27,31. The crossover occurs

when σ(sk)
xy /σ(int)

xy ∼ εF /(niV ) ∼ 1; this indicates that the

crossover of AHE from intrinsic to skew scattering occurs at

σxx ∼ q2/(mV ). Therefore, the skew scattering is dominant

when V <
∼ εF while the intrinsic AHE is dominant if V >

∼ εF .

In addition to the intrinsic contribution, side-jump mech-

anism also contributes to the AHE in magnetic metals30.

While the side-jump contribution is generally considered to

be smaller than the other two27, it has been discussed that the

contribution can be large for the constant Berry curvature case

considered in this manuscript37. However, even for this case,

the magnitude of side-jump effect is the same as that of the in-

trinsic one. Therefore, the above argument should hold even

when there exists an observable contribution from the side-

jump mechanism.

V. DISCUSSION AND SUMMARY

To summarize, in this work, we studied the anomalous Hall

effect from the viewpoint of noncommutative quantum me-

chanics. In presence of the Berry curvature b(k), we find

that a non-magnetic impurity generally contributes to the skew

scattering regardless of the spin-orbit interaction. Using a

Boltzmann theory, we present the explicit form of the anoma-

lous Hall conductivity induced by this mechanism. Analogous

to the case of the skew scattering by an impurity with spin-

orbit interaction, the skew scattering in the current mechanism

also results in a Hall conductivity that is linearly proportional

to the longitudinal conductivity.

We note that a similar idea on the skew scattering propor-

tional to Berry curvature was pointed out in Ref.5. This pre-

ceding paper, however, introduces the asymmetric scattering

as a phenomenological scattering term; in general, the deriva-

tion of the asymmetric scattering term becomes a complicated

task due to the noncommutativity of the position operators.

In contrast, in this paper, we used a method of noncommuta-

tive quantum mechanics and derived the scattering term mi-

croscopically within the second Born approximation.

The results indicate that the Berry curvature of the elec-

tronic bands is the sufficient condition for skew scattering to

occur. This shows that the skew scattering is a ubiquitous

phenomenon that appears in the materials with nonzero Berry

curvature. For instance, magnets with non-coplanar magnetic

orders show nontrivial electronic states with nonzero Berry

curvature40–42; such states are expected to appear in frustrated

magnets41,43–45. Our results indicate that, the anomalous Hall

effect due to skew scattering by nonmagnetic impurities also

appears in these magnets as long as the Berry curvature is

there, although the spin-orbit interaction does not appear in

the electronic Hamiltonian.

Regarding the relation to anomalous Hall effect in collinear

ferromagnets, in these systems, the Berry curvature often

arises as a consequence of the spin-orbit interaction. There-

fore, our theory provides a different view on the skew scat-

tering induced by the host spin-orbit interaction. Remarkably,

Smit already discussed that the spin-orbit interaction at the

impurity potential is not required for the skew scattering29.

Further studies on such possibilities were explored in vari-

ous systems considering multiple bands and the scattering be-

tween them32,46–51. Our study, in contrast, considered a single

band model with Berry curvature, i.e., the multiple band ef-

fects are taken into account as the Berry curvature.
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